A. 机械设计,一级齿轮减速器
仅供参考
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW
3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)
B. 跪求一份带式输送机传动装置设计,(一级齿轮减速器)
发过去了 ,记得加分哦 我的邮箱是[email protected]
C. 急求机械课程设计一级闭式圆柱齿轮传动说明书(含设计方案及计算步骤)最好有草图!!!
我这里有带式输送机传动装置二级减速器(直齿轮,斜齿轮,蜗杆都有)有可替换各种标准件模板,数据基本差不多,改改就可以用,但是一级的只有说明书没图。 发给你看看,有参考价值就采纳给分哈~~ 你这分要一个这种课设,不高哦,俺比较稀罕那个采纳率,嘿嘿
D. 求一份V带 一级圆柱齿轮减速器的设计说明书 原始数据:输送带拉力2900F/N输送带速度1.4V/M.S滚筒直径400D/
一级圆柱齿轮减速器的设计说明书
一、 课程设计的目的
1、通过机械设计课程设计,综合运用机械设计课程和其它有关选修课程的理论和生产实际知识去
分析和解决机械设计问题,并使所学知识得到进一步地巩固、深化和发展。
2、学习机械设计的一般方法。通过设计培养正确的设计思想和分析问题、解决问题的能力。
3、进行机械设计基本技能的训练,如计算、绘图、查阅设计资料和手册,熟悉标准和规范。
二、 已知条件
1、展开式一级齿轮减速器产品。
3、动力来源:电压为380V的三相交流电源。
4、原始数据 在任务书上。
5、使用期:10年,每年按365天计。
三、 工作要求
1、画减速器装配图一张(A0图纸);
2、零件工作图二张(传动零件、轴、等等);
3、对传动系统进行结构分析、运动分析并确定电动机型号、工作能力分析;
4、对传动系统进行精度分析,合理确定并标注配合与公差;
5、设计说明书一份。
四、 结题项目
1、检验减速能否正常运转。
2、每人一套设计零件草图。
3、减速器装配图:A0;每人1张。
4、零件工作图:A3;每人2张、齿轮和轴各1张。
5、课题说明书:每人1份。
五、 完成时间 共4周
参考资料
【1】、《机械设计》张策 主编 机械工业出版社出版;
【2】、《机械设计课程设计》 陆玉 主编 机械工业出版社出版;
【3】、《机械制图》刘小年 主编 机械工业出版社出版;
【4】、《课程设计图册》编 高等教育出版社出版;
计 算 及 说 明 结 果
一、 减速器结构分析
分析传动系统的工作情况
1、传动系统的作用:
作用:介于机械中原动机与工作机之间,主要将原动机的运动和动力传给工作机,在此起减速作用,并协调二者的转速和转矩。
2、传动方案的特点:
特点:结构简单、效率高、容易制造、使用寿命长、维护方便。由于电动机、减速器与滚筒并列,导致横向尺寸较大,机器不紧凑。但齿轮的位置不对称,高速级齿轮布置在远离转矩输入端,可使轴在转矩作用下产生的扭转变形和轴在弯矩作用下产生的弯曲变形部分地抵消,以减缓沿齿宽载荷分布有均匀的现象。
3、电机和工作机的安装位置:
电机安装在远离高速轴齿轮的一端;
工作机安装在远离低速轴齿轮的一端。
图一:(传动装置总体设计图)
初步确定传动系统总体方案如:传动装置总体设计图所示。
计 算 及 说 明 结 果
二、 传动装置的总体设计
(一)、选择电动机
1、选择电动机系列
按工作要求及工作条件,选用三相异步电动机,封闭式扇式结构,即:电压为380V Y系列的三相交流电源电动机。
2、选电动机功率
(1)、传动滚筒所需有效功率
(2)、传动装置总效率
(3)、所需电动机功率
3、确定电动机转速
型 号 Y160L-4 Y180L-4 Y200L-8 Y160MZ-2
额定功率KW 15 15 15 15
电机满载荷 转速 转/分 1460 970 730 293
滚筒转速 转/分 38.2 38.2 38.2 38.2
总传动比 39.20 25.39 19.11 76.72
2 2 2 2
19.60 12.70 9.55 38.35
由此比较,应选Y160L-4,结构紧凑。由文献[2]表2.10-2选取电动机的外形及安装
尺寸D=42㎜,中心高度H=160㎜,轴伸长E=110㎜。
4、传动比分配
(1)、两级齿轮传动比公式
(2)、减速器传动比
5、运动条件及运动参数分析计算
计 算 及 说 明 结 果
(二)、定V带型号和带轮
1、工作情况系数
由文献【1】由表11.5得
2、计算功率
3、选带型号
由文献【1】表11.15 选取B型
4、小带轮直径
由文献【1】 表11.6 选取
5、大带轮直径
6、大带轮转速
7、验算传动比误差
取B型
计 算 及 说 明 结 果
(1)、理论传动比
(2)、实际传动比
(3)、传动比误差 合适
(4)、验算带转速 合适
8、计算带长
(1)、求
(2)、求
(3)、初取中心距
(4)、带长
(5)、基准长度
9、求中心距和包角
(1)、中心距
(2)、小带轮包角
计 算 及 说 明 结 果
10、求带根数
(1)、传动比 由表11.8
由表11.7 ;由表11.12 ;由表11.10
(2)、带根数
11、求轴上载荷
(1)、张紧力
(由表11.4 q=0.10kg/m)
(2)、轴上载荷
12、结构设计
小带轮 ; 大带轮
(三)、高速轴齿轮的设计与校核
1、选材 根据文献【1】表12.7知 选小齿轮:40Cr,调质处理
选大齿轮:45钢,调质处理
2、初步计算
(1)、转矩
(2)、尺宽系数 由文献【1】表12.13,取
(3)、接触疲劳极限 由文献【1】图12.17c
取z=5根
版面有限沾不全!!!留个邮箱给你发去,,另送cad图,装配+零件
E. 机械设计课程设计:一级圆柱齿轮减速器
有个这方面的课件,照着上面做就能做出来,要的话找我
F. 一级圆柱齿轮减速箱的设计
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW
