导航:首页 > 装置知识 > 自动装置发展趋势

自动装置发展趋势

发布时间:2022-04-01 10:39:10

⑴ 工业自动化的发展都有什么前景趋势

20世纪50年代以前,是人工控制阶段。当时的生产规模较小,测控仪表是安装在生产设备现场的气动测量仪表,功能简单。操作人员只能通过对生产现场的巡视,了解生产过程,并在现场直接把被控对象的参数调整在预定值上。这时的仪表信号不能传送给别的仪表或系统,仪表处于封闭状态,无法与外界沟通信息。这一阶段的控制系统称为气动信号控制系统。
20世纪50年代为模拟控制阶段。随着生产规模的扩大,整个生产过程需要对生产现场的多个点进行测控,自动控制成为必然,于是出现了现场仪表与集中控制室。生产现场出现了气动、电动单元组合式仪表,将测量得到的0.02~0.1MPa气压信号、4~20mA直流电流信号、1~5V的直流电压信号等模拟信号传送到集中控制室。操作人员可以坐在控制室观察生产流程各处的状况。但是,模拟信号的传递比较困难,信号变化缓慢,抗干扰能力也较差,很难满足生产过程对速度和精度的需要。
20世纪60年代~70年代中期,工业控制系统开始进入集中式数字控制阶段。它的发展经历了直接数字控制、集中型计算机控制和分层计算机控制。由于模拟信号的诸多不足,在这一阶段人们考虑用数字信号代替模拟信号,而且计算机也逐步进入工业控制系统。
直接数字控制(DDC)技术主要是由一台数字计算机替代一组模拟控制器,首先通过模数转换器,实时采集生产过程被控参数的信息,计算机按照控制算法运算后,其结果通过数模转换器去控制执行器,构成一个闭环控制回路。
由于当时的计算机技术尚不发达,价格昂贵,人们又试图用一台计算机取代控制室的几乎所有的仪表盘,实现过程监视、数据收集、数据处理、数据存储和报警等过程控制的全部功能,并能实现生产调度和工厂管理的部分功能,这就是集中型计算机控制系统。它虽然在信息的综合、改变控制方案、实现最优控制以及改善人机接口等方面取得了重大进展,但也暴露了“集中”带来的不足:脆弱性问题,一旦计算机出现某种故障,就会造成所用的控制回路瘫痪、生产停产的严重局面,这种危险集中的系统结构很难被生产过程接受;计算机负荷问题,生产规模越来越大,测控点越来越多,计算机不堪重负;开发问题,由于控制水平的不断提高,新的要求不断提出,使得软件也越来越复杂.越来越庞大,造成开发周期和费用不断增加。
集中型计算机控制系统的缺陷促使控制系统向功能分散化方向发展,于是出现了过程现场控制与集中显示操作分离开来的分层计算机控制系统。各个控制回路的模拟仪表调节器互相独立并由计算机来实现,当某一回路出现故障时,不致影响其他回路的正常工作,提高了系统的可靠性,同时现场控制计算机的信号也送入上一级计算机,由它显示过程参数,并根据对象的数学模型进行最优化处理,计算最优操作条件,最后以最优工艺参数传给下层计算机作为设定值。实际上,这时的工业控制系统已经具有了集散式控制系统的初步概念。
20世纪70年代中期,工业控制系统进入集散型控制系统(DCS)阶段。集散型控制系统是一个集中与分散相结合的系统,它吸收了分散仪表控制系统和集中式计算机控制系统的优点,将当时的微处理器、计算机数字通信等技术应用到工业控制领域。从总体逻辑结构上讲,集散型控制系统是一个分支型结构,它分为过程控制级、控制管理级和生产管理级,充分体现了管理的集中性和控制的分散性,它把控制功能分散到若干台控制站,在监控操作站进行集中监视操作。
集散型控制系统由集中管理部分、分散控制监测部分和通信部分组成。集中管理部分又可分为工程师站、操作站和管理计算机。工程师站主要用于组态和维护,操作站则用于监视和操作,管理计算机用于全系统的信息管理和优化控制。分散控制监测部分按功能可分为控制站、监测站和现场控制站,它们用于控制和监测。通信部分连接系统的各个部分,完成数据、指令及其他信息的传递。系统软件是由实时多任务操作系统、数据库管理系统、数据通信软件、组态软件和各种应用软件组合而成。
