1. 某课外小组分别用下图所示装置对原电池和电解原理进行实验探究.请回答:Ⅰ.用图1所示装置进行第一组实
(1)根据图中装置可知,锌为该原电池的负极,铜为正极;电流在外电路中从铜流向锌,则电解质溶液中硫酸根离子由右向左移动,
故答案为:负;从右向左;
(2)根据图示可知,铜为原电池的正极,与电源正极相连的电极为阳极,所以y极为阳极,氯离子在y极失去电子生成氯气,会观察到有黄绿色气体生成;
铜电极上铜离子得到电子发生还原反应,电极反应式为:Cu2++2e-=Cu,
故答案为:有白色絮状沉淀生成;Cu2++2e-=Cu;
(3)根据分析可知,y极电解生成氯气,检验氯气的方法为:将湿润的碘化钾淀粉试纸靠近x极出气口处,若试纸变蓝,则证明有氯气生成,
故答案为:将湿润的碘化钾淀粉试纸靠近x极出气口处,若试纸变蓝,则证明有氯气生成;
(4)根据图示可知,X为电解池的阴极,发生的电极反应为:2H++2e-═H2↑(或2H2O+2e-═H2↑+2OH-),
故答案为:2H++2e-═H2↑(或2H2O+2e-═H2↑+2OH-);
(5)X电极上析出的是氢气,Y电极上析出的是氧气,且Y电极失电子进入溶液,设铁质量减少为xg,根据转移电子数相等得
0.672L |
22.4L/mol |
0.168L |
22.4L/mol |
xg |
56g/mol |
2. 全钒液流电池是一种活性物质呈循环流动液态的电池,目前钒电池技术已经趋近成熟.全钒液流电池是以溶解于
(1)正极反应是还原反应,由电池总反应可知放电时的正极反应为VO2++2H++e-═VO2++H2O,故答案为:VO2++2H++e-═VO2++H2O;
(2)充电时,阴极反应为还原反应,故为V3+得电子生成V2+的反应,电极方程式为V3++e-═V2+,充电时,阳极发生VO2++H2O=VO2++2H++e-,生成耗H+,溶液pH降低,故答案为:V3++e-═V2+;降低;
(3)当转移1mol电子时,阳极(左槽)产生了2mol H+,而槽中间的交换膜只允许H+通过,所以有1mol H+移动到右槽(溶液中有离子移动才能形成闭合回路),所以最终左槽H+增加了1mol H+,所以变化量为1mol,
故答案为:参与正极反应和通过隔膜定向移动使电流通过溶液;1;
(4)阴极发生还原反应,H+被还原生成H2,同时促进水的电离生成OH-,发生2H++2e -═H2↑ HSO3-+OH-═SO3 2-+H2O,或2HSO3-+2e-═2 SO32-+H2↑,
故答案为:2HSO3-+2e-═2 SO32-+H2↑ (或2H++2e-═H2↑ HSO3-+OH-═SO32-+H2O );
(5)阳极发生氧化反应,HSO3-被氧化生成硫酸,同时氢氧根离子放电生成氧气和氢离子,则可生成O2、SO2,故答案为:O2、SO2.