3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N•m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危险截面C的强度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。
主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够
(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min
(1)已知nII=121.67(r/min)
两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够
二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够
七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。
八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.
放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:
:
(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20
(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2
(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3
D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.
九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。
十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。
十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社
G. 一级圆柱齿轮减速器(直齿)
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
H. 求一级斜齿圆柱齿轮减速器设计说明书及CAD图
所有图(包括弯矩扭矩图)在我邮箱,有需要再通知我[email protected]
目 录
1. 任务书
2. 电动机的选择
3. 传动装置总传动比计算并分配传动比
4. 传动装置的运动参数和动力参数计算
5. 齿轮传动设计及计算
6. 输入轴的设计结构计算
7. 输出轴的设计结构计算
8. 滚动轴承的选择计算
9. 键的选择
10. 联轴器的选择
11. 箱体的结构设计计算
12. 润滑方式的选择
13. 润滑油的选择
14. 密封选择
15. 参考资料
16. 学习小结
17. 零件图
1. 任务书
一、 程设计的性质和目的
机械设计课程设计是把学过的各学科的理论较全面地综合应用到实际工程中
去,力求从课程内容上、从分析问题和解决问题的方法上,从设计思想上培养工
程设计能力,课程设计有以下几个方面的要求:
1. 培养综合运动机械设计课程和其他先修课程的基础理论和基础知识,以及结
合生产实践分析和解决工程实际问题的能力使所学的知识得以融会贯通,调
协应用。
2. 通过课程设计,学习和掌握一般机械设计的程序和方法,树立正确的工程设
计的思想,培养独立的、全面的、科学的工程设计能力。
3. 在课程设计的实践中学会查找、翻阅、使用标准、规范,手册,图册和相关
的技术资料等。熟悉个掌握机械设计的基本技能。
二、 课程设计的内容
1.设计题目:
带式输送机传动装置中的一级圆柱齿轮减速器
2.运动简图
3.工作条件
传动不逆转,载荷平稳,起动载荷的名义载荷的1.25倍,使用期限10年,两班制工作,输送带速度容许误差为±5%,输送带效率一般为0.94~0.96。
4.原始数据
已知条件 题号 1
输送带拉力F(N) 3.2
滚筒直径D(mm) 450
输送带速度v(m/s) 1.7
三、 完成工作量
(1) 设计说明书1份
(2) 减速器装配图1张
(3) 减速器零件图3张
四、 机械设计的一般过程
设计过程:
设计任务——总体设计——结构设计——零件设计——加工生产——安装调试
五、 课程设计的步骤
在课程设计时,不可能完全履行机械设计的全过程,只能进行其中一些的重要
设计环节,如下:
1. 设计准备
认真阅读研究设计任务书,了解设计要求和工作条件。
2. 传动装置的总体设计
首先根据设计要求,同时参考比较其他设计方案,最终选择确定传动装置的总
体布置。
3. 传动零件的设计计算
设计计算各级传动零件的参数和主要尺寸
4. 结构设计(装配图设计)
首先进行装配草图设计,设计轴,设计轴承,最后完成装配图的其他要求。在
完成装配草图的基础上,最终完成的图即正式的饿装配结构设计。
5. 完成两张典型零件工作图设计
6. 编写和整理设计说明书
7. 设计总结和答辩
六、 课程设计中应注意的问题
课程设计是较全面的设计活动,在设计时应注意以下的一些问题:
(一)全新设计与继承的问题
在设计时,应从具体的设计任务出发,充分运用已有的知识和资料进行科学、
先进的设计。
(二)正确使用有关标准和规范
为提高所设计机械的质量和降低成本,在设计中应尽量采用标准件,外购件,
尽量减少的自制件。
(三)正确处理强度,刚度,结构和工艺间的关系
在设计中任何零件的尺寸都不可能全部由理论计算来确定,而每个零件的尺寸
都应该由强度,刚度,结构。加工工艺,装配是否方便,成本高低等各方面的要
求来综合确定的。
(四)计算与图画的要求
进行装配图设计时,并不仅仅是单纯的图画,常常是图画与设计计算交叉进行
的。先由计算确定零件的基本尺寸,再草图的设计,决定其具体结构尺寸,再进
行必要的计算。
2. 电动机的选择
电动机已经系统化,系统化一般由专门工厂按标准系列成批大量生产,设计时只需根据工作载荷,工作机的特性和工作环境,选择电动机的类型,结构形式和转速,计算电动机功率,最后全顶电动机型号.