集散型控制系统具有通用性强,系统组态灵活,控制功能完善,数据处理方便,显示操作集中,人机界面友好,安装简单、规范,调试方便和运行安全可靠等特点。它的控制范围更宽,控制功能得到加强,能够适应工业生产过程的各种需要,设备与信息的共享程度也进一步提高,促进了生产自动化水平和管理水平提高。DCS与前三个阶段相比,发生了质的变化,可以说是一场革命。
但在集散型控制系统中仍有许多不足。信息化问题,CIMS的发展要求对企业经营决策、经营管理、生产调度、过程优化、故障诊断及过程控制的信息进行综合处理,迅速满足市场的需要,而集散型控制系统仅能从过程控制站得到现场仪表传来的被测参数值,以及向它发出的调节信号,无法对现场仪表进行诊断,影响了系统信息的完整性;数字化问题,在集散型控制系统中仍然有模拟测量仪表,因而它是一种模拟数字混合系统;互换性与互操作问题,在DCS系统形成的过程中,由于受计算机系统早期存在的系统封闭这一缺陷的影响,各厂家的产品自成系统,软硬件产品不能互换,而且通信协议也各不相同,不同厂家的设备不能互连在一起,难以实现互换与互操作,组成大范围信息共享的网络系统存在很多困难,这也是集散型控制系统的最大不足。
现场总线控制系统是20世纪80年代中后期随着控制、计算机、通信以及模块化集成等技术发展出现的工业控制系统,代表工业自动化控制发展的最新阶段。现场总线的概念是1982年首先在欧洲提出的。随后,北美与南美也都投入巨大的人力、物力开展研究工作。到现在为止,比较流行的现场总线已有40多种。现场总线控制系统的全分布、全数字、全开放特性解决了集散型控制系统中存在的不足。在此值得一提的是作为从DCS向FCS过渡过程中出现的HART()协议,它在现有模拟信号传输线上加载一个数字信号,使模拟信号与数字信号双向通信同时进行,互不干扰。从长远的发展来看,作为过渡产品的HART不会有很大的作为。
现场总线控制系统把集散型控制系统中的集中与分散相结合的概念变成了新型的全分布式测控系统。作为工厂数字通信网络的基础,现场总线控制系统沟通了生产过程现场控制设备之间及其与更高控制管理层之间的联系:它向下深入到现场的每一台仪表、执行机构,把控制功能彻底下放到现场,依靠现场智能设备本身便可实现基本控制功能;向上连接到生产管理、企业经营的方方面面,为企业提供全面的解决方案。目前,现场总线将原来主要用于过程控制的工业控制自动化推广到制造自动化、楼宇自动化等领域,成为新的现场智能设备互连通信网络。
在现场总线控制系统中,4~20mA模拟信号仪表将被符合现场总线标准的双向通信全数字智能仪表所代替,实现传输信号数字化,使模拟和数字混合控制系统最终转变为全数字控制系统。
现场总线控制系统的开放性解决了数字系统的兼容性问题,协议的完全开放导致不同生产商的产品之间可以互换和互操作。它不但给生产商和用户带来极大的方便,而且突破了集散型控制系统中由专用网络的封闭系统所造成的缺陷,把封闭、专用的解决方案变成了公开、标准化的解决方案。
从上面的简单回顾中,可以看到控制的效果、控制的花费和最终的收益一直是工业控制系统发展的衡量标准。从人工控制系统到集中式控制系统、从集中式控制系统到集散型控制系统,再到现在的现场总线控制系统,都是在逐步实现更好的控制、更小的花费和更大的收益。如果仔细分析一下工业控制系统发展的整个过程,不难看出它的发展具有以下特点:
(1)计算机技术在工业控制系统中起到越来越重要的作用