3. 液体电池的新型液体电池
过去20年来,锂离子电池一直是前沿性的储能研究。它们结构紧凑,轻巧的设计非常适合用于手机,笔记本电脑和个人电子产品,但锂离子电池价格昂贵,而且退化问题妨碍它们进入电站高容量应用,就是用于全国电网。
桑迪亚国家实验室研究员和无机化学家特拉维斯·安德森(travis anderson)带领一个小组,开发出下一代液流电池。这种液流电池泵抽一种溶液,就是自由浮动的带电荷的金属离子,这种离子溶解在电解液中,溶液中自由浮动的离子可以导电,溶液从外部容器穿过电化学电池,把化学能转换成电能。液流电池可快速充放电,只需改变电解液的充电状态,这种电活性物质很容易重复使用多次。安德森说,液流电池可以维持超过14000次循环,这是在实验室,相当于20多年的能量储存,在锂离子电池中,这是不寻常的。
液流电池电网存储系统,大致上尺寸相当于一所房子,成本超过同样的锂离子电池。研究人员的目标,是使液流电池体积更小,更便宜,同时增加给定的体积能量存储,或能量密度。
液流电池已经实地应用于美国、日本和澳大利亚。大量的系统,高达25兆瓦都处在演示阶段,根据《美国恢复和再投资法案》(arra:american recovery and reinvestment act),管理者是能源部能源存储系统研究项目。锌溴和钒氧化还原系统(zincbromine and vanadium redox systems)是最大的竞争者。但所用的材料具有中等毒性,钒具有很大的价格波动。此外,水溶液限制了可以溶解的物质数量,以及可以储存多少能量,而且,室外温度会降低性能。
桑迪亚国家实验室开创性地研究液流电池,可避免这些问题,因为不使用水。安德森组建了一个多学科小组,专家来自一些实验室,包括电化学大卫·英格索兰(david ingersoll),有机化学家乍得·斯泰格(chad staige),化学技师哈里·普拉特(harry pratt)和乔纳森·伦纳德(jonathan leonard)。他们所设计的,是一种新型电化学可逆的、金属基离子液体,或叫迈提尔溶液(metils),采用的都是廉价无毒的材料,在美国很容易买到,如铁,铜,锰。
不是把盐溶解到溶剂中,我们的盐就是一种溶剂。“我们可得到非常高浓度的活性金属,因为我们不受饱和的限制。它实际上就在公式中。因此,我们可以经济有效地增加三倍的能量密度,这可大大降低电池所需的尺寸,只是因为材料的性质。”
电化学效率,或反向充电性能,在迈提尔溶液中要高得多,远远超过迄今公布的其他任何东西。研究小组已经制备了近200种组合的阳离子、阴离子和配体以及这类物质,其中有五种超过二茂铁(ferrocene)的电化学效率,这效率长期以来一直被认为是黄金标准。
一个共同问题是,混合带正电荷和带负电荷的成分,这些成分就会开始聚集在一起,最终使溶液变为粘性,堵塞电池膜和电极表面。研究小组解决了这一挑战,他们开发出不对称的阳离子,或者带正电的离子,这种离子就像一个足球。在这个比喻中,黑色的五边形代表带负电荷的区域,白色的六边形代表正电荷的区域。这种排列降低了熔点,因为可防止离子液体成分键合,形成固体,同时,部分电荷仍使电子可以自由流动,穿过电池,产生电流。
研究小组资金来自美国能源部电力传输和能源可靠性办公室(officeof electricity delivery and energy reliability)。伊姆雷·古柯(imre gyuk)是这一办公室的能源储存系统项目经理,一直支持桑迪亚国家实验室的这项工作,而且提供了必要的资金。
“迈提尔溶液方法代表了一种巧妙的现成的溶液,是一种阴极/电解质聚合体。古柯说,“因为是采用现成的,价格低廉的前体,因此,它很可能带来创新的、成本划算的存储系统,会极大地影响整个美国电网。”
这一研究结果适用于新的液流电池正极材料。桑迪亚国家实验室的小组下一步是找到类似材料,用于液流电池阳极,研究人员对他们的进步感到鼓舞。
桑迪亚国家实验室(sandia national laboratory)的研究人员开发出一系列新的液体盐电解质,就是所谓的迈提尔溶液(metils),制成的电池经济有效,存储能量比目前的电池高三倍以上。
这项研究有助于经济可靠地集成大规模间歇性可再生能源,如太阳能和风能,使并入全国电网。
桑迪亚国家实验室的研究人员发现一种新的液体盐电解质,可制成电池,能量密度提高三倍,胜过现有的其他存储技术。这些所谓的迈提尔溶液(metils),从左至右依次为:铜基化合物,钴基化合物,锰基化合物,铁基化合物,镍基化合物和钒基化合物。来源:桑迪亚国家实验室
电网的设计是用于稳定的能源,这样,因为波动电力源自间歇性可再生能源,所以就很难适应。更好的能量存储技术可平衡这些流动的波动能源,而桑迪亚国家实验室的研究人员正在研究新的方法,开发更灵活、更具成本效益也更可靠的电网,以提高能源储存。
美国和全世界都需要极大地突破电池技术,用可再生能源取代今天的碳基能源系统,桑迪亚国家实验室。“迈提尔溶液是一种新的、有前途的化学电池,可能带来下一代的电站蓄电池技术,取代铅酸电池和锂离子电池,带来极大的能量存储密度,进行这些应用。”
4. 液流电池和钒电池是什么东东
电化学液流电池(electrochemical flow cell)一般称为氧化还原液流电池(flow redox cell或者redox flow cell)是一种新型的大型电化学版储能装置,正负极全使用钒盐溶权液的称为全钒液流电池,简称钒电池.其荷电状态 100%时电池的开路电压可达 1.5 V.