一 类型选择
电动机类型选择是根据电源种类(流或交流),工作条件(度,环境,空间,尺寸等)及载荷特点(性质,大小,起动性和过载现象)来选择的.目前广泛应用Y系列三相异步电动机(JB3074-82)是全封闭自扇冷鼠型三相异步电动机,适用于无特殊要求的各种机械设备.由于Y系列电动机具有交好的起动性能,因此,也适用于某些对起动转矩有较高要求的机械,如压缩机等.
二 电动机功率确定
电动机功率是根据工作机容量的需要来确定的.电动机的额定功率应等于或大于电动机所需功率Pw
1 工作机所需功率Pw
根据公式计算:已知工作机阻力Fw和速度Vw则工作机所需功率Pw为:
式中:Fw-工作机阻力,N
Vw-工作机线速度,m/s
将数据 Fw=3.2kN
带入公式 =5.44kW
2输出功率Pd
已知Pw=5.44kW
由任务要求知:
查表得:
代入得:
由公式
选择额定功率7.5kW的电动机
在计算传送装置的总功率时,应注意以下几点:
1)取传动副效率是否以包括其轴效率,如包括则不应计算轴承效率
2)轴承的效率通常指-对轴承而言
3)同类性的几对传动副,轴承,或联轴器,要分别考虑效率
4)当资料给出的效率为-范围时,一般可以取中间值,如工作条件差,加工条件差,加工精度低或维护不良时应取低值,反之应取高值.
3确定工作机转速
额定功率相同的类型电动机,可以有几种转速供选择,如三相异步电动机就有四种常见 同步转速,即:3000r/min,1500r/min,1000r/min,750r/min电动机的转速高,极对数少,尺寸和质量叫,价格便宜,但机械传动装置总转动比加大,结构尺寸偏大,成本也变高,所以选择电动机转速时必须作全面分析比较,首先满足主要要求,尽量兼顾其他要求.
公式:
代入数据:V=1.7m/s,d=450mm(注:式中为输送带速度为滚筒转矩)
为了便于选择电动机转速,需要先考虑电动机转速得可选范围。由《机械设计课程设计》P6表2-1查得V带传动常用得传动常用得传动范围i链=2~5,i齿3~5,则电动机转速可选范围为:
nd=i链*i齿*nw=(2~5)*(3~5)*72.2=(6~25)*72.2=433.2~1805r/min
4型号选择
综合考虑电动机和转动装置的尺寸,结构和带装动,及减速器的转动比,故查表知电动机型号可选择:Y132M-4.