在集中式数字控制阶段以前,计算机并没有真正进入控制过程,计算机安装在专用的机房中,与过程装置之间没有任何物理上的连接,只是用来“离线”计算控制器的设定值和执行器的位置值,即使后来在计算机中能够加入一些管理信息,但计算机体积大,速度慢,价格昂贵而且不可靠,不能直接参与过程控制,充其量不过是一个离线数据分析的工具。
从集中式数字控制开始,计算机开始进入过程控制。在计算机上设计了专门的接口,与现场装置直接连接,计算机配上变送器、执行器和信号连接装置就完全可以实现过程的检测、监视以及对过程的控制了。最初,计算机只用于关键现场装置的单回路控制,在直接数字控制阶段,一台计算机替代一组模拟控制器;到了集中型计算机控制阶段,一台计算机已经满足小型工业控制系统的全面需要。分层计算机控制系统是适应较大规模的工业控制需要,将计算机分层、模块化的思想引入工业控制系统;到集散型计算机控制阶段,模块化、对象化的概念已经深入工业控制系统,集散型控制系统的工程师站、操作站和管理工作站都是具有自主特点的功能模块。组态软件的出现,更为工业控制系统的总体设计提供了方便。现场总线控制系统的出现是与计算机网络技术的发展密不可分的。实际上,现场总线控制就是计算机网络技术在工业控制领域的最新应用,所以又称现场总线是工业控制的底层网络。另外,如果分析一下每一种现场总线的技术资料,就不难发现它们都是在国际标准组织的开放系统互操作网络模型基础上加上一些特殊的规定形成自己的标准。
(2)信息的集成度越来越高
随着工业规模的扩大,人们对控制系统的信息要求不断提高,工业控制系统的信息集成程度也就越来越高。在人工控制阶段,谈不上信息的集成;模拟控制阶段,虽然出现了集中控制室,模拟信号的“先天”不足决定了系统的信息集成无法满足信息量、速度和精度等方面的要求;集中式数字控制阶段,信息的集成程度进一步提高,不但能把一组仪表的信息集成到一起,对于有些小系统甚至能把整个系统的测控信息集成到一起,为信息的综合、改变控制方案、实现最优控制提供了有效的途径,不过,这时的信息还只能是测控信息,与管理有关的信息很少;集散式控制系统实现了测控、管理信息的集成,但集成的程度仍然有限,没能实现通信的全数字化,影响了信息的交换;基于网络的现场总线控制系统为信息的进一步集成提供了有效的技术保证,现场总线作为纽带,将挂接在总线上的网络节点组成自动化系统,各现场智能设备分别作为一个网络节点,通过现场总线实现各节点之间、现场节点与过程控制管理层之间的信息传递与沟通,并实现各种复杂的综合自动化功能。
(3)控制功能越来越“接近”现场
这里所提及的“接近”主要是指系统内部层次上的接近,在此只以PID功能的逐步下放过程说明这一问题在集中式数字控制阶段或者说直接数字控制阶段,PID控制功能是集成在控制计算机内;到了集散式数字控制系统。PID控制功能下放到分散的现场控制站;到了现场总线控制系统,PID控制功能则彻底分散到现场控制仪表中去了。
(4)现场仪表的测控能力越来越强
现场仪表从最初的气动仪表,到后来的模拟仪表,到集散型控制系统中的数字模拟混合仪表,直到现场总线控制系统中的全数字智能仪表,不但取得了从模拟信号到数字信号的进步,现场仪表的性能也大大改善。
表明了现场仪表从实现单点、单控制回路的测控功能开始,逐步发展到按装置和过程来划分的多回路、多变量集中监控,一直到现场总线仪表智能化过程。现场总线仪表智能化是微处理器植入现场测控仪表的结果,设备具有数值计算和数字通信能力,一方面提高了信号的测量、控制和传输精度,另一方面丰富了控制信息,并为实现其远程传送创造了条件;还可提供传统仪表所不能提供的如阀门开关动作次数、故障诊断等信息,便于操作管理人员更好、更深入地了解生产现场和自控设备的运行状态,使现场总线控制系统成为分布式、可靠及信息完整的控管系统。
另外,工业控制系统还有操作人员越来越远离现场,系统的实时性和可靠性越来越强,精度越来越高。

