A. 在环己烯制备实验中,为什么要控制分妞柱顶温度不超过73
环己烯的制备
一、实验目的
1、 学习以浓磷酸催化环己醇脱水制取环己烯的原理和方法;
2、 初步掌握分馏和热水浴蒸馏的基本操作技能。
3、 有机物萃取洗涤方法及干燥方法。
二、反应原理
主反应:
副反应:
三、主要化学试剂、产物、副产物的物理和化学性质
名 称
分子量
状 态
熔点
(℃)
沸点
(℃)
密度
d420
折射率
nD20
溶解度
水
醇
醚
环己醇
100.16
无色液体
25.15
161.1
0.9624
1.4641
溶
溶
溶
环己烯
82.15
无色液体,易挥发
-103.5
82.98
0.8102
1.4465
不
∞
∞
四、化学试剂的用量及产物的产量:
名 称
实际用量
理论用量
过量(%)
理论用量
环己醇
10ml(9.6g,0.096mol)
10ml(9.6g,0.096mol)
磷 酸
5.0ml(7.16g,0.073mol)
6.57ml(8.00g,0.096mol)
环己烯
7.89g (0.096mol)
五、仪器装置图
图1 分馏装置 图2 常压蒸馏装置
六、流程图
七、实验记录
在50ml圆底烧瓶中,加入10ml(0.096mol)环己醇及5ml85%磷酸,充分振荡使液体混合均匀,投入少许沸石,安装分馏装置,用25ml 量筒作接收器。
缓慢加热至沸腾,控制分馏柱顶温度不超过73℃。直到无馏出液滴为止。这时烧瓶内出现白雾,停止加热,记下粗产品中油层和水层的体积。
将粗产品放到小锥形瓶中,用滴管吸去水层,加入等体积的饱和食盐水,充分振荡后静置待液体分层。用吸管吸去水层。油层转移到干燥的小锥形瓶中,加入少量无水氯化钙干燥之。将干燥后的粗制环己烯用水浴蒸馏,收集82~85℃的馏分。产量:约4-5g。
纯环己烯为易燃有刺激性气味的无色液体。沸点bp= 82.98℃,折光率 =1.4465。
八、实验记录
时间
操 作 步 骤
现 象
解 释 或 备 注
10:50
按图安装实验装置。用25ml 量筒作接收器。
11:16
加入10.0ml环己醇
5.0ml85%磷酸
加沸石2粒。
为无色液体,略有粘稠。
无色,此时反应液为无色。
11:30
开始缓慢加热。
11:42
沸腾,保持沸腾而不蒸出馏出液20min。
瓶内反应液沸腾,出现回流。
12:05
升高温度,控制加热蒸馏速度使分馏柱顶温度不超过90℃。蒸至无馏出液滴为止。
温度控制在69.0-83.0℃之间,以防环己醇被蒸出
环己烯-水共沸沸点70.8℃;环己醇-环己烯共沸沸点64.9℃;环己醇-水共沸沸点97.8℃。
12:30
烧瓶内出现白雾,停止加热
粗产品中油层:3.2ml
水层:2.5ml
说明环己醇的脱水反应已经结束
12:40
将量桶中的馏出液倒入分液漏斗中进行分液,静置5min。
分层,
水层在下层,无色
有机层在上层,无色
13:00
分出下层水溶液。
用10ml饱和食盐水洗涤有机层。
除去粗产品中的水分,减少有机物的在水中的溶解度,有利于分层。
13:15
分出水层,将有机层倒入一个干燥并且干净的锥形瓶里,加入1.0g无水氯化钙,盖上盖子,振动后,放置30min
有机物中有明显悬浮干燥剂。
氯化钙还可除去原料环己醇。
有悬浮干燥剂存在说明干燥剂用量足够。每10ml液体产品约加入0.5-1.0g干燥剂。
13:45
安装蒸馏装置。
将滤去干燥剂的粗产品加入蒸馏烧瓶中,加2粒沸石。
热水浴加热,蒸馏收集82-85℃之间的馏分。可以将三角烧瓶放在冷水浴中冷却,以防挥发。
馏分为82.0-83.6℃之间的馏分
产品为无色透明液体,略有香味。
整个装置所用仪器均需提前干燥无水。
锥形瓶空重:
65.5g
瓶+产品共重:
70.8g
产 品 重:
5.30g
14:15
停止蒸馏,拆卸装置。
九、产品产率计算
产率=5.30/7.89 ×100% =67.2%
B. 搅拌车料斗
是的,质量可靠。
混凝土搅拌运输车由汽车底盘和混凝土搅拌运输专用装置组成。我国生产的混凝土搅拌运输车的底盘多采用整车生产厂家提供的二类通用底盘。其专用机构主要包括取力器、搅拌筒前后支架、减速机、液压系统、搅拌筒、操纵机构、清洗系统等。工作原理是,通过取力装置将汽车底盘的动力取出,并驱动液压系统的变量泵,把机械能转化为液压能传给定量马达,马达再驱动减速机,由减速机驱动搅拌装置,对混凝土进行搅拌。
1.取力装置
国产混凝土搅拌运输车采用主车发动机取力方式。取力装置的作用是通过操纵取力开关将发动机动力取出,经液压系统驱动搅拌筒,搅拌筒在进料和运输过程中正向旋转,以利于进料和对混凝土进行搅拌,在出料时反向旋转,在工作终结后切断与发动机的动力联接。
2.液压系统
将经取力器取出的发动机动力,转化为液压能(排量和压力),再经马达输出为机械能(转速和扭矩),为搅拌筒转动提供动力。3.减速机
将液压系统中马达输出的转速减速后,传给搅拌筒。4.操纵机构
(1)控制搅拌筒旋转方向,使之在进料和运输过程中正向旋转,出料时反向旋转。 (2)控制搅拌筒的转速。5.搅拌装置
搅拌装置主要由搅拌筒及其辅助支撑部件组成。搅拌筒是混凝土的装载容器,转动时混凝土沿叶片的螺旋方向运动,在不断的提升和翻动过程中受到混合和搅拌。在进料及运输过程中,搅拌筒正转,混凝土沿叶片向里运动,出料时,搅拌筒反转,混凝土沿着叶片向外卸出。
叶片是搅拌装置中的主要部件,损坏或严重磨损会导致混凝土搅拌不均匀。另外,叶片的角度如果设计不合理,还会使混凝土出现离析。
6.清洗系统
清洗系统的主要作用是清洗搅拌筒,有时也用于运输途中进行干料拌筒。清洗系统还对液压系统起冷却作用。
1、公司设计的罐体叶片,使搅拌罐搅拌均匀,出料快速、流畅,并且独具三维搅拌、干搅拌的功能。
(1)在前锥叶片上开有辅助搅拌孔,在搅拌过程中物料沿这些孔形成由前向后的小范围轴向运动,这种轴向运动可引起其周围物料的紊动,使搅拌更加均匀;同时在罐体轴线的平面上增加搅拌板,进行辅助搅拌,从而可以实现大骨料混凝土的搅拌运输。
(2)罐口最后一对叶片制成月牙型,实现出料的连续过渡。在叶片中间增加一对相同的辅助叶片,加强出料连续性。
(3)前锥、中筒、后锥三部分叶片之间圆滑过渡、曲率平顺。在保证搅拌均匀性的同时,提高混凝土的出料速度,降低出料残余率;新式叶片使整车更加节能,在发动机怠速工况下即能满足工地对车泵的泵送要求。
(4)通过专用模具压制的叶片,采用变角的双对数螺旋曲面,精密复杂、过渡圆滑,使搅拌罐成为一个理想的三维搅拌空间,使搅拌罐具备干式搅拌功能,且混凝土搅拌均匀、不离析。
(5)搅拌叶片左旋设计,适应我国靠右行驶、路面左高右低的情况,从而提高了搅拌车的行车稳定性.