(注:表格在课程设计书264页)
以下附电动机选择计算表:
电动机类型 Y系列一般用三相异步电动机
选择电动机功率
Pw=5.44(kW)
输出功率:
确定电动机转速
nd=433.2-1805r/min
型号选择 Y132M-4
(注:参考选择表均在《课程设计》书中:P10,P264)
3. 传动装置总传动比计算并分配传动比
电动机选定后,按照电动机的满载转速n及电动机的传速n,可确定传动装置的总传动比
i=nm/nw
当各级传动机构串联时,传动装置的总传动比是各级传动比的连乘积,即i=i1*i2*i3……in
式中i1、i2、i3……in分别为各级的传动比。
i总=nm/nw=满载转速/工作机转速
由传动方案可知,传动装置的总传动比等于各级合理地分配各级传动比,在传动装置总体设计中很重要地,它将直接影响到传动装置外廓尺寸.质量.润滑条件.成本地高低.传动零件地圆周速度大小及精度等级地高低。要同时满足各方面地要求是不现实的,也是非常困难的,应根据具体设计要求,进行分析比较,首先满足主要要求,尽量兼顾其他要求。在合理分配传动比时应该注意以下几点。
1 .各级传动比都应在常用的合理范围之内,以符合各种传动形式的工作特点,能在最佳状态下运转,并使结构紧凑,工艺合理。
2 .应使传动装置结构尺寸较小,质量较轻。
3 .应使各传动件尺寸协调,结构均匀称合理,避免相互干扰碰撞。
传动装置中的总传动比 i总=nm/nw i总=19.95
分配各级传动比 i齿=4 I链=19.95/4=4.99
(注:各级传动比见《课程设计》P12表2—4)
4. 传动装置的运动参数和动力参数计算
机械传动装置的运动参数和动力参数,主要指的使各轴的功率.转速和转距,它为设计计算传动比和轴提供极为需要的依据。
计算各轴运动和动力参数时,应将传动装置中各轴从高速轴到低速轴依此编号,定位0轴(电机轴).1轴.2轴…,相邻的输入功率P1.P2.P3…,相邻两轴的传动比效率为n01.n12.n23…,各轴的输入功率为P1.P2.P3…,各轴的输入转距为T1.T2.T3…,各轴的输入转速为n1.n2.n3….
电动机轴的输出功率、转速、和转距为
1.转动比分配
工作机的转速 n=
i总= n/n=1440/81.21=17.73
i齿=4,i链=19.95/4=4.99
将电动机至工作机的轴依次编号0,1,2……
(1) 转速n
nm=n1=n0=1440r/min
n2=n1/i齿=1440/4=360r/min
n3=n2/i链=360/4.99=72.14r/min
(2) 功率P
P0=Pd=6.63kW
P1=P0×η联×η轴承=6.63×0.99×0.99=6.50kW
P2=P1×η齿×η轴承=6.50×0.97×0.99=5.99kW
P3=P2×η链×η轴承=5.99×0.96×0.99=5.70kW
(3)转距
T0=9550×P0/n0=9550×6.63/1440= 43.97N•m
T1=T0 ×η轴承×η联= 43.97×0.99×0.99=43.09 N•m
T2=T1 ×η轴承×η齿×i齿=43.09×0.96×0.97×4=160.52 N•m
T3=T2×η链×i链=160.52×0.96×4.99=768.95 N•m
根据上述计算可得出各轴的功率、转速和扭距。
0轴 P0=Pd=6.63kW
n满=n1=n0=1440r/min
T0=9550×Pd/N满=9550×6.63/1440= 43.97N•m P0=6.63kW
n0=1440r/min
T0=43.97N•m
1轴 P1=P0×η联×η轴=6.63×0.99×0.99=6.50kW
n1=n0=1440r/min
T1=T0 ×η轴承×η联轴器=43.97×0.99×0.99=43.09 N•m P1=6.50kW
n1=1440r/min
T1=43.09 N•m
2轴 P2=P1×η齿×η轴承=6.50×0.97×0.99=5.99kW
n2=n1/i齿=1440/4=360r/min
T2=T1 ×η轴承×η齿×i齿=43.09×0.96×0.97×4=160.52 N•m P2=5.99kW
n2=360r/min
T2=160.52 N•m
3轴 P3=P2×η链×η轴承=5.99×0.96×0.99=5.70kW
n3=n2/i链=360/4.99=72.14r/min
T3=T2×η轴承×η链×i链=160.52×0.96×4.99=768.95 N•m P3=5.70 kW
n3=72.14r/min