⑵ 简述自动控制系统发展的四个阶段

1、早期控制

早在古代,劳动人民就凭借生产实践中积累的丰富经验和对反馈的直观认识,发明了许多着闪烁控制理论智慧火花的杰作。如果要追溯自动控制技术的发展史,早在两千年前人类就有了自动控制技术的萌芽。

2、经典控制理论

自动控制理论是与人类社会发展密切联系的一门学科,是自动控制科学的核心自从19世纪Maxwell对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来。

经过20世纪初Nyquist,Bode,Harris,Evans,Wienner,Nichols等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。

特点是以传递函数为数学工具,采用频域方法,主要研究单输入单输出线性定常控制系统的分析与设计,但它存在着一定的局限性,即对多输入多输出系统不宜用经典控制理论解决,特别是对非线性时变系统更是无能为力。

3、现代控制理论

随着20世纪40年代中期计算机的出现及其应用领域的不断扩展,促进了自动控制理论朝着更为复杂也更为严密的方向发展,特别是在Kalman提出的可控性和可观测性概念以及提出的极大值理论的基础上,在20世纪5060年代开始出现了以状态空间分析(应用线性代数)为基础的现代控制理论。

现代控制理论本质上是一种时域法,其研究内容非常广泛,主要包括三个基本内容:多变量线性系统理论最优控制理论以及最优估计与系统辨识理论现代控制理论从理论上解决了系统的可控性可观测性稳定性以及许多复杂系统的控制问题。

4、智能控制理论

随着现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象控制器以及控制任务和目的的日益复杂化,从而导致现代控制理论的成果很少在实际中得到应用经典控制理论现代控制理论在应用中遇到了不少难题,影响了它们的实际应用,其主要原因有三:

1)精确的数学模型难以获得此类控制系统的设计和分析都是建立在精确的数学模型的基础上的,而实际系统由于存在不确定性不完全性模糊性时变性非线性等因素,一般很难获得精确的数学模型;

2)假设过于苛刻研究这些系统时,人们必须提出一些比较苛刻的假设,而这些假设在应用中往往与实际不符;

3)控制系统过于复杂为了提高控制性能,整个控制系统变得极为复杂,这不仅增加了设备投资,也降低了系统的可靠性

第三代控制理论即智能控制理论就是在这样的背景下提出来的,它是人工智能和自动控制交叉的产物,是当今自动控制科学的出路之一。

(2)自动装置发展趋势扩展阅读

自动控制系统的未来发展前景:

现代化工厂向规模集约化方向发展时,生产工艺对控制系统的可靠性、运算能力、扩展能力、开放性、操作及监控水平等方面提出了越来越高的要求。

传统的DCS系统已经不能满足现代工业自动化控制的设计标准和要求。随着工业自动化控制理论、计算机技术和现代通信技术的迅速发展,自动控制系统的未来发展方向将向智能化、网络化、全集成自动化等方向发展。

⑶ 自动控制技术全国及世界现状及发展趋势

工业控制自动化技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分。

工业控制自动化技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分。工业控制自动化技术作为20世纪现代制造领域中最重要的技术之一,主要解决生产效率与一致性问题。虽然自动化系统本身并不直接创造效益,但它对企业生产过程有明显的提升作用。

我国工业控制自动化的发展道路,大多是在引进成套设备的同时进行消化吸收,然后进行二次开发和应用。目前我国工业控制自动化技术、产业和应用都有了很大的发展,我国工业计算机系统行业已经形成。目前,工业控制自动化技术正在向智能化、网络化和集成化方向发展。

一、 以工业PC为基础的低成本工业控制自动化将成为主流

众所周知,从20世纪60年代开始,西方国家就依靠技术进步(即新设备、新工艺以及计算机应用)开始对传统工业进行改造,使工业得到飞速发展。20世纪末世界上最大的变化就是全球市场的形成。全球市场导致竞争空前激烈,促使企业必须加快新产品投放市场时间(Time to Market)、改善质量(Quality)、降低成本(Cost)以及完善服务体系(Service),这就是企业的T.Q.C.S.。虽然计算机集成制造系统
(CIMS)结合信息集成和系统集成,追求更完善的T.Q.C.S.,使企业实现“在正确的时间,将正确的信息以正确的方式传给正确的人,以便作出正确的决策”,即“五个正确”。然而这种自动化需要投入大量的资金,是一种高投资、高效益同时是高风险的发展模式,很难为大多数中小企业所采用。在我国,中小型企业以及准大型企业走的还是低成本工业控制自动化的道路。

工业控制自动化主要包含三个层次,从下往上依次是基础自动化、过程自动化和管理自动化,其核心是基础自动化和过程自动化。

传统的自动化系统,基础自动化部分基本被PLC和DCS所垄断,过程自动化和管理自动化部分主要是由各种进口的过程计算机或小型机组成,其硬件、系统软件和应用软件的价格之高令众多企业望而却步。