2、采用特种钢材和特殊的焊接工艺,搅拌罐体强度高、耐磨性高。
(1)、筒体及叶片均采用高强度细晶粒合金钢板,具有极高耐磨性。进料斗及出料滑槽加衬耐磨钢板,极大延长使用寿命。
(2)、为加强搅拌筒的强度,所有关键位置焊缝均为搭接,其优点是圆柱筒和锥筒连接处有两道焊缝,增加了搅拌筒结构强度和焊接强度,搅拌筒壁更耐磨。
(3)、 对叶片进行了折弯翻边后与搅拌筒内壁焊接,叶片焊接牢固,搅拌时承载面积大,完全可以满足干式搅拌和三维搅拌所需的承载能力。
混凝土搅拌车早期搅拌叶片的母线采用阿基米德螺旋线,从1965年以后开始采用对数螺旋线,直到现在,搅拌叶片的母线基本很少改变。根据目前的研究热点,混凝土搅拌车向着两个方向发展:一是向着大型化、功能多样化、控制自动化方向发展;二是传统搅拌系统的变革,如采用新的搅拌系统设计思想,改变传统的搅拌筒的外形、搅拌叶片的母线、搅拌叶片的安装形式等等。本公司提出的母线改进设计正是基于后者的设计思想。 1 对数螺旋线新型母线的设计
设计搅拌车圆锥螺旋叶片时往往引入计算锥的概念,即假想存在一个锥面平行于搅拌桶锥面,且螺旋面与之交线上的所有螺旋角均相等,这个假想的圆锥面就叫计算锥。计算锥的引入虽然方便了计算,但在实际生产制造中却不那么方便。为了获得螺旋角变化的螺旋面叶片,直接采用搅拌筒的锥面作为设计锥面,采用非等角对数螺旋线作为搅拌叶片的设计母线,其性能更加优越,而且在实际生产时也便于划线和确定准确位置。 1.1 搅拌叶片的母线方程
搅拌叶片在前锥和后锥部分采用的是对数螺旋线,其母线的方程为:
其中β为螺旋角,ρ0为初始极径;θ为半锥角;φ为螺旋转角。
当口β一定值时,螺旋线为等角对数(圆锥)螺旋线;当β是一个变量时,该螺旋线即为非等角对数螺旋线,则β可以表示为: β=β0±cδ(t)
其中β0为初始螺旋角,c为系数,δ(t)为变化函数,可采用多种函数规律。 可以看出等角对数螺旋线是非等角对数螺旋线的一个特例。 1.2 搅拌叶片的设计
以华菱集团8.5LP混凝土搅拌车的搅拌系统为设计基础,进行搅拌叶片的改进设计。设计时,保持搅拌筒的外形尺寸和基本参数不变,只对搅拌叶片进行了重新设计。已知搅拌筒的外形尺寸为:后锥长A=1036mm,后锥小端直径Φ1=1715mm;中圆长B=1566rnm,直径Φ2=2305mm;前锥长C=1673mm,前锥小端直径Φ3=1103mm。螺旋叶片设计规律及参数如表1所示,新方案与原设计绘制的螺旋线如图1和图2所示,图中标记A、B为3段螺旋线的接合处。
3 实验研究
为了验证设计的效果以及有限元分析的正确性,还需对这两种母线的搅拌叶片进行实验研究。搅拌叶片的优劣要从混凝土搅拌的效果进行评定,最重要的是要看混凝土最终的搅拌质量。根据微观搅拌理论,混凝土各组分不仅要在宏观上达到均匀,微观上也要达到均匀分布,这样,每一骨料都被水化物薄膜包围,混合物的凝胶结构才最稳定。而验证搅拌均匀性的方法则是在混凝土硬化28天后测量其抗压强度。
用于试验的混凝土搅拌筒采用1:4的有机玻璃模型,用于试验的混凝土是采用同一配比的混凝土,每筒装载容量1m3,混凝土的基本参数如下:
水灰比:0.45;砂率:32%,采用中砂;碎石直径:10~20mm;坍落度:30mm;水泥:水:砂:石=1:0.45:1.48:3.15。试验结果如表2所示。
从表2中可以看出:非等角对数螺旋线在搅拌后的坍落度相对比较均匀,出料速度、出料残余率等性能指标相对较好。从28天的抗压强度可看出,新方案搅拌的效果较好。
表2 试验结果对比
2 搅拌叶片的有限元分析
为了对比非等角对数螺旋线搅拌叶片与等角对数螺旋线的优劣,首先对其进行了有限元受力分析和位移的对比。
对于研究对象,如果搅拌叶片的母线比较光顺,其受力就比较均匀,应力集中现象以及奇异点会比较少,产生的变形就小,其搅拌性能相对也会更加优越。首先对两种设计方案进行有限元受力分析的比较,根据搅拌的特点,主要考虑拌合料的轴向运动和周向运动_3]。简化它们的受力情况如下: (1)轴向运动:其动力为叶片的轴向推力,动阻力有筒底的反推力、筒壁和叶片的轴向摩擦力及以上流层的轴向剪切力。
(2)周向运动:其动力为叶片的周向推力和筒壁及叶片的摩擦力,两者等效为叶片的周向推力,其动阻力有自重力形成的周向流动阻力和上流层的周向剪切力。
对混凝土搅拌叶片两种方案的有限元受力分析如图3和图4所示,其对应的位移变形图如图5和图6所示。
从图3和图4显示的叶片有限元分析的等效应力云图可以看出:两种方案的搅拌叶片所受的应力分布都是不均匀的。但是从节点结果可以看出,等角对数螺旋线的最大应力值为37MPa,非等角对数螺旋线的最大应力值为15MPa,都远小于材料的屈服强度360MPa。可以明显看出非等角对数螺旋线由于其曲线本身的特点以及便于拟合的优良特性,比等角对数螺旋线更加光顺,所以受力也更加均匀,奇异点也就更少。
从图5图6可以看出,等角对数螺旋线的最大位移为0.000461,非等角对数螺旋线的位移为0.000339,都发生在各段搅拌叶片的拟合处。从位移变形的发生情况,一方面可以看出非等角对数螺旋线具有明显的优良性能,另一方面也对以后的优化设计提出了方向。
根据受力及变形情况,可以推断出搅拌叶片设计的优劣,为了进一步验证所设计叶片的搅拌性能,采用相似原理对两种线型的搅拌叶片搅拌效果进行了试验验证。
3 实验研究
为了验证设计的效果以及有限元分析的正确性,还需对这两种母线的搅拌叶片进行实验研究。搅拌叶片的优劣要从混凝土搅拌的效果进行评定,最重要的是要看混凝土最终的搅拌质量。根据微观搅拌理论,混凝土各组分不仅要在宏观上达到均匀,微观上也要达到均匀分布,这样,每一骨料都被水化物薄膜包围,混合物的凝胶结构才最稳定。而验证搅拌均匀性的方法则是在混凝土硬化28天后测量其抗压强度。
用于试验的混凝土搅拌筒采用1:4的有机玻璃模型,用于试验的混凝土是采用同一配比的混凝土,每筒装载容量1m3,混凝土的基本参数如下:
水灰比:0.45;砂率:32%,采用中砂;碎石直径:10~20mm;坍落度:30mm;水泥:水:砂:石=1:0.45:1.48:3.15。试验结果如表2所示。
从表2中可以看出:非等角对数螺旋线在搅拌后的坍落度相对比较均匀,出料速度、出料残余率等性能指标相对较好。从28天的抗压强度可看出,新方案搅拌的效果较好。
表2 试验结果对比
混凝土搅拌车搅拌罐及螺旋叶片总成建模与仿真
搅拌总成作为混凝土搅拌运输车的核心部分, 直接决定了整车性能。通过对华菱星马,三一重工,中联重科等搅拌车搅拌总成的研究, 指出了搅拌叶片在前锥、中圆和后锥部分分别采用的螺旋线形式, 并对搅拌罐总成进行了建模和仿真,为指导生产实践奠定了理论基础。 关键词: 混凝土搅拌罐总成; 螺旋叶片
搅拌叶片是混凝土搅拌车的关键部件, 它的好坏直接影响着搅拌罐的寿命、出料残余率、搅拌效果、出料速度等。在搅拌罐装料、运料和卸料三个过程的运动中, 要达到新拌混凝土均质性好、进出料效率高、出料残余率低且性能可靠的技术要求, 需找出最佳的罐体和叶片配置尺寸。目前国内搅拌叶片的制造靠测绘仿制 , 鉴于此, 有待研究开发出指导叶片和罐体及相关件的关键技术。