T3=768.95 N•m
具体计算数据如下:
轴名 功率P/kW 转矩T/N•M 转速N(r/min) 传动比
i 效率
η
输入 输出 输入 输出
电机轴 6.63 43.97 1440 1 0.990
Ⅰ轴 6.05 43.09 1440 4 0.990
Ⅱ轴 5.99 160.52 360 4.99 0.970
Ⅲ轴 5.70 768.95 72.14 0.960
5.齿轮传动设计计算
设计单级标准直齿圆柱齿轮减速的齿轮传动。该减速器用电动机驱动,载荷平稳,单向运转。
齿轮材料与热处理的选择是要根据具体的工作要求来决定的,此外还要考虑齿轮毛呸制造方法。当齿轮直径d≤500mm时,根据制造条件,可采用锻造毛呸。
当齿轮直径d≥500mm时,多采用铸造毛呸。小齿轮根圆直径与轴径接近时,齿轮要和轴要制成一体,这时选材要兼顾轴的要求。同一减速器的各级小齿轮(或大齿轮)的材料尽可能一致,以减少材料牌号和工艺要求。
齿轮强度计算中不论是针对大齿轮还是针对小齿轮的(许用应力和齿轮系数,不论用哪个齿轮的数值),其公式中的转矩,齿轮的直径或齿数都应是小齿轮的转矩T1,小齿轮的分度圆d1和小齿轮的齿数z1
小齿轮的齿数选取首先要注意不能产生根切,另外齿数的选取还要考虑在满足强度要求的情况下,尽能多一些,这样可以加大重合度系数,提高转动的平稳性,且能减少加工量。大齿轮和小齿轮的齿数最好互为质数,防止磨损或失效集中在某几个齿上。
为了保证齿轮安装以后仍能够全齿啮合,那么小齿轮齿宽应比大齿轮齿宽要宽5~8mm。模数首先要标准化,是一个标准值,并且在工程上要求传递动力的齿轮的模数M≥1.5mm。
按下表步骤计算:
计算项目 计算内容 计算结果
1.选择材料与热处理方式 因该齿轮传动比无特殊要求,故可选一般材料,而且为软齿面。 小齿轮材料为45钢,调质处理,硬度为(220-250)HBS.计算取平均数235HBS
大齿轮材料为45钢,正火处理,硬度为(170-210)HBS. 计算取平均数
2.选择齿轮精度 因为是一般减速器,故选择8级精度,要求齿面粗糙度
Ka≤(3.2-6.3)μm 初选8级精度
计算齿轮比
小齿轮的转矩 由原动机为电动机,工作机为带式输送机,载荷平稳,齿轮在两轴之间对称布置,查零件书P117章节内容(直齿 均匀、轻微冲击)
μ=Z2/Z1=N1/N2=1440/360=4
T1=9.55× ×P1/N1=9.55× × N•mm
K=1.2
μ=4
T1=4.31×
确定齿数Z1 Z2 对于周期性变化的载荷,为避免最大载荷总是总用在某一对或几对齿轮上而是磨损过于集中,Z1 Z2应互为质数。 Z1=27 Z2=103
应力循环次数 N1=60njLh=60×1440×1.05×(10×300×8×2)=4.35×109
N2=N1/i齿=1.09×109 N1=4.35×109
N2=1.09×109
许用接触应力
选择齿宽系数 由书P126图7-18得ZNT1=0.9,ZNT2=0.95
由书P120表7-9得SH=1.05
由书P122图7-16(a)得 =560 Mpa =530 Mpa
[σH]1=ZNT1×GHLIM1/SH=0.9×560/1.05=480MPa
[σH]2=ZNT2×GHLIM2/SH=0.95×530/1.05=479.52MPa [σH]1=480MPa
[σH]2=479.5MPa
齿轮分度圆直径 由于口齿合求出应力是一样的故用小齿轮应力计算(书P114 公式7-5)
d≥ = =50mm
d=50mm
确定齿轮模数 m=d/z1=50/27=1.85取标准模数m=2 取m=2
计算齿轮主要尺寸 d1=mz1=2×27=54mm
d2=mz2=2×103=206mm
中心距a=0.5(d1+d2)=0.5×(54+206)=130mm
齿轮宽b2=ψd×d1=59.4mm
经圆整后b2取60mm
为了保证齿轮安装以后仍能够全齿啮合,那么小齿轮齿宽应比大齿轮齿宽要宽5~8mm。
b1=b2+5mm=65mm d1=54mm
d2=206mm
a=130mm
b2=60mm
b1=65mm
校核齿轮强度 确定两齿轮的弯曲应力由书P190图10-25查得齿轮弯曲疲劳极限
σFlim1=210MPa
σFlim2=190MPa
由最小安全系数SF=1.35
由书P190图10.26查得弯曲疲劳系数
YNT1=0.85
YNT2=0.9
[σF]1=(YNT1×σFlim1)/SF=(0.85×210)/1.35=132.22MPa