20世纪90年代以来,由于PC-based的工业计算机(简称工业PC)的发展,以工业PC、I/O装置、监控装置、控制网络组成的PC-based的自动化系统得到了迅速普及,成为实现低成本工业自动化的重要途径。我国重庆钢铁公司这样的大企业的几乎全部大型加热炉,也拆除了原来DCS或单回路数字式调节器,而改用工业PC来组成控制系统,并采用模糊控制算法,获得了良好效果。

由于基于PC的控制器被证明可以像PLC一样可靠,并且被操作和维护人员接受,所以,一个接一个的制造商至少在部分生产中正在采用PC控制方案。基于PC的控制系统易于安装和使用,有高级的诊断功能,为系统集成商提供了更灵活的选择,从长远角度看,PC控制系统维护成本低。由于可编程控制器(PLC)受PC控制的威胁最大,所以PLC供应商对PC的应用感到很不安。事实上,他们现在也加入到了PC控制“浪潮”中。

近年来,工业PC在我国得到了异常迅速的发展。从世界范围来看,工业PC主要包含两种类型:IPC工控机和CompactPCI工控机以及它们的变形机,如AT96总线工控机等。由于基础自动化和过程自动化对工业PC的运行稳定性、热插拔和冗余配置要求很高,现有的IPC已经不能完全满足要求,将逐渐退出该领域,取而代之的将是 CompactPCI-based工控机,而IPC将占据管理自动化层。国家于2001年设立了“以工业控制计算机为基础的开放式控制系统产业化”工业自动化重大专项,目标就是发展具有自主知识产权的PC-based控制系统,在3(5年内,占领30%(50%的国内市场,并实现产业化。

几年前,当“软PLC”出现时,业界曾认为工业PC将会取代PLC。然而,时至今日工业PC并没有代替PLC,主要有两个原因:一个是系统集成原因;另一个是软件操作系统Windows NT的原因。一个成功的PC-based控制系统要具备两点:一是所有工作要由一个平台上的软件完成;二是向客户提供所需要的所有东西。可以预见,工业PC与PLC的竞争将主要在高端应用上,其数据复杂且设备集成度高。工业PC不可能与低价的微型PLC竞争,这也是PLC市场增长最快的一部分。从发展趋势看,控制系统的将来很可能存在于工业PC 和 PLC之间,这些融合的迹象已经出现。

和PLC一样,工业PC市场在过去的两年里保持平稳。与PLC相比,工业PC软件很便宜。据Frost & Sullivan公司估计,全世界每年7亿美元工业PC市场里,大约8500万美元为控制软件,一亿美元为操作系统。到2007年会翻一番,工业PC市场变得非常可观。

二、 PLC在向微型化、网络化、PC化和开放性方向发展

长期以来,PLC始终处于工业控制自动化领域的主战场,为各种各样的自动化控制设备提供非常可靠的控制方案,与DCS和工业PC形成了三足鼎立之势。同时,PLC也承受着来自其它技术产品的冲击,尤其是工业PC所带来的冲击。

目前,全世界PLC生产厂家约200家,生产300多种产品。国内PLC市场仍以国外产品为主,如Siemens、Modicon、A-B、OMRON、三菱、GE的产品。经过多年的发展,国内PLC生产厂家约有三十家,但都没有形成颇具规模的生产能力和名牌产品,可以说PLC在我国尚未形成制造产业化。在PLC应用方面,我国是很活跃的,应用的行业也很广。专家估计,2000年PLC的国内市场销量为15(20万套(其中进口占90%左右),约25(35亿元人民币,年增长率约为12%。预计到2005年全国PLC需求量将达到25万套左右,约35(45亿元人民币。

PLC市场也反映了全世界制造业的状况,2000后大幅度下滑。但是,按照Automation Research Corp的预测,尽管全球经济下滑,PLC市场将会复苏,估计全球PLC市场在2000年为76亿美元,到2005年底将回到76亿美元,并继续略微增长。

微型化、网络化、PC化和开放性是PLC未来发展的主要方向。在基于PLC自动化的早期,PLC体积大而且价格昂贵。但在最近几年,微型PLC(小于32 I/O)已经出现,价格只有几百欧元。随着软PLC(Soft PLC)控制组态软件的进一步完善和发展,安装有软PLC组态软件和PC-based控制的市场份额将逐步得到增长。

