1. 激光核聚变是怎么发展起来的
激光核聚变,是当前激光应用的一项重大前沿课题。利用脉冲强激光聚焦在可以进行核聚变的物质上,如果能使局部温度达到几千万摄氏度,就会引起核反应。这种实验如果。能获得成功,将开辟核聚变获取能量的新途径。
在这一领域中,中国走在世界的前列。
中国科学院上海光学精密机械研究所经过试验,完全证明了激光引发核聚变的能力。
在这次试验中,激光振荡器发出一束激光脉冲,以每秒30万千米的速度,顺利地打开“光门”,并分成两路冲进激光放大器系统。在不到百分之一秒的时间里,激光功率一下猛增了1亿倍。最后,两束功率各为1万亿瓦的激光脉冲同步到达真空靶室,经过精密光学系统会聚之后,准确击中直径只有0.1毫米的靶球,就在高功率激光击中靶球的一百亿分之一秒内,靶球温度从室温骤然升到一千万摄氏度以上,同时形成一千万个大气压以上的向心压力。这时靶球内由氢的两种同位素氘和氚组成的热核“燃料”便产生了核聚变反应,并释放出聚变核能。
1986年,中国建成了以钕玻璃为主体工作物质的强激光脉冲装置——“神光”装置,这是我国最大的高功率激光装置。
它的输出分两路,每路1000焦耳。脉冲时间为10-9秒,脉冲峰值功率可达1012瓦。具有世界先进水平。
“神光”装置的研制是一项大型综合性的科学工程,整个系统包括激光器、靶场、激光参数测试、能源、中心控制、实验室工作环境等14个分系统,有80多套高精度的仪器设备,涉及激光、光学、精密机械、光学材料、电子学与微机技术、超净工艺等众多的技术领域。这个装置内有15项新材料、新技术、新结构、新方法,是国内首次采用,多数指标达到国际水平。
我国激光核聚变的研究发展很快。1991年把“神光I”升级为“神光Ⅱ”,扩展基频能量为6000焦耳,三倍频率能量约为30000焦耳。目前已开始了三倍频率能量为40000焦耳的钕玻璃激光器“神光Ⅲ”的设计,计划2004年建成。
激光核聚变的发展,是衡量一个国家激光科技水平的标准。中国激光核聚变试验成功,并继续发展,前景广阔,可见中国在这一领域里已经走在世界的前列,为世界激光核聚变研究和发展提供了宝贵的经验。中国人将用激光核聚变这一高科技手段,为中国经济建设服务
2. 神光Ⅱ装置的建设内容
神光Ⅱ建在位于上海嘉定的上海光机所(右图),总占地面积约3000平方米。
神光Ⅱ由激光器系统、激光光路自动准直系统、激光精密靶场系统、激光参数测量系统、激光储能供电系统(右下图)、环境保障及精密超净装校系统六个部分组成,是数百台套的各类激光单元或组件的集成,并在空间排布成8路激光放大链,每路激光放大链终端输出激光净口径φ230mm,具有两种脉宽:1ns、100ps,3种波长:1.053μm、0.53μm、0.35μm的输出能力,该装置终端输出能量达到6KJ/1ns/1.053μm。高功率激光驱动器的科学技术水平最重要的是高激光质量、耐用性、稳定性、可靠性,以及驱动器激光运行输出极高的重复精度。 神光Ⅱ独立自主地解决了一系列技术难题,创新集成了 多项单元新技术。
主要包括:
创新设计并研制成功无开关同轴双程片状主放大器,在国际上首次投入运行。
在同轴双程主放中创新开拓的带滤波孔小园屏技术,解决了主放大器输出能力问题。
首创调Q型损耗调制单纵模激光振荡器核心新技术,在神光Ⅱ运行中获得国际同行瞩目的高稳定输出。
创新型高稳定性冷阴极闸流管控制的时空变换激光脉冲整形技术。
为解决激光靶精密瞄准问题独立发明的基频和三倍频严格同轴的高精度ICF靶场模拟光技术。
解决高均匀度线聚焦的凸柱面透镜列阵创新设计工作。
最新开拓的高激光破坏阈值介质膜平顶超高斯锯齿软边光栏技术。
化学法制做有特色的高激光破坏阈值三倍频晶体表面防潮增透膜技术。