[σF]2=(YNT2×σFlim2)/SF=(0.9×190)/1.35=126.67MPa σFlim1=210MPa
σFlim2=190MPa
[σF]1=132.22MPa
[σF]2=126.67MPa
两齿轮齿根的弯曲应力 计算两齿轮齿根的弯曲应力由书P195表10.13 10.14
YF1=2.57
YS1=1.60
YF2=2.18
YS2=1.79
比较(YF1×YS1)/[ σF]1=2.57×1.60/132.22=0.032
(YF2×YS2)/[ σF]2=2.18×1.79/126.67=0.030
计算小齿轮齿根弯曲应力 σF1= =54.61 MPa <[σF]1=132.22MPa
弯曲强度足够
验算圆周速度V并选取齿轮精度 V=πd1n1/(60×1000)=π×55×1440/(60×1000)=4.52<5m/s
8级精度合适
齿轮几何尺寸计算 齿顶圆直径da(ha*=1) da1=d1+2ha1=(Z1+2ha*)m=58mm
da2=d2+2ha1=(Z2+2ha*)m=210mm
齿全高h (C*=0.25)
h=(2ha*+C*)m=4.5mm
齿厚S=πm/2=3.14mm
齿根高hf=(ha*+C*)m=2.5mm
齿顶高ha=ha*m=2mm
齿根圆直径df1=d1-2hf=49mm df2=d2-2hf=201mm da1=58mm
da2=210mm
h=4.5mm
ha=2mm
h)f=2,5mm
df1=49 mm
df2=201mm
s=3.14 mm
齿轮结构设计 小齿轮采用齿轮轴结构,大齿轮采用锻造毛坯的腹板结构
大齿轮的相关尺寸计算如下:
轴孔直径 ds=48 mm
轴毂直径 D1=1.6ds=76.8 mm
轴毂长度 L=b2=60mm
轴缘厚度 δ0=(3-4)m=6-8mm 取7mm
轮缘内径 D2=da-2h-2δ0=180mm
腹板厚度 C=0.3b2=0.3×58=18 mm
腹板中心孔直径 D=0.5(D2+D1)=128.4mm
腹板的孔径d0=0.25(D2-D1)=26 mm
齿轮倒角n=0.5m=1.25 mm =1mm ds=48 mm
D1=76.8 mm
L= 60mm
δ0=7mm
D2= 180 mm
C=18mm
D=128.4mm
d0=26mm
n=1 mm
6.输入轴的设计结构计算
减速器传递功率属于小功率,对于材料无特殊要求,选用45号钢并经调质处理
根据表14.1得A=107-118
mm
若考虑到轴的最小直径处要安装联轴器,会有键槽,故将估算直径加大3%~5%
17.68×1.03=18.21
19.5×1.05=20.475
由设计手册查取直径 取d1=20mm
主动轴结构设计
根据设计一级减速器,可将齿轮布置在箱体中央,将轴承对称安装在齿轮两侧,轴的外伸端安装联轴器
根据轴上零件的定位,装拆方便的需要,同时,考虑到强度原则,主动轴和从动轴均设计为阶梯轴。
a)初步确定安装联轴器处直径d1=20mm因半联轴器轴孔长度Y型,轴孔长度L=52mm
b)为使轴段2与密封装置相适合并与轴段1轴肩,故d2=22mm轴承盖在端面与联轴器距离L’=20轴承盖厚=10mm 参考减速器箱体有关资料箱体内壁到轴段4距离为10故取轴段2的长度L2=30mm
c) 由轴段3与轴段2形成轴肩并与轴承相适应,故取d3=25mm L3=40mm
d)由轴承初选6305的安装尺寸得知:
da=d4=30mm L4=b=1.4h=5.4mm取整得L4=6mm
e) d5 =35 轴段5为齿轮宽b1=60mm由齿轮端到箱体内壁 10mm,为保证齿轮固定可靠,轴段5的长度应短于齿轮轮毂宽度2mm,得L5
f)d6=30mm L6=7.5mm
g)d7=25mm L7=13mm
由此初步确定轴的各段长度和直径
输入轴的强度校核
(1)计算作用力
圆周力Ft=2000T1/d1=(2000×43.09)/54=1595,53N
径向力Fr=Ft×tanα。=574.5N
由于直齿轮轴向力 Fa=0
(2)作主动轴受力简图
L=60+40=100
水平弯矩:FHA=FHB=Ft/2=797,97N
MHC=Ft(L/4)=39898.25 N•mm
铅垂面弯矩:FVA=FVB=Fr/2=469.522/2=287.251N
MVC=Fr(L/4)=287.25×100/4=14362.5N•mm
合成弯距:
扭矩T=4.309× (N•mm)
α=0.6 脉动循环
校核危害截面的强度