当前,过程控制领域最大的发展趋势之一就是Ethernet技术的扩展,PLC也不例外。现在越来越多的PLC供应商开始提供Ethernet接口。可以相信,PLC将继续向开放式控制系统方向转移,尤其是基于工业PC的控制系统。

三、 面向测控管一体化设计的DCS系统

集散控制系统DCS(Distributed Control System)问世于1975年,生产厂家主要集中在美、日、德等国。我国从70年代中后期起,首先由大型进口设备成套中引入国外的DCS,首批有化纤、乙烯、化肥等进口项目。当时,我国主要行业(如电力、石化、建材和冶金等)的DCS基本全部进口。80年代初期在引进、消化和吸收的同时,开始了研制国产化DCS的技术攻关。

近10年,特别是“九五”以来,我国DCS系统研发和生产发展很快,崛起了一批优秀企业,如北京和利时公司、上海新华公司、浙大中控公司、浙江威盛公司、航天测控公司、电科院以及北京康拓集团等。这批企业研制生产的DCS系统,不仅品种数量大幅度增加,而且产品技术水平已经达到或接近国际先进水平。在2001年全国应用的4426套DCS系统中,国产DCS系统为1486套,占35%。短短几年,国外DCS系统在我国一统天下的局面从此不再出现。这些专业化公司不仅占据了一定的市场份额,积累了发展的资本和技术,同时使得国外引进的DCS系统价格也大幅度下降,为我国自动化推广事业做出了贡献。与此同时,国产DCS系统的出口也在逐年增长。

虽然国产DCS的发展取得了长足进步,但国外DCS产品在国内市场中占有率还较高,其中主要是Honeywell和横河公司的产品。我国DCS的市场年增长率约为20%,年市场额约为30(35亿元。由于近5年内DCS在石化行业大型自控装置中没有可替代产品,所以其市场增长率不会下降。据统计,到2005年,我国石化行业有1000多套装置需要应用DCS控制;电力系统每年新装1000多万千瓦发电机组,需要DCS实现监控;不少企业已使用DCS近15(20年,需要更新和改造。所以,今后5年内DCS作为自动化仪表行业主要产品的地位不会动摇。

根据中国仪器仪表行业协会公布的调查数据显示,2002年我国DCS市场状况如下:

小型化、多样化、PC化和开放性是未来DCS发展的主要方向。目前小型DCS所占有的市场,已逐步与PLC、工业PC、FCS共享。今后小型DCS可能首先与这三种系统融合,而且“软DCS”技术将首先在小型DCS中得到发展。PC-based控制将更加广泛地应用于中小规模的过程控制,各DCS厂商也将纷纷推出基于工业PC的小型DCS系统。开放性的DCS系统将同时向上和向下双向延伸,使来自生产过程的现场数据在整个企业内部自由流动,实现信息技术与控制技术的无缝连接,向测控管一体化方向发展。

四、 控制系统正在向现场总线(FCS)方向发展

由于3C(Computer、Control、Communication)技术的发展,过程控制系统将由DCS发展到FCS(Fieldbus Control System)。FCS可以将PID控制彻底分散到现场设备(Field Device)中。基于现场总线的FCS又是全分散、全数字化、全开放和可互操作的新一代生产过程自动化系统,它将取代现场一对一的4(20mA模拟信号线,给传统的工业自动化控制系统体系结构带来革命性的变化。

根据IEC61158的定义,现场总线是安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、双向传输、多分支结构的通信网络。现场总线使测控设备具备了数字计算和数字通信能力,提高了信号的测量、传输和控制精度,提高了系统与设备的功能、性能。IEC/TC65的SC65C/WG6工作组于1984年开始致力于推出世界上单一的现场总线标准工作,走过了16年的艰难历程,于1993年推出了IEC61158-2,之后的标准制定就陷于混乱。2000年初公布的IEC61158现场总线国际标准子集有八种,分别为:

类型1 IEC技术报告(FFH1);
类型2 Control-NET(美国Rockwell公司支持);
类型3 Profibus(德国Siemens公司支持);
类型4 P-NET(丹麦Process Data公司支持);
类型5 FFHSE(原FFH2)高速以太网(美国Fisher Rosemount公司支持);
类型6 Swift-Net(美国波音公司支持);
类型7 WorldFIP(法国Alsto公司支持);
类型8 Interbus(美国Phoenix Contact公司支持)。