1 搅拌筒和叶片参数设计
设计搅拌罐的搅拌叶片时, 一般在前锥和后锥段采用对数圆锥螺旋线, 中圆段采用圆柱螺旋线。搅拌罐的搅拌和出料性能与螺旋线的螺旋升角和螺旋角有着密切的关系, 搅拌罐与地面的夹角为14o , A角为叶片曲线围绕搅拌筒轴心的螺旋升角, 它与旋角B之间的关系为: A+ B= 90o [ 2 ]。螺旋升角A越大, 搅拌性能越好, 但出料性能越差。随着A角的增大, 混凝土沿叶片滑移的摩擦力也相应加大, 达到一定程度, 就易造成混凝土在叶片上的淤积, 使其运动受阻, 搅拌效率降低, 尤其在卸料工况时, 由于淤积而造成的堵塞会使卸料发生困难。当A趋于90o 时, 叶片与搅拌曲线近似平行, 这时叶片对混凝土类似于自落式搅拌机而几乎没有轴向的推移作用, 因而丧失卸料功能。为了避免前锥积料, 改善出料性能, 应减小小端处的螺旋升角, 但A角不能太小, 当A角很小时, 叶片几乎与搅拌轴线垂直, 混凝土在转动的搅拌筒中轴向运动非常微小, 近似于只作沿筒叶的切向滑跌。在这种情况下, 不但搅拌作用很弱, 而且也不具备实际的卸料能力。因此, 要综合考虑以下几点:
(1) 后锥螺旋叶片主要是为了实现搅拌功能, 在满足物料下滑(一般下滑角C> 30o [ 3 ]) 的前提下尽量加大螺旋升角, 但为了避免前锥积料, 改善出料性能, 应减小小端处的螺旋升角。
(2) 中圆段是搅拌与出料的过渡段, 为提高搅拌性能应适当提高螺旋叶片顶端螺旋升角, 为改善出料性能应使螺旋叶片直纹与搅拌筒轴线有一定夹角, 这个夹角等于后锥的半锥角的余角, 以实现以上这两种功能。
(3) 前锥螺旋叶片实现快速卸料, 并起一定拌和作用, 避免出料时出现离析。越靠近出口的位置越要选用大的螺旋角, 即小的螺旋升角, 可提高搅拌罐的出料性能。
从以上分析可见, 叶片曲线的螺旋升角, 决定混凝土在搅拌筒沿轴向或切向运动的强度, 影响着搅拌和卸料功能。当A较大或很小时, 叶片的工作性能差,甚至没有搅拌或卸料能力。为保证搅拌质量或卸料速度, 应选择适当的螺旋升角, 以上的分析只是定性分析。螺旋升角的确定, 还要受混凝土性质和搅拌筒斜置角度等因素的制约, 从理论上确定还有一定困难。实验结果表明当搅拌罐的斜置角度在14o~ 20o 左右时,对于搅拌工况和卸料工况一般都使A≤30o
选择搅拌罐前锥与圆柱段叶片为平直截面, 前锥叶片与罐壁垂直焊接, 叶片母线B 1= 80mm; 圆柱段叶片母线B 2= 380mm , 与罐壁呈74111o 焊接; 后锥段叶片与罐壁呈74111o , 并且后锥段叶片母线沿出料方向逐渐减小。
混凝土搅拌运输车由汽车底盘和混凝土搅拌运输专用装置组成。我国生产的混凝土搅拌运输车的底盘多采用整车生产厂家提供的二类通用底盘,其专用机构主要包括取力器、搅拌筒前后支架、减速机、液压系统、搅拌筒、操纵机构,清洗系统等。混凝土贮罐由优质耐磨薄钢板制成,为了能够自动装、卸混凝土,其内壁焊有特殊形状的螺旋叶片。当混凝土贮罐正向转动时,混凝土可装满贮罐并且因不断被搅动而不会很快凝结;当它反向转动时,混凝土会自动从卸料口卸出。
混凝土搅拌运输车用的汽车底盘要求要有足够的载重能力和强劲的输出功率。一般要求发动机要有230kW(300马力)以上的功率,装载量为6~7m的混凝土搅拌运输车需选用6×4载质量为15 t级的通用底盘;装载量为8~10m的需选用双前桥8×4载质量为20t级的底盘;而装载量为10~12m的则要采用6×4的牵引车加半挂车的方式。混凝土贮罐的转动则是靠液压驱动机构来保证。装载量为6~8m的混凝土搅拌运输车一般采用由汽车发动机通过动力输出轴带动液压泵,再由高压油推动液压马达驱动混凝土贮罐。装载量为9~12m的,则由车载辅助柴油机带动液压泵驱动液压马达。
混凝土搅拌运输车在行车中及等待卸料过程中,
为避免混凝土水份离析或凝固,通过取力装置将汽车底盘的动力取出,并驱动液压系统的变量泵把机械能转化为液压能传给定量马达,马达再驱动减速机,由减速机驱动搅拌装置,对混凝土进行搅拌,罐筒均需低速转动(2~4r/rain)。卸料时,罐筒需反方向转动(12~14r/min),混凝土被筒内螺旋叶片转动,均匀连续卸出。罐筒的转速变化和旋转方向的改变,均由变量油泵的控制杆完成——改变油泵的转速、排量和高压油出口换位(油泵反向旋转)。
国产混凝土搅拌运输车采用主车发动机取力方式。取力装置的作用是通过操纵取力开关将发动机动力取出,经液压系统驱动搅拌筒,搅拌筒在进料和运输过程中正向旋转,以利于进料和对混凝土进行搅拌,出料时反向旋转,工作终结后切断与发动机的动力联接。液压系统将经取力器取出的发动机动力转化为液压能(排量和压力),再经马达输出为机械能(转速和扭矩),为搅拌筒转动提供动力。
减速机将液压系统中马达输出的转速减速后传给搅拌筒。操纵机构控制搅拌筒旋转方向,使之在进料和运输过程中正向旋转,出料时反向旋转。搅拌装置主要由搅拌筒及其辅助支撑部件组成。搅拌筒是混凝土的装载容器,转动时混凝土沿叶片的螺旋方向运动,在不断的提升和翻动过程中受
到混合和搅拌。在进料及运输过程中,搅拌筒正转,混凝土沿叶片向里运动;出料时,搅拌筒反转,混凝土沿着叶片向外卸出。叶片是搅拌装置中的主要部件,损坏或严重磨损会导致混凝土搅拌不均匀。另外,叶片的角度如果设计不合理,还会使混凝土出现离析。清洗系统的主要作用是清洗搅拌筒,有时也用于运输途中进行干料搅拌。清洗系统还对液压系统起冷却作用。。
混凝土搅拌车罐体制作工装方案
Tooling Plan of Procing Tank ofConcrete Mixer
马鞍山中昱机械制造有限公司安徽马鞍山239056
捕要:介绍了混凝土搅拌车筒体制作工装的方案。通过对筒体的每节锥筒或直筒分段外卡定位模板,在外卡模板之间通过连接板分段焊接成一体,将每节锥筒或直筒的定位模具通过键槽定位,并用螺栓连接成一体,以便将不规则筒体外形转变成模具的规则形状,再将外卡模具的筒体吊放到滚轮架上实现变位焊接,以保证装配后各节筒体能够同心旋转·
关键诃:混凝土搅拌罐 外卡定位模具键槽定位 滚柱式滚轮架 电磁调速 同步旋转
1前言
近年来随着国家基础性建设的加大,混凝土搅拌车的需求量也在不断增加。混凝土搅拌车的筒体因其形状是与中筒圆柱体不对称的前后锥体制作而成,筒体成型后必须保证装配后各节筒体能够同心旋转,在制作工艺上有一定难度。本公司将介绍一种焊装搅拌车筒体的工装,用以保证筒体焊装成形。
2混凝土搅拌车筒体模具的制作
2.1筒体模具制作的思路
根据混凝土搅拌车简体的外形将其分为封头、后锥、中筒、前锥1、前锥2五段,针对每段筒体按图1所示分段,并对各段分别外卡定位模板,其中筒体变截面两侧应分别设置模板,每两节筒体接触部位对应模具的模板通过螺栓连接成一体,外卡定位模具模板与简体接触面通过精加工保证形状与筒体锥度一致,各段筒体上的模板之间分别通过连接板焊接成一体,构成与之对应的五段模具。
2.2各段筒体横具的制作
2.2.1封头段定位模具
封头段设一块定位模板,搅拌车减速机法兰对应的筒体法兰定位板与模板毛坯料通过连接板焊接成一体,再精加工法兰定位孔、模板定位面及外因、模板上的键.