由书P176表9-5 [σ-1b]=60MPa [σ0b]=102.5 MPa
σb=Mec/W=31.8MPa<[σ0b]=102.5 MPa
故轴的强度足够
修改轴的结构
由于所设计轴的强度足够,此轴不必再做修改
7.输出轴的设计结构计算
(1)选择轴的材料确定许用应力,由已知减速器传递功率居中小功率,对材料无特殊要求,选45钢并经调质处理,由书查得强度极限σB=650MPa再由表得 许用弯曲应力[σ0b]=102.5MPa
(2)按扭转强度估算直径由书P173表9-3得
A=107-118
mm
由于轴的最小直径处要安装链轮,会有键槽,故将直径加大3%~5%得27.32×1.03=28.14 mm 30.12×1.05=31,63mm由设计手册取标准直径d1=38mm
a)绘制轴系结构草图
根据轴的轴向定位要求确定轴径和轴长
b)初步确定轴径d1=38mm轴段1的长度L1=82mm
c)轴段2要与轴段1形成轴肩并与密封装置相适应,故取d2=40手册P260表18-10由轴承盖右端面与轮毂左端面距离为10 mm,轴承端盖厚度为10 mm,参考减速箱体有关数据,箱体内壁至轴承端盖左侧距离为62 mm故L2=54.5mm
d)由轴段3与轴承相适合初选一对6009深沟球轴承,d×D×B=45×75×16
故d3=45mm 由(b2/2)+a1=(b2/2)+a2 得齿轮端面至箱体内壁的距离为12.5mm 故轴段3的长度L3=50mm
e)轴段4与齿轮轮毂相适合,使轮毂与套筒紧贴,要略短于轮毂长度L=52mm d4=48mm 所以 L4=52mm d4=48mm
f)轴环取 h=(0.07-0.1)h 取h=6mm d5=54mm L5=b=1.4h=8.4 mm取整10 mm
g)轴段6与轴承相适应 d6=45mm L6=18mm
所以 d6=45mm L6=18mm
由此初步确定轴的各段长度和直径
从动轴强度校核
(1)计算作用力
圆周力Ft=2000T3/d2=(2000×768.95)/220=7689.5N
径向力Fr=Ft×tanα=2833.2N
由于直齿轮轴向力 Fa=0
(2)输出轴受力
支撑点间距离L=50+43=95mm
水平弯矩:FHA=FHB=Ft/2=3934.75N
MHC=Ft(L/4)=192802.75N•mm
铅垂面弯矩:FVA=FVB=Fr/2=1416.51N
MVC=Fr(L/4)=69408.99 N•mm
合成弯距:
校核危害截面的强度
由书P176表9-5 [σ0b]=102,5MPa
σb=Mec/W =45.6MPa<[σ0b]=102.5MPa
故轴的强度足够.
修改轴的结构
由于所设计轴的强度足够,此轴不必再做修改
8.滚动轴承的选择计算
滚动轴承的选择:
1)主动轴的轴承
考虑轴受力小且主要是径向力,故选用深沟球轴承
寿命计划:寿命10年双班制 Lh=10×300×8×2=48000h
两轴承受纯径向载荷 由书P219表11-5 fp=1.5 X=1 Y=0 球轴承ε=3
基本容量定动载荷
由书P236表16-2选取6305深沟球轴承一对GB/T276-1994
L10h= =120113.96h由L10h> Lh 故轴承寿命合格
2)从动轴的轴承
X=1 Y=0 球轴承ε=3
基本额定动载荷
由书选择6009深沟球轴承一对GB/T276-1993
L10h= =109204.3h
由L10h> Lh 故轴承寿命合格
9.键的选择
(1)输入轴外伸端D1=20mm,考虑键在轴中部安装
a)选键的型号和确定尺寸
车毂长L=52mm故由(课程设计P183表14-21)选键的型号和确定尺寸
选A型普通键,材料45钢
键宽b=8mm,键高h=7mm,键长由(设计基础P279)长度采到取键长L=45mm
b)校核键联接强度
由键、轮毂、轴、材料为45钢,由表14.6得
[σJH]b3=100-120MPa(轻微冲击)
A键工作长度L=L-B=45-8=37mm
σjy=4T/dhl=12.18MPa
由σjy小于[σb],则强度足够键8×45 GB1096-79
(2)输入轴中部D5=30mm考虑键在轴中部安装轴段长L=48mm,故由手册P183表14-21得
a)选键的型号和确定尺寸
选A型普通键,材料45钢
L=36mm 键宽b=8mm 键高h=7mm
b)校核键联接强度
由键车毂,轴材料为45钢由表14.6
得[σJH]b3=100-120MPa
A键工作长度L=L-b=28mm
σjy=4T/dhl=14.4MPa