高效快速自动准直技术,解决了激光装置全系统高精度自动准直、瞄准的关键等。 神光Ⅱ的总体技术水平已达到当前世界同类装置前沿水平。
主要表现在:
基频单束激光运行输出能量与美国OMEGA相当。
激光输出光束质量达到国际同类装置同等技术参数水平,与美国OMEGA技术指标相当。装置输出激光的通量、等效可聚焦功率密度和时空信噪比都达到了国际先进水平。为物理实验提供了高效的实验平台 。
标志激光驱动器设计和光束调控水平的激光光束近场填充因子达到约50%,与日本Gekko-XII水平相当,尚低于美国OMEGA装置 的75%。
三倍频激光输出以日常运行约60%的激光外转换效率和高稳定输出超过日本Gekko-XII。与美国OMEGA装置最高75%内转换效率相近。
采用新技术路线和有特色的CCD并行图像处理技术,约30分钟即可实现全系统光路自动准直高精度调整,有效提高了光路自动准直工作效率,总体技术水平高于日本Gekko-XII光路自动准直调整过程。
3. 神光装置是什么
1986年,中国建成了以钕玻璃为主体工作物质的强激光脉冲装置——“神光”装置,这是我国最大的高功率激光装置。
它的输出分两路,每路1000焦耳。脉冲时间为10-9秒,脉冲峰值功率可达1012瓦。具有世界先进水平。
“神光”装置的研制是一项大型综合性的科学工程,整个系统包括激光器、靶场、激光参数测试、能源、中心控制、实验室工作环境等14个分系统,有80多套高精度的仪器设备,涉及激光、光学、精密机械、光学材料、电子学与微机技术、超净工艺等众多的技术领域。这个装置内有15项新材料、新技术、新结构、新方法,是国内首次采用,多数指标达到国际水平。
4. 截至2015年,我国的激光惯性约束聚变装置"神光iii"已经实现多少路激光安装运行
2015年2月,神光-Ⅲ主机装置六个束组均实现了基频光7500焦、三倍频光2850焦的能量输出,激光器主要性能指标均达到了设计要求,这标志着神光-Ⅲ主机基本建成,我国成为继美国国家点火装置后,第二个开展多束组激光惯性约束聚变实验研究的国家。
5. 激光核聚变是什么
激光核聚变,是当前激光应用的一项重大前沿课题。利用脉冲强激光聚焦在可以进行核聚变的物质上,如果能使局部温度达到几千万摄氏度,就会引起核反应。这种实验如果。能获得成功,将开辟核聚变获取能量的新途径。
在这一领域中,中国走在世界的前列。
中国科学院上海光学精密机械研究所经过试验,完全证明了激光引发核聚变的能力。
在这次试验中,激光振荡器发出一束激光脉冲,以每秒30万千米的速度,顺利地打开“光门”,并分成两路冲进激光放大器系统。在不到百分之一秒的时间里,激光功率一下猛增了1亿倍。最后,两束功率各为1万亿瓦的激光脉冲同步到达真空靶室,经过精密光学系统会聚之后,准确击中直径只有0.1毫米的靶球,就在高功率激光击中靶球的一百亿分之一秒内,靶球温度从室温骤然升到一千万摄氏度以上,同时形成一千万个大气压以上的向心压力。这时靶球内由氢的两种同位素氘和氚组成的热核“燃料”便产生了核聚变反应,并释放出聚变核能。
1986年,中国建成了以钕玻璃为主体工作物质的强激光脉冲装置——“神光”装置,这是我国最大的高功率激光装置。
它的输出分两路,每路1000焦耳。脉冲时间为10-9秒,脉冲峰值功率可达1012瓦。具有世界先进水平。
“神光”装置的研制是一项大型综合性的科学工程,整个系统包括激光器、靶场、激光参数测试、能源、中心控制、实验室工作环境等14个分系统,有80多套高精度的仪器设备,涉及激光、光学、精密机械、光学材料、电子学与微机技术、超净工艺等众多的技术领域。这个装置内有15项新材料、新技术、新结构、新方法,是国内首次采用,多数指标达到国际水平。
