① 紫外可见分光光度计的主要组成部件有哪些
紫外可见分光光度计主要由光源、单色器、吸收池、检测器和信号显示系统五大部分组成。
光源,是提供符合要求的入射光的装置,有热辐射光源和气体放电光源两类;单色器:功能是将光源产生的复合光分解为单色光和分出所需的单色光束,它是分光光度计的心脏部分;
吸收池:又称比色皿,供盛放试液进行吸光度测量之用,其底及两侧为毛玻璃,另两面为光学透光面,为减少光的反射损失,吸收池的光学面必须完全垂直于光束方向。根据材质可分为玻璃池和石英池两种,前者用于可见光光区测定,后者用于紫外光区;
检测器:是将光信号转变为电信号的装置,测量吸光度时,并非直接测量透过吸收池的光强度,而是将光强度转换为电流信号进行测试,这种光电转换器件称为检测器;信号显示系统:是将检测器输出的信号放大,并显示出来的装置。
(1)紫外可见光分光计的实验装置扩展阅读
在水和废水监测中的应用,对于一个水系的监测分析和综合评价,一般包括水相、固相、生物相。在水质的常规监测中,紫外可见分光光度法占有较大的比重。由于水和废水的成分复杂多变,待测物的浓度和干扰物的浓度差别很大,在具体分析时必须选择好分析方法。
在农产品和食品分析中可用于检测的组分或成分有蛋白质、赖氨酸、葡萄糖、维生素C、硝酸盐、亚硝酸盐、砷、汞等;在植物生化分析中可用于检测叶绿素、全氮和酶的活力等;在饲料分析中可用于检测烟酸、棉酚、磷化氢和甲酯等。
② 紫外-可见分光光度计的具体使用方法
使用前仪器要调零、调百校准,参比溶液又称空白溶液。测量时用作比较的、不含被测物质但其基体尽可能与试样溶液相似的溶液。通常,用参比溶液扫描的曲线应是一条平坦的直线。有时,基体中虽不含被测物质,但含有别的物质,这时必须保证其不影响测试。经常碰到的是试剂空白中含有被测物质,此时必须经过纯化将其除去。否则将影响测定结果。在色谱分析中,有时基体中可能存在一个以上的和被测组分相距较远的色谱峰,计算机在数据处理中不会计入它们,不影响测定。
以所含铁离子是多少为例:
参比溶液与测量溶液就相差铁离子含量,在测量之前要用不含铁离子的参比溶液扫描,调整仪器后(调100的过程),然后再测量含铁离子溶液的比色皿,这样测量溶液中的铁离子会形成自己特定的峰值,次峰值与数据库里基准峰值对比就可以得出溶液所含量了。如果数据库中没有铁离子的曲线,你还要自己先用不同铁离子浓度的溶液做工作曲线,然后进行测量。
③ 紫外—可见分光光度计
一、基本原理
紫外—可见吸收光谱是在电磁辐射作用下,由宝石中原子、离子、分子的价电子和分子轨道上的电子在电子能级间的跃迁而产生的一种分子吸收光谱。具不同晶体结构的各种彩色宝石,其内所含的致色杂质离子对不同波长的入射光具有不同程度的选择性吸收,由此构成测试基础。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外—可见分光光度法。
在宝石晶体中,电子是处在不同的状态下,并且分布在不同的能级组中,若晶体中一个杂质离子的基态能级与激发态能级之间的能量差,恰好等于穿过晶体的单色光能量时,晶体便吸收该波长的单色光,使位于基态的一个电子跃迁到激发态能级上,结果在晶体的吸收光谱中产生一个吸收带,便形成紫外可见吸收光谱。宝石测试中常见三种紫外可见吸收光谱类型:
1.d电子跃迁吸收光谱
过渡金属离子为d电子在不同d轨道能级间的跃迁,吸收紫外和可见光能量而形成紫外可见吸收光谱。这些吸收谱峰受配位场影响较大。d-d跃迁光谱有一个重要特点,即配位体场的强度对d轨道能级分裂的大小影响很大,从而也就决定了光谱峰的位置。如红宝石、祖母绿的紫外可见吸收光谱。
2.f电子跃迁吸收光谱
与过渡金属离子的吸收显著不同,镧系元素离子具有特征的吸收锐谱峰。这些锐谱峰的特征与线状光谱颇为相似。这是因为4f轨道属于较内层的轨道,由于外层轨道的屏蔽作用,使4f轨道上的f电子所产生的f-f跃迁吸收光谱受外界影响相对较小所致。如蓝绿色磷灰石、人造钇铝榴石(见图2-2-26)、稀十红玻璃等。
图2-2-26 人造钇铝榴石的可见/近红外吸收光谱
3.电荷转移(迁移)吸收光谱
在光能激发下,分子中原定域在金属M轨道上的电荷转移到配位体L的轨道,或朝相反方向转移。这种导致宝石中的电荷发生重新分布,使电荷从宝石中的一部分转移至另一部分而产生的吸收光谱称为电荷转移光谱。电荷转移所需的能量比d-d跃迁所需的能量多,因而吸收谱带多发生在紫外区或可见光区。如山东蓝宝石。