由σjy小于[σ] 则强度足够键10×45 GB1096-79
(3)输出轴外伸端D=38mm,考虑键在轴中部安装段长L=62mm 查(课程设计P183表14-21)
a)选键的型号和确定尺寸
键宽b=8mm,键高h=7mm
键长由长度系列取键长L=45mm
b)校核键联接强度
由键车毂,轴材料为45钢
[σJH]b3=100-120MPa
A键工作长度L=L-b=45-8=37mm
σjb=4T/dhl=10.66MPa
由σjy小于[σ]则强度足够键8×45 GB1096-79
(4)输出轴中部D5=45mm考虑键在轴中部安装轴段长L=48mm,故由手册P183表14-21得
a)选键的型号和确定尺寸
选A型普通键,材料45钢
L=36mm 键宽b=10mm 键高h=8mm
b)校核键联接强度
由键车毂,轴材料为45钢由表14.6
得[σJH]b3=100-120MPa
A键工作长度L=L-b=28mm
σjy=4T/dhl=6.73MPa
由σjy小于[σ] 则强度足够键10×45 GB1096-79
10.联轴器的选择
(1)由于减速器载荷平稳,速度不高,无特殊要求,考虑装拆方便及经济问题选凸缘联轴器
由书得K=1.35
TC=KT=1.35×43.09=52.8N•m
由手册P645选GYH2联轴器 GB5843-2003
凸缘联轴器,公称担矩Tn=63N•m
TC大于Tn采用Y型轴孔 轴孔直径D=20mm Y型
轴孔长度L=52mm
YL4型凸缘联轴器有关参数
(2)输出轴 转矩为T=768.95
查手册P645查手册选GYH5联轴器GB5843-2003
轴孔直径d=35mm 轴孔长度L=82mm Y型
型号 公称转矩 许用转速 轴孔直径 外径 键型
GYH2 63N.m 10000r/min 20mm 90mm A键
GYH6 900 N.m 6800 r/min 38mm 140mm A键
11. 箱体主要结构尺寸的计算
机座壁厚δ=0.025a+1≥8取11mm
机盖壁厚δ1=0.02a+1≥8取10mm
机座凸缘厚度b=1.5δ=16.5取17mm
机盖凸缘厚度b1=1.5δ1=15mm
机座底缘厚b2=25δ=27.5取28mm
地脚螺钉直径df=0.036a+12=15.6取M16
地脚螺钉数a≤250 n=4
轴承弯联接直径d=0.75df=M12
机盖与机座连接螺栓直径d2=(0.5-0.6)df=M10
联接螺栓D2间距L=(150~200)mm
轴承端盖螺钉直径d3=(0.4-0.5)df取M8
窥孔盖螺钉直径d4=(0.3-0.4)df取M4
螺钉扳手空间
至外机壁L1LIM=13mm
至凸缘边距离C2MIN=11mm
外机壁旁凸台半径R1×C1=11mm
大齿轮顶圆与机壁距离Δ大于1.2δ取13mm
齿轮端面与内壁距离Δ2=10mm
机盖`机座助厚M1≈0.85S1取10 mm M2≈0.85S2取10mm
从动轴承端盖外径D2=D+(5-5.5)d3=95mm
主动轴承端盖外径D'2=D’+(5-5.5)d3=105mm
轴承端盖厚t=(1-1.2)d3取10mm
12. 减速器润滑方式润滑油牌号及用量密封方式的选择
1)计算线速度
V=3.14×d×n/60×1000m/min
V1=3.14×55×1440/60×1000=4.1448 m/min
由V小于12应用浸油润滑
2)由书P209表10.18得运动粘度ν50℃=85mm2/S
再由书P13表2.1得齿轮润滑选L-CKC680机械油GB5903-95
最低~最高油面距(大齿轮)10mm,需用油量1.5L左右
书P15表2.2 轴承选用ZL-3型润滑脂 GB7324-87
用油量为轴承1/3~1/2为宜
3)a)箱座与箱盖凸缘合面的密封
选用在接合面涂密封漆或水玻璃的方法
b)观察孔和油孔等处接合面的密封
在观察孔或螺塞与机体之间加石棉橡胶低.垫片密封
c)轴承孔的密封
透盖用作密封与之对应的轴承外部轴的中端与透盖间隙
由手册P260表18~10
主动轴毡圈22 FZ/T92010-91
从动轴毡圈22 FZ/T92010-91
13.参考资料
参考文献:1:《机械设计基础》,高等教育出版社,陈立德主编,2004年7月第二版;
2:《机械设计课程设计》,北京航空航天大学出版社,任家卉主编;
3:《机械零件》-北京:主编:郑志祥,高等教育出版社,2000 (2010重印);
4:《新编机械设计手册》/张黎骅,郑严编,-北京:人民邮电出版社,2008.5
5:《机械原理》,高等教育出版社,陈立德主编;