液流电池根据电极活性物质的不同,可以分为全钒液流电池、锂离子液流电池和铅酸液流电池等。
全钒液流电池是一种新型蓄电储能设备,不仅可以用作太阳能、风能发电过程配套的储能装置,还可以用于电网调峰,提高电网稳定性,保障电网安全。
仅供参考
5. 7,(2010重庆)全钒液流储能电池是利用不同价态离子对的氧化还原反应来实现化学能和电能相互转化的装置
首先来看装置:这是一个可充电的电池装置,也就是我们常说的“二次电池”。其充电时,左槽连接外接电源的正极,右槽连接外接电源的负极;放电时,左槽作为原电池正极,右槽作为原电池负极。
反应式:(VO2)++ e- + 2H+ ==(VO)2+ + H2O
解析:括号仅用做区分二者,书写时无需带上。由于给出溶液颜色由黄到蓝,根据题目可知离子由VO2 + 变化到 VO 2+。在VO2 + 中,V为+5价,得1电子生成+4价的VO 2+ 。由于交换膜只允许H+通过,因此配平时用H+和H2O对两侧进行补齐。
充电时,右槽溶液由绿色变为紫色。
解析:右槽连接外接电源的负极,得电子,化合价降低。因此可判断电对中V 3+得电子生成了V 2+ 。 溶液由绿色变为紫色。
H+的作用是:形成闭合的内电路,与VO2 + 反应生成H2O和VO 2+ 。左槽溶液中H+的变化量也是3.01*10^23
解析:放电过程可简化为一原电池,原电池需要闭合回路,其中便包含闭合的内电路。而H+是自由移动的离子,可连接内电路。H+是+1价的,而电子带一个单位的负电荷,因此H+变化量与转移电子数是相等的。
希望能够帮助到你~
如有疑惑,欢迎追问
6. 液流电池技术现在是否成熟
液流电池 电化学液流电池(electrochemical flow cell)一般称为氧化还原液流电池(flow redox cell或者redox flow cell)是一种新型的大型电化学储能装置,正负极全使用钒盐溶液的称为全钒液流电池,简称钒电池.其荷电状态 100%时电池的开路电压可达 1.5 V. 液流电池一种新的蓄电池,液流电池是利用正负极电解液分开,各自循环的一种高性能蓄电池.具有容量高、使用领域(环境)广、循环使用寿命长的特点.是目前的一种新能源产品。氧化还原液流电池是一种正在积极研制开发的新型大容量电化学储能装置,它不同于通常使用固体材料电极或气体电极的电池,其活性物质是流动的电解质溶液,它最显著特点是规模化蓄电,在广泛利用可再生能源的呼声高涨形势下,可以预见,液流电池将迎来一个快速发展的时期。目前,液流电池普遍应用的条件尚不具备,对许多问题尚需进行深入的研究。 循环伏安测试表明:石墨毡具有良好导电性、机械均一性、电化学活性、耐酸且耐强氧化性,是一种较好的电极材料,与石墨棒和各种粉体材料相比,更适合用于液流电池的研究和应用。论文对采用的石墨毡电极分别进行了未处理、热处理、酸热处理。借助于扫描电镜,观察了三种处理方式的石墨毡表面形貌的差异,热处理和酸热处理能除去石墨毡表面的杂质和影响电化学反应的污染物,使石墨毡表面干净平整,石墨毡的表面状况得到明显改善。交流阻抗实验表明,与未处理石墨毡相比,经过热处理、酸热处理石墨毡的电阻明显减小,证实了活化处理对石墨毡表面状况的改善,使石墨毡材料得到改性,降低了电阻,增强了电化学活性. 主要材料 金属钒 全钒液流电池 全钒液流电池全钒液流电池是一种新型蓄电储能设备,不仅可以用作太阳能、风能发电过程配套的储能装置,还可以用于电网调峰,提高电网稳定性,保障电网安全。本文综述全钒液流电池的国内外技术发展状况,包括研究开发历史、电池关键材料和典型工艺过程;展望大规模蓄电储能的电池技术未来发展趋势
7. 全钒液流储能电池是利用不同价态离子对的氧化还原反应来实现化学能和电能的相互转化,其原理如图所示.(
(1)①当左槽溶液逐渐由黄变蓝,其电极反应式为VO2++2H++e-═VO2++H2O,电池放电时,说明此时为原电池,且为原电池的正极.