二、紫外—可见分光光度计的类型
紫外—可见分光光度计类型很多,但归纳为三种类型,即单光束分光光度计、双光束分光光度计和双波长分光光度计。以下仅介绍宝石测试中常用的双光束分光光度计(见图2-2-27)。
经单色器分光后经反射镜分解为强度相等的两束光,一束通过参比池,一束通过样品池。光度计能自动比较两束光的强度,此比值即为试样的透射比,经对数变换将它转换成吸光度并作为波长的函数记录下来。双光束分光光度计一般都能自动记录吸收光谱曲线。由于两束光同时分别通过参比池和样品池,还能自动消除光源强度变化所引起的误差。
图2-2-27 紫外—可见分光光度计
三、测试方法
用于宝石的测试方法可分为两类,即直接透射法和反射法。
(一)直接透射法
将宝石样品的光面或戒面(让光束从宝石戒面的腰部一侧穿过)直接置于样品台上,获取天然宝石或某些人工处理宝石的紫外可见吸收光谱。直接透射法虽属无损测试方法,但从中获得有关宝玉石的相关信息十分有限,特别在遇到不透明宝石或底部包镶的宝石饰品时,则难以测其吸收光谱。由此限制了紫外可见吸收光谱的进一步应用。
(二)反射法
利用紫外—可见分光光度计的反射附件(如镜反射和积分球装置),有助于解决直接透射法在测试过程中所遇到的问题,由此拓展紫外可见吸收光谱的应用范围。
四、宝石学应用
1.检测人工优化处理宝石
例如,利用直接透射法或反射法,能有效地区分天然蓝色钻石与人工辐照处理蓝色钻石。前者由杂质B原子致色,紫外可见吸收光谱表征为,从540nm至长波方向,可见吸收光谱的吸收率递增。后者则出现GR1心/741nm(辐射损伤心),并伴有N2+N3/415nm(杂质N原子心)吸收光谱(见图2-2-28)。
图2-2-28 辐照处理钻石的可见吸收光谱
又例如,利用反射法,能有效地区分天然绿松石与人工染色处理绿松石,前者由Fe、Cu水合离子致色,在可见吸收光谱中显示宽缓的吸收谱带(Cu2+:2E→2T2;Fe3+:6A1→4E+4A1),后者则无或微弱。
2.区分某些天然与合成宝石
例如,水热法合成红色绿柱石显示特征的Co、Fe元素致可见吸收光谱。反之,天然红色绿柱石仅显示Fe及Mn元素致可见吸收光谱。
3.探讨宝石呈色机理
例如山东黄色蓝宝石中Fe3+为主要的致色离子,在其紫外可见吸收光谱中,02-→Fe3+电荷转移带尾部明显位移至可见光紫区内,并与Fe3+晶体场谱带部分叠加。据此认为,山东黄色蓝宝石的颜色,主要归因为O2-→Fe3+电荷转移与Fe3+的d-d电子跃迁联合作用所致。
④ 大学实验室里用的紫外可见分光光度计都是哪个厂家的什么型号的呢
不知道的紫外型号,但一般有电脑的都有色谱工作站。先配制VC的标准溶液,放进紫外,找工作站中的“光谱扫描”,设置波长范围0~800,或600,然后扫描。做完后就可以得到一张波长-吸光度的标准光谱图。最大吸收峰数据应该软件就给你了。要没有自己找一下最高峰的波长。然后配制一系列标准溶液,在最大吸收峰的波长下一个个测定吸光度,然后以浓度-吸光度绘制标准曲线。在工作站中都可以自动绘制。
⑤ 紫外可见光分光计原理及使用
紫外线(Ultraviolet)是波长比可见光短,但比X射线长的电磁辐射,波长范围在10纳米至400纳米,能量从3电子伏特至124电子伏特之间。 它的名称是因为在光谱中电磁波频率比肉眼可见的紫色还要高而得名,又俗称紫外光。1801年德国物理学家里特发现在日光光谱的紫端外侧一段能够使含有溴化银的照相底片感光,因而发现了紫外线的存在。紫外线可以用来灭菌,过多的紫外线进入人体会造成皮肤癌。紫外线是在阳光中发现的,并且在电弧和专门的灯,像是黑光灯,也会并发出紫外线。它可以造成化学反应,并导致许多物质发光或产生萤光。大多数紫外光被归类为非电离辐射。能量较高的紫外线光谱,大约在150纳米(真空紫外线)是电离的,但这种类型的紫外线不具穿透力,会被空气阻挡住。
⑥ 紫外可见分光光度计主要由什么构成
基本结构:光源→单色器→吸收→检测器→信号显示系统
我们实验室买的普析通用的TU-1901的UV/Vis,光源为钨灯和氘灯,360nm转换;单色器的主要组成:入射狭缝、出射狭缝、色散原件和准直镜;吸收池通俗来讲就是比色皿了,玻璃、石英,分册可见和紫外;检测器的作用就是光信号,转为电信号,一般多为光电倍增管吧;最后信号显示系统就没什么说的了,不算核心部件