2.2.2后锥定位模具
后锥由三块定位模板通过连接板组焊成一体,精加工模板定位面及外圆、两侧模板上的键槽,再将其对半分开,并通过螺栓连接。
2.2.3中筒定位模具
中筒由两块模板组成,通过连接板连成一体,精加工模板定位面及外圆、两侧模板上的键,再将其对半分开,并通过螺栓连接。
2.2.4前锥2定位模具
前锥2由四块模板通过连接板组焊成一体,其中一侧模板定位在搅拌车筒体滚道上,精加工模板定位面及外圆、两侧模板上的键槽。
2.2.5前锥1定位模具
前锥1由三块模板通过连接板组焊成一体,精加工模板定位面及外圆、与前锥2定位模具连接一侧模板上的键,精加工 后再将其对半分开,并通过螺栓连接。
2.3各段模具精加工的工艺要求
各段外卡模具精加工时应保证:模板定位面的锥度应与封头或各段筒体接触处锥度一致,模板外圆大小一致,相邻两段模具接触面上对应的键和键槽位置应一致 (通过给定尺寸公差保证)。为了减少精加工的工作量,各段外卡模具连接板内侧应高于模板内表面、外侧应低于模板外圆面。
3混凝土搅拌车筒体的定位成型
根据混凝土搅拌车筒体的尺寸要求,将放样下料的各节筒体板材分别卷制成型。各节筒体卷制时将其接缝内侧手工分段点焊,再分别将各节筒体放人对应定位的模具中,通过外力使各节筒体外表面与对应筒体模具定位模板内侧定位面贴合,其中封头、法兰在对应模具中定位并固定,相邻各节筒体模具分别通过键、键槽定位,再通过螺栓将各节筒体模具连接成 一体(如图1),螺栓连接孔、键槽连接方式如图2所示,混凝土搅拌车筒体模具连接后的三维效果如图3所示。
4筒体滚轮架方案
混凝土搅拌车筒体在滚轮架上滚动的,目的是实现筒体内部环缝及叶片的焊接。滚轮架一方面起到托住筒体及模具的作用,另一方面滚轮架的转速应适应焊接速度在一定范围的变化,以便操作人员在筒体内部施工,为此采用图4所示滚柱式筒体滚轮架方案:通过小托辊(如图5)分段支撑长托辊以增强长托辊的抗弯强度以长托辊支撑外卡模具的筒体总成,通过外球面球轴承连接长托辊支撑轴以保证其转动时同心,采用速比相同的二级减速机通过法兰式连接轴连成一体,再通过滑块连轴节实现两个平行长托辊的同向同步转动,选择电磁调速电动机满足长托辊在一定范围内转速的可调。
5筒体外环缝焊接方案
为便于筒体外环缝焊接,将内部焊接成型的筒体从模具中取出,使筒体的滚道部位架在驱动托辊上,在筒体法兰端连接法兰盘,将法兰盘焊接在自由转动的从动轴上,通过支架调整从动轴高度以实现筒体的转动,然后配合可在导轨上运动的十字形焊接臂,以便在简体上实现外环缝自动CO:保护焊或埋弧焊接。
6焊接滚轮架的计算
6.1驱动功率计算
滚轮受力状态和滚轮架偏心距e的关系如如图6所示
式中,M为驱动轮所受总力矩,N·m, D,为长托辊直径,mm;n为驱动轮转速,r/min,
l为总传动效率。若用一级蜗杆传动,取l≈O.4。
6.2中心角的选择
使用滚轮架时,选择合适的中心角,有利于工件稳定而均匀的转动,并可降低滚轮支反力和驱动圆周力,降低能源消耗。其对应关系如图7所示
C. 初中化学实验总结和实验的操作步骤 要全初中的
(一)实验知识点提要
1、常用化学仪器的名称、用途及使用时的注意事项
针对考核的基本要求,可根据仪器的用途及功能进行分类,在分类中进行比较,在比较中加深印象.
能加热的仪器:试管、蒸发皿、烧杯(间接加热).
用于计量的仪器:托盘天平、量简.
用于夹持的仪器:铁架台、试管夹.
用于加热的仪器:酒精灯.
用于滴加少量液体的仪器:胶头滴像
用于收集和贮存少量气体的仪器:集气瓶,
用于分离少量物质的仪器:漏斗.
用于搅拌和引流的仪器:玻璃棒.
2.八项重要的基本操作
八项重要的基本操作是:药品的取用、物质的加热、仪器装置的连接、装置气密性的检查、过滤、蒸发、玻璃仪器的洗涤、溶液的配制等.复习时,应重点掌握每项操作的方法、涉及到的仪器及操作的注意事项,特别要注意对操作失败原因的分析.
3.实验室规则和安全常识
安全意识是公民科学素质的重要组成部分.实验室所用的药品,很多是易燃、易爆、有腐蚀性或有毒的,因此在使用时一定要严格遵照有关规定和操作规则,保证安全.为此,要注意以下三类.
严格遵守实验室“三不准”原则;
注意药品的用量;
对可燃气体(H2、CO、CH4)的性质实验,一定要注意可燃气体的纯度,以防发生爆炸;有毒气体(CO)的实验应在通风橱中进行,尾气应用适当的方法处理,以防污染空气.
4.气体的制备
实验室制取气体及其性质实验,是属于基本操作的简单综合实验.复习时,可从所需药品、反应原理、选用的仪器装上、收集方法、验满或验纯以及注意事项等方面进行归纳总结.通过对比制气装置和收集装置,突出气体的个性及几种气体的共性,提高记忆效果.
有关气体制备.
(1)气体的发生装置
根据所用反应物的状态和反应条件,可分为两类:
(2)气体的收集装置
根据气体的溶解性及密度,选择用排水法(气体难溶于水)或向上排空气法(气体密度比空气大)、向下排空气法(气体密度比空气小)进行收集.
(说明:排空气集气法中的“向上”或“向下”不是指瓶口的取向,而是指空气从瓶中被排出的流向)
(3)集气瓶的多种用途
①集气瓶:收集密度比空气大的气体,气体流向是。长进短出。
比空气轻的气体气体流向为“短进长出”.若瓶中盛满水,则由短管进气排出水,收集难溶于水的气体.
②量气瓶:定量收集量取气体体积的实验装置,气体“短进长出”.
③储气瓶:先排水集气后,使用气体时,用高位水(或接水龙头)将瓶内气体压出,水从长管进,气体从短管出.
④洗气瓶:瓶内放适量液体试剂(约l/3)用于气体的干燥(除去水蒸气)、净化(吸收杂质)或性质实验(检验某气体存在或验证某气体性质),则应“长进短出”.
(4)装置气密性的检查
不论是何种气体的制备,都要先检查装置的气密性.
(5)防倒吸
用排水集气法将气体集满后,应先从水槽中取出导管,再熄灭酒精灯.
(6)棉花团的作用
用 KMnO4分解制取O2时,应将棉花团置于大试管口处,以防止 KMnO4粉末从导管口喷出。
5、物质的检验
物质的检验涉及对物质的鉴定、鉴别和推断等多个方面.其主要内容包括:几种气体(O2、H2、CO2、CO、CH4)的检验;碳酸盐(或CO32-)的检验,盐酸、硫酸、氢氧化钠、氢氧化钙的鉴别等.复习时一定要熟悉有关物质的性质,尤其对一些有色特征溶液、特征沉淀及有关反应产生的特征现象要有清楚的认识,这是解答这类问题的基础和关键.
6.物质的分离和提纯
物质的分离和提纯方法,可分为物理方法和化学方法两大类.物理方法主要包括:过滤、蒸发、结晶等.化学方法主要有:直接加热法(如除去KCl中混有的少量K2CO3),碱化法(如用NaOH溶液除去CO中混有的少量CO2),酸化法(如用稀盐酸除去NaCl中混有的少量Na2CO3),置换法(如用铁粉除去FeSO4中混有的少量CuSO4),沉淀法(如用BaCl2除去盐酸中混有的少量硫酸)等.
对于物质的提纯和分离,不论用何种方法都应遵循以下原则:除去杂质的过程中不能引人新的杂质;
所选试剂一般只能跟杂质起反应;反应后的生成物必须容易分离(最好是转化为沉淀或气体).
(二)典型的题解析
〔例1〕(1)实验室要制取并收集得到较纯净的氧气和氢气,有两项操作是完全相同的两项操作是 和
(2)甲、乙两同学在实验室分别制取氨气和硫化氢气体.甲同学用加热氯化控和熟石灰的固体混合物制取氨气,乙同学用固体硫化亚铁和稀硫酸反应制取硫化氢气体.又知:氨气极易溶于水,密度比空气小;硫化氢气体可溶于水,密度比空气大.请回答:
①甲、乙两同学选取的气体发生装置 (填“相同”或“不同”),理由是
②氨气用 法收集,硫化氢用 法收集.
【解析】(1)制取任何气体时,首先要检查装置的气密性.要收集得较纯净的气体,根据O2和H2在溶解性上的相似性,都能用排水集气法收集.
(2)气体发生装置的选取,需根据反应物的状态和反应条件来考虑,制取氨气的反应物都是固体,且需加热;而制取硫化氢气体所用的硫化亚铁是固体,稀硫酸是液体,且反应在常温下即可进行.所以,甲、乙两同学选取的气体发生装置不同.由于氨气易溶于水,硫化氢可溶于水,故两种气体都不能用排水集气法收集,只能用排空气集气法收集.
答案:(1)检查装置气密性和排水集气法收集气体.(2);①不同.理由是,所用反应物的状态及反应条件不同;②向下排空气。向上排空气.
[例2]有一瓶气体,它由H2、CO2、CO、CH4中的一种或几种组成.用它进行以下实验:
将气体通过足量澄清石灰水,未见出现沉淀.在导管口将气体点燃,气体安静燃烧;用一个冷而干燥的烧杯罩在火焰上,烧杯壁上出现水珠;把烧杯迅速翻转,注人少量澄清石灰水,石灰水变浑浊.用化学式填空回答:
(1)气体中一定没有
(2)气体的组成可能是
[例3]要除去下列物质中混有的少量杂质(括号内物质为杂质),选择适当的试剂和方法填人横线内.