故答案为:VO2++2H++e-═VO2++H2O;
②外加负载为浸有KI淀粉试液的滤纸,是电解装置,碘离子移向阳极A电极失电子生成碘单质,2I-=2e-═I2,遇淀粉变蓝,所以滤纸A端先变蓝,
故答案为:A;
(2)充电过程中,A为正极,右槽连接的是电源负极,为电解池的阴极,电极反应式为V3++e-═V2+,V3+为绿色,V2+为紫色,故可以看到右槽溶液颜色逐渐由绿色变为紫色,
故答案为:A;绿色逐渐变为紫色;
(3)放电过程中,电极反应式为VO2++2H++e-═VO2++H2O,氢离子的作用是充电是,参与正极反应,通过交换膜定向移动使电流通过溶液,
故答案为:氢离子在正极参与电极反应,同时通过交换膜定向移动使电流通过溶液;
(4)充电时,左槽发生的反应为VO2++H2O═VO2++2H++e-,当转移电子为3.01×1023个即为0.5 mol电子时,生成氢离子为1 mol,此时氢离子参与正极反应,通过交换膜定向移动使电流通过溶液,溶液中离子的定向移动可形成电流,通过0.5mol电子,有0.5mol氢离子移向阴极,则左槽溶液中n(H+)的变化量为1mol-0.5mol=0.5mol,
故答案为:0.5mol.
8. 液流电池的工作原理
液流电池一种新的蓄电池,液流电池是利用正负极电解液分开,各自循环的一种高性能蓄电池.具有容量高、使用领域(环境)广、循环使用寿命长的特点.是目前的一种新能源产品。氧化还原液流电池是一种正在积极研制开发的新型大容量电化学储能装置,它不同于通常使用固体材料电极或气体电极的电池,其活性物质是流动的电解质溶液,它最显著特点是规模化蓄电,在广泛利用可再生能源的呼声高涨形势下,可以预见,液流电池将迎来一个快速发展的时期。目前,液流电池普遍应用的条件尚不具备,对许多问题尚需进行深入的研究。 循环伏安测试表明:石墨毡具有良好导电性、机械均一性、电化学活性、耐酸且耐强氧化性,是一种较好的电极材料,与石墨棒和各种粉体材料相比,更适合用于液流电池的研究和应用。论文对采用的石墨毡电极分别进行了未处理、热处理、酸热处理。借助于扫描电镜,观察了三种处理方式的石墨毡表面形貌的差异,热处理和酸热处理能除去石墨毡表面的杂质和影响电化学反应的污染物,使石墨毡表面干净平整,石墨毡的表面状况得到明显改善。交流阻抗实验表明,与未处理石墨毡相比,经过热处理、酸热处理石墨毡的电阻明显减小,证实了活化处理对石墨毡表面状况的改善,使石墨毡材料得到改性,降低了电阻,增强了电化学活性.