我国激光核聚变的研究发展很快。1991年把“神光I”升级为“神光Ⅱ”,扩展基频能量为6000焦耳,三倍频率能量约为30000焦耳。目前已开始了三倍频率能量为40000焦耳的钕玻璃激光器“神光Ⅲ”的设计,计划2004年建成。
激光核聚变的发展,是衡量一个国家激光科技水平的标准。中国激光核聚变试验成功,并继续发展,前景广阔,可见中国在这一领域里已经走在世界的前列,为世界激光核聚变研究和发展提供了宝贵的经验。中国人将用激光核聚变这一高科技手段,为中国经济建设服务。
6. 中国目前 神光3激光武器 打多远
根据地球曲率计算,对于万米高空以下的目标其射程不会超过500公里(前提是阵地周围都是平原,无障碍物遮挡)。对太空的话就不得而知了(国家机密你懂的,就连你打的这个名字应该也是外界猜测的。)
7. 神光装置是什么
1986年,中国建成了以钕玻璃为主体工作物质的强激光脉冲装置——“神光”装置,这是我国最大的高功率激光装置。
它的输出分两路,每路1000焦耳。脉冲时间为10-9秒,脉冲峰值功率可达1012瓦。具有世界先进水平。
“神光”装置的研制是一项大型综合性的科学工程,整个系统包括激光器、靶场、激光参数测试、能源、中心控制、实验室工作环境等14个分系统,有80多套高精度的仪器设备,涉及激光、光学、精密机械、光学材料、电子学与微机技术、超净工艺等众多的技术领域。这个装置内有15项新材料、新技术、新结构、新方法,是国内首次采用,多数指标达到国际水平。
8. 激光核聚变的发展历程是怎样的
激光核聚变,是当前激光应用的一项重大前沿课题。利用脉冲强激光聚焦在可以进行核聚变的物质上,如果能使局部温度达到几千万摄氏度,就会引起核反应。这种实验如果。能获得成功,将开辟核聚变获取能量的新途径。
在这一领域中,中国走在世界的前列。
中国科学院上海光学精密机械研究所经过试验,完全证明了激光引发核聚变的能力。
在这次试验中,激光振荡器发出一束激光脉冲,以每秒30万千米的速度,顺利地打开“光门”,并分成两路冲进激光放大器系统。在不到百分之一秒的时间里,激光功率一下猛增了1亿倍。最后,两束功.率各为1万亿瓦的激光脉冲同步到达真空靶室,经过精密光学系统会聚之后,准确击中直径只有0.1毫米的靶球,就在高功率激光击中靶球的一百亿分之一秒内,靶球温度从室温骤然升到一千万摄氏度以上,同时形成一千万个大气压以上的向心压力。这时靶球内由氢的两种同位素氘和氚组成的热核“燃料”便产生了核聚变反应,并释放出聚变核能。
1986年,中国建成了以钕玻璃为主体工作物质的强激光脉冲装置——“神光”装置,这是我国最大的高功率激光装置。
它的输出分两路,每路1000焦耳。脉冲时间为10-9秒,脉冲峰值功率可达1012瓦。具有世界先进水平。
“神光”装置的研制是一项大型综合性的科学工程,整个系统包括激光器、靶场、激光参数测试、能源、中心控制、实验室工作环境等14个分系统,有80多套高精度的仪器设备,涉及激光、光学、精密机械、光学材料、电子学与微机技术、超净工艺等众多的技术领域。这个装置内有15项新材料、新技术、新结构、新方法,是国内首次采用,多数指标达到国际水平。
我国激光核聚变的研究发展很快。1991年把“神光I”升级为“神光Ⅱ”,扩展基频能量为6000焦耳,三倍频率能量约为30000焦耳。目前已开始了三倍频率能量为40000焦耳的钕玻璃激光器“神光Ⅲ”的设计,计划2004年建成。
激光核聚变的发展,是衡量一个国家激光科技水平的标准。中国激光核聚变试验成功,并继续发展,前景广阔,可见中国在这一领域里已经走在世界的前列,为世界激光核聚变研究和发展提供了宝贵的经验。中国人将用激光核聚变这一高科技手段,为中国经济建设服务。