(1)KOH(K2CO3)_;
(2)BaCl2(CuCl2)_;
(3)CuO(KNO3)_;
(4)MnO2(C粉)
【解析】混合物的分离必须遵循:除杂中不能引人新的杂质,所造试剂一般只和杂质起反应,且反应后最好转化为易分离的沉淀或气体.试剂的选择:以杂质为出发点,结合杂质物质与主要成分物质在组成、性质上的差异即可筛选出所用试剂.要顺利完成混合物的分离,往往是物理、化学方法等多种方法并用.
[例4] 现有稀硫酸、稀盐酸、氢氧化钡、碳酸钠四瓶失去标签的溶液.分别编号为A、B、C、D.为了鉴别它们.分别取样两两混合.实验结果如图所示.“一” 表示无明显现象;“↓” 表示有沉淀生成,“↑”表示有气体生成,推断:
(1)B、D溶液中的溶质(写化学式)B .D
(2)写出下列物质反应的化学方程式:
A十B ,
C十D
[解析]这是一道物质性质型的实验推断题.熟悉并记某些有色特征溶液,特征沉淀及有关反应产生的特征现象是解答此类问题的基础和关键.只要以这些特征现象或特征物质为突破口,各个击破,就能迅速、准确地解决此类问题.本题以图表给出信息,为便于分析可结合图表内容写出以下6个简要反应式:①A+B——↑,②A+C——↓,③A+D——无现象(无现象不等于不反应),④B+C——↓,⑤B+D——↑。③C+D——无现象.分析6个反应并结合四种溶液的组成可知:①、⑤两个反应必是盐酸与NaCO3溶液、稀硫酸与NaCO3溶液反应产生CO2方气体,共同的反应物是B所以B应是NaCO3溶液.从④可推出能与NaCO3溶液反应生成沉淀的只能是Ba(OH)2溶液,C是Ba(OH)2溶液.再从②推出A应是稀硫酸,余下的③、③能证明D是稀盐酸.
[例5]实验室用铁、氧化钢、硫酸为原料制取铜,某同学设计了两个实验方案:
A:Fe H2SO4—→ H2CuO—→Cu
B:CuO H2SO4—→ CuSO4 Fe—→ Cu
两个实验方案中,最好的是,理由是 .
[解析]这是一道实验方案的评价性试题.方案的评价主要从三方面考虑:①方案的可行性:主要指理论上是否科学合理,操作是否简便易行.经济角度:主要看是否节约试剂.环保角度:主要看是否有利于环保.此题中的A、B两种方案从原理上看都是可行的.但A方案中用Fe和H2SO4反制H2消耗的Fe、H2SO4等原料较多,其次H2还原CuO 需加热,装置和操作较复杂,而B方案中的反应都是在常温下即可进行的,操作要容易得多
【例7】设计一个简单的家庭小实验,证明鸡蛋壳的主要成分是碳酸盐.
[解析]这是一道解决实际问题的简单实验设计题,源于教材第五章的一个家庭小实验.设计实验首先要弄清化学原理,然后根据条件选择药品和实验装置,拟定操作步骤,最后动手进行实验.证明鸡蛋壳含碳酸盐比较容易,只要用鸡蛋壳与酸作用,有二氧化碳放出(用澄清石灰水检验)便能证明.但要证明鸡蛋壳的主要成分是碳酸盐,便有一个量的问题.因此,在实验中蛋壳取量不能多,加人的酸则必须足量,直至反应不再有气体产生,反应完全后,若残留的固体量很少,才能充分证明.其次要考虑家里不易找到规范实验仪器,要选择代用品,用玻璃杯代替试管作反应器,用蘸有澄清石灰水的玻璃片作检验二氧化碳的装五,并注意操作程序,确保安全.
答案:(1)取少量洁净的碎鸡蛋壳放人小玻璃杯中,然后加人一些盐酸,立即用蘸有澄清石灰水的玻璃片盖住,可以看到鸡蛋壳上有大量气泡生成,玻璃片上的澄清石灰水变浑浊,可见生成的气体是二氧化碳,证明鸡蛋壳中合碳酸盐.(2)取下玻璃片,继续加人盐酸,直至不再有气体产生,此时看到玻璃杯中残留固体很少,可以证明鸡蛋壳的主要成分是碳酸盐.
[例7]访完成鉴别稀硫酸、稀盐酸、氯化钠三种溶液的实验报告.
供选试剂有:紫色石蕊试液、无色酚酞试液、硝酸银溶液、氯化钡溶液、碳酸钠溶液
实验内容与步骤
观察到的现象
结论、化学方程式
(1)用三支试管分别取适量的三种溶液,各
滴入几滴紫色石蕊试液,振荡,观察现象
(2)
【解析】这是一道考查学生对物质鉴别和实验报告的书写能力的综合试题.实验报告的填写,叙述要简练,所用试剂要明确,操作步骤尽可能简捷,结论应与实验现象相对应.本题待鉴别物质中:硫酸和盐酸的鉴别要以硫酸的鉴别为出发点选择试剂.(如先考虑用AgNO3鉴别盐酸将会出现干扰现象,从而影响硫酸的鉴别).
实验内容与步骤
观察到的现象
结论、化学方程式
1.(略)
一支试管中溶液呈紫色另两支试管中溶液呈红色
溶液呈紫色的试管中原溶液是NaCl溶液
2.另取二交试管分别取余下两
种溶液适量,各滴入少量BaCl2
溶液,振荡
一支试管中出现白色沉淀,另一支试管中无明显现象
有白色沉淀生成的原溶液是稀硫酸
H2SO4+BaCl2==BaSO4↓+2HCl
无明显现象的原溶液是稀盐酸
[例10]某校化学课外兴趣小组的同学,用废墨水瓶、单孔胶塞、T型玻璃管、医用一次性输液管(带针头及控液问)、小气球等用品制作了一个“多功能”气体发生器.如图所示.该装置不但能进行某些气体的制取,而且还能进行气体的某些性质实验.根据以上所述,请思考并回答:如何用该装置完成N重要性质的实验阿燃性、还原性、密度),写出操作步骤及现象.
[解析]这是一道以实验原理为依托,代用品实验装置为载体考查学生思维能力、实验动手能力、灵活应用知识能力的实验题.解答这类问题的关键是掌握实验原理(反应原理、装置原理、操作原理),并结合现有实验环境及条件去考虑,即可顺利解答.
答案:(1)检查装置气密性后,往T型玻璃管右端放人少量CuO粉末 (CuO粉末两端可放少许耐热的玻璃丝或石棉,以防CtlO被氢气流吹走),墨水瓶中放人适量的锌粒和稀硫酸并用胶塞塞紧.
(2)打开控气阀通氢气一段时间后,在针头处点燃氢气 并可看到产生淡蓝色火焰(金属针头无干扰成分又能防止回 火,避免H2不纯而引起爆炸).
(3)将针头火焰移至玻璃管下方CuO粉处加热,一段时后玻璃管内黑色的 CuO粉末逐渐变为光亮的红色(实验操作装置图如图30).
(4)关闭控制阀,气体进人小气球并逐渐膨胀变大,取 下气球用线系住放飞,即可顺利完成H2可燃性、还原性、密度等性质的验证.
(4学实验)
1.选择题(每小题只有一个答案符合题意)
(1)下列仪器中,可与烧瓶、试管、蒸发皿归为一类的是()
A、漏斗 B、量筒 C、集气瓶 D、烧杯 2、有四瓶无色气体,分别是空气、氢气、氧气和二氧化碳,一次就能鉴别出它们的物质是
A、带有火星的木条 B、澄清的石灰水
C、燃烧着的木条 D、紫色石蕊试液
3、描述锌和盐酸反应的现象较贴切的是()
A、有大量氢气生成 B、溶液剧烈沸腾
C、锌表面放出大量气泡,锌逐渐溶解
D、有大量气泡从溶液里逸出后变成氢气
4、氢气还原氧化钢的实验步骤有:①向氢气发生装置装人药品;②往盛有CuO的试管中通 入H2;③停止通H2;④停止加热;⑤加热试管;⑥检查装置的气密性;⑦检验N的纯度.下列表示操作顺序正确的一组是()
(A)⑥①⑦②⑤④③ (B)①⑥⑦②③④⑤
(C)⑥①⑤⑦②③④ (D)①⑥⑦⑤②③④
5、用托盘天平称量药品,右盘上的硅码为5克,游码在0.4克的位置上,指针指向最右端,所称药品质量是()
A、5.4克 B、不足5.4克 C、超过5.4克 D、4.6克
6、玻璃仪器内壁附着的下列物质,不能用稀盐酸浸泡除去的是()
A、盛石灰水后留下的白膜 B、试管内壁上附着的铁锈
C、用氢气还原氧化钢后留下的红色固体
D、氯化铁与氢氧化钠溶液反应后留下的红褐色固体
7、某学生的实验报告册中有以下实验数据,其中正确的是()
A、用 10mL量筒量取 6.25mL稀硫酸
B、用广泛pH试纸测得溶液的pH为3.5
C、用托盘天平称取7.9g氧化铜粉
D、温度计上显示的室温读数为25.68℃
8、在实验室做化学实验,发生下列事故时,处理方法正确的是()
A、衣服沾上大量浓氢氧化钠溶液,需将此衣服浸没在盛有水的面盆中
B、皮肤上溅上浓硫酸,用水冲洗
C、不慎将酸液溅到眼中,应立即闭住眼睛,流出眼泪将酸液带出
D、实验桌上酒精灯倾翻,酒精流在桌面上并着火,立即用湿抹布扑灭
9、食醋是醋酸的稀溶液.某同学准备在家中进行验证食醋具有酸的某一条通性的实验,他选择了下列物质,其中不能达到目的的是()
A、木炭 B、大理石 C、铁钉 D、铁锈
二、填空题
(1)实验室里所用的药品很多是有腐蚀性或有毒的.在使用药品时为了保证安全,必须注意做到“三不准”,不准 , 不准 ,不准 .