⑦ 紫外可见分光光度计精密度试验怎么做
1.调整 (1) 在接通电源前,应对仪器的安全性进行检查,电源线接线应牢固,接地线通地要良好,各个调节旋钮的起始位置应该正确,然后再接通电源。 (2) 将灵敏度旋钮调至“1”档(放大倍率最小)。调波长调节器至所需波长。 (3) 开启电源开关,指示灯亮,选择开关置于“T”,调节透光率[100%T]旋钮使数字显示[100.0]左右,预热20min . 根据溶液浓度大小,选择液层厚度合适的吸收池。 2.校正 (!)打开吸收池暗室盖(光门自动关闭),调节[0% T]旋钮,使数字显示为“00.0”,盖上吸收池盖,将参比溶液置于光路,使光电管受光,调节透光率[100% T] 旋钮,使数学显示为“100.0”。 (2)如果显示不到“100”,则可适当增加电流放大器灵敏度档数,但应尽可能使用低档数,这样仪器将有更高的稳定性。当改变灵敏度 后必须重新校正“0”和“100”。 (3)按(1)连续几次调整“00.0”和“100.0”后,如将选择开关置于“A”,调节吸光度调零旋钮,使数字显示为“.000”,即可进行下面吸光度A的测量;如将选择开关置于“C”,将标准溶液推入光路,调节浓度旋钮,使得数字显示值为已知标准溶液浓度数值,即可进行下面浓度c的测量。 3.测定 (1) 吸光度A的测量。将要测A的试样溶液推入光路,显示值即为待测样品的吸光度值A。 (2) 浓度c的测量。将要测c试样溶液推入光路,即可读出待测样品的浓度值c。 4.结束 测量完毕,关闭电源,将各调节旋钮恢复至初始位置。取出吸收池洗净,晾干,存于专用盒内。 注意事项: (1) 使用前,使用者应该首先了解本仪器的结构和原理,以及各个旋钮之功能。 (2) 仪器接地要良好,否则显示数字不稳定。 (3) 如果大幅度改变测试波长时,在调整“00.0”和“100”后稍等片刻(因光能量变化急剧,光电管受光后响应缓慢,需一段光响应平衡时间),当稳定后,重新调整“00.0”和“100”即可工作。 (4) 仪器左侧下角有一只干燥剂筒,应保持其干燥,发现干燥剂变色应立即更新或烘干后再用。 (5) 当仪器停止工作时,关掉电源,电源开关需同时切断,并罩好仪器
⑧ 原子吸收分光光义计和紫外可见分子吸收分光光度计在仪器装置上有哪些异同点为什
答案:相同点:都是分光光度计。不同点:检测器、进样系统、光源。
紫外-可见分光光度计:
由光源、单色器、吸收池、检测器和信号显示系统五大部分组成。
1、光源:是提供符合要求的入射光的装置,有热辐射光源和气体放电光源两类。
2、单色器:是将光源产生的复合光分解为单色光,它是分光光度计的心脏部分。
3、吸收池:又称比色皿,供试液进行吸光度测量,其底及两侧为毛玻璃,另两面为光学透光面,为减少光的反射造成的损失,吸收池的光学面必须完全垂直于光束方向。
4、检测器:是将光信号转变为电信号的装置,测量吸光度时,并非直接测量吸收池的光强度,而是将光强度转换为电流信号进行测试,这种光电转换器件称为检测器。
5、信号显示系统:是将检测器输出的信号放大,并显示出来的装置 。
原子吸收分光光度计:
原子吸收分光光度计一般由四大部分组成,即光源、试验原子化器、单色仪和数据处理系统。
原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。
(8)紫外可见光分光计的实验装置扩展阅读:
光泽仪器特点:
1、不需要预热、不需要调零、即开即测。
2、进口光源寿命12万小时以上,不需要更换。
3、便携式电源为优质镍氢充电电池,充电12小时,可连续工作超过80小时,寿命达三年以上。
4、标准版采用人工石英晶体,永不变数,具有高精度的量值传递能力。
5、接收器为经视觉函数修正的蓝硅光电池,具有彩色补偿、滤除红外辐射及提高信噪比的功能
6、光路系统机体采用整体铝合金,用数控机床一次精密加工完成,确保光路高精度,角度误差不大于0.03。
⑨ 做实验时紫外可见分光光度计这样的步骤对吗
【】第一步那里自动出现数据以后,要用参比溶液校对零点,即吸光度调零;即测试第二份样品吸光度之前要吸光度调零;
【】第二步那里自动出现数据以后,仪器自动清除数据,之后要是继续沉淀的话,还是需要用参比溶液校对零点。