(2)液体药品通常存放在、瓶里,取用时先把瓶塞拿下、在桌面上;倾到药液时,瓶子的标签应,其原因是 .
(3)某同学用托盘天平称取干燥的固体药品2.3g,称量完后才发现,药品和破码的位置放颠倒了,此时,所称药品的实际质量是
(6)实验室欲配制 50g质量分数为 5%的 NaCl溶液,请回答下列问题
①该实验的操作步骤为
②甲同学在用托盘天平称量食盐时,食盐和祛码的位置放颠倒,这将导致所配制溶液的质量分数.(填“偏大”、“偏小”、“不变”,下同);乙同学用量筒量取水的体积时仰视读数,这将导致所配制溶液的质量分数
三.筒答题
(1)如果用滴管取1/3mL的液体于试管中,应如何操作?
(2)“氧气的制取和性质”实验课里,某学生取一根纱窗细铁丝在自己收集到的氧气中做铁丝在氧气里燃烧的实验,结果没有观察到“火星四射”等实验现象.此实验失败的原因之一可能是 .
D. 走近量子纠缠——上帝掷骰子吗
量子理论虽然是许多年轻人创建的集体物理学,但领袖人物还是屈指可数的。
1900年,普朗克的论文打开了潘多拉的盒子,释放出‘量子’这个妖精。那年,刚从瑞士的苏黎世工业大学毕业的爱因斯坦,21岁,正在四处奔波,焦头烂额地找工作,15岁的玻尔还只是哥本哈根一个顽皮的中学生。谁也料不到,这两个年轻人在十几年后成为了物理界的两大巨擎,而且,在量子理论的基本思想方面,两人巅峰对决,展开了一场一直延续到他们去世的旷世之争。
波尔与爱因斯坦的量子之争可以概括为一个著名的问题:上帝掷骰子吗?要解释清楚这个量子论中的哲学问题,我们首先介绍一下著名的杨氏双缝干涉实验。
杨氏双缝实验比量子论的历史还要早上100年。当初的法国物理学家托马斯·扬用这个简单实验挑战牛顿的微粒说,证明了光的波动性。原始的实验装置异常简单,这实验的影响却波及了几百年。托马斯·扬用经过一个小孔的光作为点光源,点光源发出的光穿过纸上的两道平行狭缝后,投射到屏幕上。然后,观测者可以看到,屏幕上形成了一系列明暗交替的干涉条纹。干涉是波特有的现象,因此,实验中出现的干涉条纹是光的波动性强有力的证明(见图1(a))。
让我们运用量子论的概念,来理解电子这种不同寻常的非经典行为:实验中的电子同时穿过了两条狭缝,不就是相似于我们在第一节中说过的:‘电子处于一种叠加态,既在位置A,又在位置B’的情形吗?作为量子论中的叠加态粒子,每个电子(或光子)真是像孙悟空一样,有分身术,一个孙大圣到了两条狭缝处,就变成了两个大圣,同时穿过了两条狭缝!然后,两个真假孙悟空又自己跟自己打起来了!争斗的结果,有可能是双赢,变出一个大孙悟空,打得屏幕上异常明亮;也有可能两败俱伤,真假悟空全死光,那时,就对应于屏幕上暗淡的地方。
因此,双缝实验的结果表明:电子的行为既不等同于经典粒子,也不等同于经典波动,它和光一样,既是粒子又是波,兼有粒子和波动的双重特性,这就是波粒二象性。
读者也许会说:每个电子到底是穿过那条狭缝过来的,我们应该可以测量出来呀。不错,物理学家们也是这样想的。于是,他们便在两个狭缝口放上两个粒子探测器,以判定真假孙悟空到底走的那一边?然而这时,奇怪的事又发生了:两个粒子探测器从来没有同时响过!那好呀,这说明还是只有一个孙悟空,并没有分身。实验者感觉松了口气,刚刚想思考思考这干涉条纹的事,回头一看屏幕,咦?哪有什么干涉条纹呀。物理学家们反复改进、多次重复他们的实验,却只感到越来越奇怪:无论我们使用什么先进测量方法,一旦想要观察电子到底通过哪条狭缝?干涉条纹便立即消失了!也就是说,假孙悟空太狡猾了,他好像总能得知我们已经设置了抓他的陷阱,便隐身遁形不露面。悟空不用分身术,没有真假大圣间的战争,战场上也就没有了叠加和死伤,一切平静,实验给出经典的结果:和子弹实验的图像一模一样!后来,物理学家们给这种“观测影响粒子量子行为”的现象,取了一个古怪的名字,叫做:“波函数坍塌”。就是说:量子叠加态一经测量,就按照一定的概率,塌缩到一个固定的本征态,回到经典世界。而在没有被测量之前,粒子则是处于‘既是此,又是彼’的混合叠加不确定状态。因此,我们无法预知粒子将来的行为,只知道可能塌缩到某个本征态的概率。
以上解释使用的基本上是以波尔为代表的哥本哈根学派对量子理论的诠释。换言之,孙悟空具有分身而同时穿过两个洞的本领。但是,你无法得知他这功夫究竟是怎么回事,他绝不让你看到他玩分身术的详情,他只让你知道几个概率,上天派他到人间来掷骰子!
爱因斯坦不同意哥本哈根派的诠释,生气地说:“玻尔,上帝不会掷骰子!”
玻尔一脸不高兴:“爱因斯坦,别去指挥上帝应该怎么做!”
几十年后的霍金,看着历年的实验记录,有些垂头丧气地说:“上帝不但掷骰子,他还把骰子掷到我们看不见的地方去!”
上帝掷骰子吗?尽管以上霍金之言给出肯定的答案,但似乎至今仍然是个悬而未决的问题。
E. 肉桂酸的制备装置图
肉桂酸的制备实验
一、实验原理
利用珀金(Perkin)反应制备肉桂酸。一般认为脂肪酸钾盐或钠盐为催化剂,提供CH3COO-
负离子,从而使脂肪酸酐生成负碳离子,然后负碳离子和醛或羧酸衍生物(酐和酯)分子中的羰基发生亲核加成,形成中间体。
在珀金反应中,是碳酸钾夺取乙酐分子中的α-H, 形成乙酸酐负碳离子。实验所用的仪器必须是干燥的。
主反应:
副反应:
在本实验中,由于乙酸酐易水解,无水醋酸钾易吸潮,反应器必须干燥。提高反应温度可以加快反应速度,但反应温度太高,易引起脱羧和聚合等副反应,所以反应温度控制在150~170℃左右。未反应的苯甲醛通过水蒸气蒸馏法分离。
五、实验装置图
(1)合成装置图
六、思考题
1、本实验利用碳酸钾代替perkin反应中的醋酸钾,使反应时间缩短,那么具有何种结构的醛能进行perkin反应?
答:醛基与苯环直接相连的芳香醛能发生Perkin反应。
2、用水蒸气蒸馏能除去什么?能不能不用水蒸气蒸馏?如何判断蒸馏终点?
答:①除去未反应的苯甲醛;
②不行,必须用水蒸气蒸馏,因为混合物中含有大量的焦油状物质,通常的蒸馏、过滤、萃取等方法都不适用;
③当流出液澄清透明不再含有有机物质的油滴时,即可断定水蒸汽蒸馏结束(也可用盛有少量清水的锥形瓶或烧杯来检查是否有油珠存在)。
3、在perkin反应中,醛和具有R2CHCOOCOCHR2结构的酸酐相互作用,能得到不饱和酸吗?为什么?
答:不能。因为具有(R2CHCO)2O结构的酸酐分子只有一个α-H原子。
4、苯甲醛和丙酸酐在无水丙酸钾存在下,相互作用得到什么产物?
答:得到α-甲基肉桂酸(即:α-甲基-β-苯基丙烯酸)。
5、制备肉桂酸时,往往出现焦油,它是怎样产生的?又是如何除去的?
答:产生焦油的原因是:在高温时生成的肉桂酸脱羧生成苯乙烯,苯乙烯在此温度下聚合所致,焦油中可溶解其它物质。产生的焦油可用活性炭与反应混合物碱溶液一起加热煮沸,焦油被吸附在活性炭上,经过滤除去。
6、在肉桂酸制备实验中,为什么要缓慢加入固体碳酸钠来调解pH值?
答:对于酸碱中和反应,若加入碳酸钠的速度过快,易产生大量CO2的气泡,而且不利于准确调节pH值。
7、久置的苯甲醛中有何杂质?如何除去?为什么要除去苯甲醛中的杂质?
答:久置的苯甲醛中含有较多的苯甲酸杂质;采用蒸馏的方法除去;若不先除去,则混在肉桂酸产品中,由于结构相似,不易除去。
8、制备肉桂酸时为何采用水蒸汽蒸馏?
答:因为在反应混合物中含有未反应的苯甲醛油状物,它在常压下蒸馏时易氧化分解,故采用水蒸汽蒸馏,以除去未反应的苯甲醛。
9、在肉桂酸制备实验中,能否在水蒸汽蒸馏前用氢氧化钠代替碳酸钠来中和水溶液?
答:不能。因为苯甲醛在强碱存在下可发生Cannizzaro反应。
10、用水蒸气蒸馏的物质应具备什么条件?
答:(1)随水蒸气蒸出的物质应不溶或难溶于水;
(2)在沸腾下与水长时间共存而不起化学变化;
(3)在一定大气压下,要有一定的蒸汽压。
11、什么情况下需要采用水蒸汽蒸馏?
答:下列情况需要采用水蒸气蒸馏:
(1)混合物中含有大量的固体,通常的蒸馏、过滤、萃取等方法都不适用。
(2)混合物中含有焦油状物质,采用通常的蒸馏、萃取等方法都不适用。
(3)在常压下蒸馏会发生分解的高沸点有机物质。
12、怎样正确进行水蒸汽蒸馏操作?
答:(1)在进行水蒸气蒸馏之前,应认真检查水蒸气蒸馏装置是否严密。
(2)开始蒸馏时,应将T形管的止水夹打开,当水蒸气发生器里的水沸腾,有大量水蒸气溢出时再旋紧夹子,使水蒸气进入三颈烧瓶中,并调整加热速度,以馏出速度2—3滴/秒为宜。
(3)操作中要随时注意安全管中的水柱是否有异常现象发生,若有,应立即打开夹子,停止加热,找出原因,排除故障后方可继续加热。
附: 1、肉桂酸制备合成方法综述:
http://wenku..com/view/dc409efa700abb68a982fb4c.html
2、视频:
肉桂酸的制备
http://v.youku.com/v_show/id_XMTgzMzkwMTE2.html
F. 求一篇3000字的实验报告。实验题目:应用传感器设计电子秤
随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。
1.高速定量分装系统
本系统由微机控制称重传感器的称重和比较,并输出控制信号,执行定值称量,控制外部给料系统的运转,实行自动称量和快速分装的任务。
系统采用MCS-51单片机和V/F电压频率变换器等电子器件,其硬件电路框图如图1所示,用8031作为中央处理器,BCD拔码盘作为定值设定输入器,物料装在料斗里,其重量使传感器弹性体发生变形,输出与重量成正比的电信号,传感器输出信号经放大器放大后,输入V/F转换器进行A/D转换,转换成的频率信号直接送入8031微处理器中,其数字量由微机进行处理。微机一方面把物重的瞬时数字量送入显示电路,显示出瞬时物重,另一方面则进行称重比较,开启和关闭加料口、放料于箱中等一系列的称重定值控制。
在整个定值分装控制系统中,称重传感器是影响电子秤测量精度的关键部件,选用GYL-3应变式称重测力传感器。四片电阻应变片构成全桥桥路,在所加桥压U不变的情况下,传感器输出信号与作用在传感器上的重力和供桥桥压成正比,而且,供桥桥压U的变化直接影响电子称的测量精度,所以要求桥压很稳定。毫伏级的传感器输出经放大后,变成了0-10V的电压信号输出,送入V/F变换器进行A/D转换,其输出端输出的频率信号加到单片机8031定时器1的计数、输入端T1上。在微机内部由定时器0作计数定时,定时器0的定时时间由要求的A/D转换分辩率设定。
定时器1的计数值反映了测量电压大小即物料的重量。在显示的同时,计算机还根据设定值与测量值进行定值判断。测量值与给定值进行比较,取差值提供PID运算,当重量不足,则继续送料和显示测量值。一旦重量相等或大于给定值,控制接口输出控制信号,控制外部给料设备停止送料,显示测量终值,然后发出回答令,表示该袋装料结束,可进行下袋的装料称重。
图2所示为自动称重和装料装置。每个装料的箱子或袋子沿传送带运动,直到装有料的电子称下面,传送带停止运动,电磁线圈2通电,电子称料斗翻转,使料全部倒入箱子或袋子中,当料倒完,传送带马达再次通电,将装满料的箱子或袋子移出,并保护传送带继续运行,直到下一次空袋或空箱切断光电传感器的光源,与此同时,电子称料箱复位,电磁线圈1通电,漏斗给电子秤自动加料,重量由微机控制,当电子秤中的料与给定值相等时,电磁线圈1断电,弹簧力使漏斗门关上。装料系统开始下一个装料的循环。当漏斗中的料和传送带上的箱子足够多时,这个过程可以持续不断地进行下去。必要时,*作人员可以随时停止传送带,通过拔码盘输入不同的给定值,然后再启动,即可改变箱或袋中的重量。
本系统选用不同的传感器,改变称重范围,则可以用到水泥、食糖、面粉加工等行业的自动包装中。
2.传感器在商用电子秤中的应用
目前,商用电子计价秤的使用非常普及,逐渐会取代传统的杆称和机械案秤。电子计价秤在秤台结构上有一个显著的特点:一个相当大的秤台,只在中间装置一个专门设计的传感器来承担物料的全部重
量,如图3所示。常用的电子计价秤传感器的结构如图4所示,其中图4(a)为双连椭圆孔弹性体,秤盘用悬臂梁端部上平面的两个螺孔紧固;图4(b)为梅花型四连孔弹性体,秤盘用悬臂梁端部侧面的三个螺孔坚固,中间支杆上粘贴补偿用的应变片。这两种形式的传感器,在计价秤中用得最多。图4(c)为三梁式弯曲弹性体,采样弯曲应力,对重量反应敏感,宜用来制作小称量计价秤。图4(d)为三梁式剪切弹性体,采样中间敏感梁的剪切应力,宜用来制作几百公斤称量范围计价秤。
用这些复梁型高精度传感器来支承一个大的称重平台,被称重物又可能放置在任何称台的任意位置上,必然会产生四角示值误差,对图4(a),(b)两种结构形式的传感器,可通过锉磨的形式进行角差修正。对图4(c),(d),它有上下两根局部削弱的柔性辅助梁,使传感器对侧向力、横向力和扭转力矩具有很强的抵抗能力,可以通过锉磨辅助梁的柔性部位来调整传感器的灵敏系数和四角误差。图5为一种商用电子计价秤的电路框图。传感器采用的是图4(b)所示的梅花型四连孔结构,该秤具有置零、自动清除单价、零位自动跟踪、自动去皮、次数累计和金额累计、打印输出等功能,7段绿色荧光数码管显示,使用十分方便。
采用CHBL3型号S型双连孔弹性体称重传感器制作的便携式家用电子手提秤的原理图,由称重传感器、放大电路、A/D转换和液晶显示四部分组成。图中,E为9V的叠层电池,R1-R4是称重传感器的4个电阻应变片,R5、R6与W1组成零点调整电路。当载荷为零时,调节RW1使液晶显示屏显示为零。A1,A2为双运放集成电路LM358中的两个单元电路,组成了一个对称的同相放大器,A/D转换器采用ICL7106双积分型A/D转换器,液晶显示采用3 1/2液晶显示片。该电子秤精度高,简单实用,携带方便。
称重传感器是一种高精度的传感器,必须按规定的规格使用。若不按规定的规格使用,不仅不能发挥称重的作用,而且容易损坏,尤其是绝对不准超过负荷安全值使用。
对于因温度变化对桥接零点和输出,灵敏度的影响,即使采用同一批应变片,也会因应变片之间稍有温度特性之差而引起误差,所以对要求精度较高的传感器,必须进行温度补偿,解决的方法是在被粘贴的基片上采用适当温度系数的自动补偿片,并从外部对它加以适当的补偿。
非线性误差是传感器特性中最重要的一点。产生非线性误差的原因很多,一般来说主要是由结构设计决定,通过线性补偿,也可得到改善。
滞后和蠕变是关于应变片及粘合剂的误差。由于粘合剂为高分子材料,其特性随温度变化较大,所以称重传感器必须在规定的温度范围内使用。
在露天下使用传感器,还应考虑阳光直射产生的温度影响和风压的影响。
G. 河南混凝土搅拌站斗式提升机 皮带斗式提升机的调试与控制方法
皮带斗式提升机一般主要的控制有:速度控制、位置控制和直运行控制。调试和试运转是非常重要的,如果这两个环节做不好,会影响斗式提升机的正常运行,无法投入使用,所以必须认真对待,鹤壁通用斗提机质量不错我们公司一直在用,没有出现过问题。下面就来重点介绍这三部分的内容,具体如下:
一、控制
1.速度控制
运行期间,来自凸盘的冲击传播到在尾轴上的触点式自由开关(即近似开关)上,这些脉冲用评估仪记录下来,并与设定的最小和(或)最大脉冲数相比较,如果实际冲击数(转数)偏离设定值,输送机包括喂料装置必须立刻停下来。
2.位置控制
位置指示仪安排在斗式提升机罩壳内,该指示仪可指出任何的过喂料,可避免斗式提升机损坏。关于电气控制,须考虑下述联锁:
1)位置控制报警信号加强,喂料立刻停止。
2)三循环的斗式提升机缓降时期开始(可调时间继电器)。
3)三循环之后,为了清空斗式提升机,斗式提升机将停机。
3.直运行控制
皮带直行所有控制(近似开关)中有四个无触点开关,两个一组,分别安排在斗式提升机头和斗式提升机罩壳内。功能是:
1)所有四个开关在正常运行中都动作。
2)如果皮带不走直线,近似开关将不动作,信号中断。
关于电气控制,须考虑下述联锁:
1)当皮带脱离轨道运行时,信号可持续两个斗循环中断(可调时间继电器)。
2)如果两个循环期间,皮带运行一直脱离轨道或者如果信号更一步加强,报警信号必须增强,喂料必须立刻停止。
3)三循环的斗式提升机缓降时期开始(可调时间继电器)。
4)三循环之后,为了清空斗式提升机,斗式提升机将停机。斗式提升机再次启动之前,应排除皮带脱轨的原因。
二、调试
设备第一次启动之前,必须遵守下列各点:
1.所有尺寸必须完全符合图纸。
2.所有技术要求必须按照手册。
3.夹具连接必须安装。
4.所有工具必须从斗式提升机合手开。
5.所有控制装置都必须运行,无人在危险区内。
三、试运转
1.第一次试运转(无输送料)期间,特别监视皮带的直运行。如果皮带和斗向上运行时碰到其它部件,说明直运行不正确,因为在运行中,皮带改变了它的运转方向。
H. 求化学实验报告
化学实验报告格式示例 例一定量分析实验报告格式
(以草酸中H2C2O4含量的测定为例)
实验题目:草酸中H2C2O4含量的测定
实验目的:
学习NaOH标准溶液的配制、标定及有关仪器的使用;
学习碱式滴定管的使用,练习滴定操作。
实验原理:
H2C2O4为有机弱酸,其Ka1=5.9×10-2,Ka2=6.4×10-5。常量组分分析时cKa1>10-8,cKa2>10-8,Ka1/Ka2<105,可在水溶液中一次性滴定其两步离解的H+:
H2C2O4+2NaOH===Na2C2O4+2H2O
计量点pH值8.4左右,可用酚酞为指示剂。
NaOH标准溶液采用间接配制法获得,以邻苯二甲酸氢钾标定:
-COOK
-COOH
+NaOH===
-COOK
-COONa
+H2O
此反应计量点pH值9.1左右,同样可用酚酞为指示剂。
实验方法:
一、NaOH标准溶液的配制与标定
用台式天平称取NaOH1g于100mL烧杯中,加50mL蒸馏水,搅拌使其溶解。移入500mL试剂瓶中,再加200mL蒸馏水,摇匀。
准确称取0.4~0.5g邻苯二甲酸氢钾三份,分别置于250mL锥形瓶中,加20~30mL蒸馏水溶解,再加1~2滴0.2%酚酞指示剂,用NaOH标准溶液滴定至溶液呈微红色,半分钟不褪色即为终点。
二、H2C2O4含量测定
准确称取0.5g左右草酸试样,置于小烧杯中,加20mL蒸馏水溶解,然后定量地转入100mL容量瓶中,用蒸馏水稀释至刻度,摇匀。
用20mL移液管移取试样溶液于锥形瓶中,加酚酞指示剂1~2滴,用NaOH标准溶液滴定至溶液呈微红色,半分钟不褪色即为终点。平行做三次。
实验数据记录与处理:
一、NaOH标准溶液的标定
实验编号123备注
mKHC8H4O4/g始读数
3.产物粗分:
将接受器中的液体倒入分液漏斗中。静置分层后,将下层的粗制溴乙烷放入干燥的小锥形瓶中。将锥形瓶浸于冰水浴中冷却,逐滴往瓶中加入浓硫酸,同时振荡,直到溴乙烷变得澄清透明,而且瓶底有液层分出(约需4mL浓硫酸)。用干燥的分液漏斗仔细地分去下面的硫酸层,将溴乙烷层从分液漏斗的上口倒入30mL蒸馏瓶中。
接受器中液体为浑浊液。分离后的溴乙烷层为澄清液。
4.溴乙烷的精制
配蒸馏装置,加2-3粒沸石,用水浴加热,蒸馏溴乙烷。收集37-40℃的馏分。收集产品的接受器要用冰水浴冷却。无色液体,样品+瓶重=30.3g,其中,瓶重20.5g,样品重9.8g。
5.计算产率。
理论产量:0.126×109=13.7g
产率:9.8/13.7=71.5% 结果与讨论:
(1)溶液中的橙黄色可能为副产物中的溴引起。
(2)最后一步蒸馏溴乙烷时,温度偏高,致使溴乙烷逸失,产量因而偏低,以后实验应严格操作。
例三性质实验报告格式
实验题目:
实验目的:
实验方法:
实验方法和步骤现象解释和化学反应式
结论:
(1)(2)……
思考题:
(1)(2)……
终读数
结果
VNaOH/mL始读数
终读数
结果
cNaOH/mol·L-1
NaOH/mol·L-1
结果的相对平均偏差
二、H2C2O4含量测定
实验编号123备注
cNaOH/mol·L-1
m样/g
V样/mL20.0020.0020.00
VNaOH/mL始读数
终读数
结果
ωH2C2O4
H2C2O4
结果的相对平均偏差
实验结果与讨论:
(1)(2)(3)……
结论:
例二合成实验报告格式
实验题目:溴乙烷的合成
实验目的:1.学习从醇制备溴乙烷的原理和方法
2.巩固蒸馏的操作技术和学习分液漏斗的使用。
实验原理:
主要的副反应:
反应装置示意图:
(注:在此画上合成的装置图)
实验步骤及现象记录:
实验步骤现象记录
1.加料:
将9.0mL水加入100mL圆底烧瓶,在冷却和不断振荡下,慢慢地加入19.0mL浓硫酸。冷至室温后,再加入10mL95%乙醇,然后在搅拌下加入13.0g研细的溴化钠,再投入2-3粒沸石。
放热,烧瓶烫手。
2.装配装置,反应:
装配好蒸馏装置。为防止产品挥发损失,在接受器中加入5mL40%NaHSO3溶液,放在冰水浴中冷却,并使接受管(具小咀)的末端刚好浸没在接受器的水溶液中。用小火加热石棉网上的烧瓶,瓶中物质开始冒泡,控制火焰大小,使油状物质逐渐蒸馏出去,约30分钟后慢慢加大火焰,直到无油滴蒸出为止。
加热开始,瓶中出现白雾状HBr。稍后,瓶中白雾状HBr增多。瓶中原来不溶的固体逐渐溶解,因溴的生成,溶液呈橙黄色。
I. 自动卸料爬斗的PLC控制
被控制对象:M1(正抄反转)、M2
检测装置:SQ1和SQ2
设计一个SB1启动按钮、和SB2停止按钮、还有一个你说的单动和自动选择开关SA1,单台设备的起停按钮
设计内容如下:
Q1:M1正传控制 Q2:M1反转控制 Q3:M2运料机控制
当SB按下时M1正转,即Q1=1,当到达高处时SQ1接通M1停止(Q1=0),然后启动定时器T1计时,计时到N秒是,启动M1反转(Q2=1),到达下端是SQ2接通,将M1停止(Q2=0),启动运料机M2(Q3=1).计时器T2开始计时,当计时时间到了之后,停止M2,启动M1正转;
SA1的设计:
比如当SA1=1时为单动,用SA1的信号断开SB1的信号,同时复位或者断开所有的定时器,
则此时单台设备的启动停止按钮就可以单独控制了,因为联动的关系被切断了