除了IEC61158的8种现场总线外,IEC TC17B通过了三种总线标准:SDS(Smart Distributed System);ASI(Actuator Sensor Interface);Device NET。另外,ISO公布了ISO 11898 CAN标准。其中Device NET于2002年10月8日被中国批准为国家标准,并于2003年4月1日开始实施。

目前在各种现场总线的竞争中,以Ethernet为代表的COTS(Commercial-Off-The-Shelf)通信技术正成为现场总线发展中新的亮点。其关注的焦点主要集中在两个方面:

(1) 能否出现全世界统一的现场总线标准;
(2) 现场总线系统能否全面取代现时风靡世界的DCS系统。

采用现场总线技术构造低成本的现场总线控制系统,促进现场仪表的智能化、控制功能分散化、控制系统开放化,符合工业控制系统的技术发展趋势。国家在“九五”期间为了加快现场总线技术在我国的发展,重点放在智能化仪表和现场总线技术的开发和工程化上,补充和完善工艺设备、开发装置和测试装置,建立智能化仪表和开发自动化系统的生产基地,形成适度规模经济。2000年,“九五”国家科技攻关计划“新一代全分布式控制系统研究与开发”和“现场总线智能仪表研究开发”两个项目相继完成。这两个项目以及先期完成的“现场总线控制系统的开发”项目,针对国际上已经出现的多种现场总线协议并存的局面,重点选择了HART协议和FF协议现场总线技术攻关。

总之,计算机控制系统的发展在经历了基地式气动仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统以及集散控制系统(DCS)后,将朝着现场总线控制系统(FCS)的方向发展。虽然以现场总线为基础的FCS发展很快,但FCS发展还有很多工作要做,如统一标准、仪表智能化等。另外,传统控制系统的维护和改造还需要DCS,因此FCS完全取代传统的DCS还需要一个较长的过程,同时DCS本身也在不断的发展与完善。可以肯定的是,结合DCS、工业以太网、先进控制等新技术的FCS将具有强大的生命力。工业以太网以及现场总线技术作为一种灵活、方便、可靠的数据传输方式,在工业现场得到了越来越多的应用,并将在控制领域中占有更加重要的地位。

五、仪器仪表技术在向数字化、智能化、网络化、微型化方向发展

经过五十年的发展,我国仪器仪表工业已有相当基础,初步形成了门类比较齐全的生产、科研、营销体系。现有各类仪器仪表企业6000余家,年销售额约1000亿元,成为亚洲除日本之外第二大仪器仪表生产国。据海关统计,除去随成套工程项目配套引进的仪器仪表不计,去年进口各类仪器仪表近60亿美元,约占我国仪器仪表工业总产值的50%。但目前我国仪器仪表行业产品大多属于中低档水平,随着国际上数字化、智能化、网络化、微型化的产品逐渐成为主流,差距还将进一步加大。目前,我国高档、大型仪器设备大多依赖进口。中档产品以及许多关键零部件,国外产品占有我国市场60%以上的份额,而国产分析仪器占全球市场不到千分之二的份额。

2001年3月,第九届全国人大四次会议批准的“十五”计划纲要首次提出“把发展数控机床,仪器仪表和基础零部件放到重要位置,努力提高质量和技术水平”。2001年8月,国家计委把仪器仪表明确列为国民经济重要技术装备,国家经贸委制定并公布的仪器仪表行业 “十五”规划,确立了6项高技术产业化项目:

1. 基于现场总线技术的全开放分散控制系统及智能仪表;
2. 新型传感器;
3. 智能化工业控制部件与执行机构;
4. 环境与污染源监测仪器及自动监测系统;
5. 城市污水处理利用成套工艺设备中的仪表自动化控制系统;
6. 炼钢转炉煤气净化回转成套装置中的仪表自动化控制系统。

根据仪器仪表行业的预测,“十五”期间我国仪器仪表市场大致是:2002年1628亿,2003年1790亿,2004年1969亿,2005年2165亿。五年间,平均年市场容量为1806亿(相当于220亿美元),其中工业自动化仪表和控制系统占41%、科学测试仪器占25%、医疗仪器占17%、其它占17%,平均年增长率将不会低于10%。

今后仪器仪表技术的主要发展趋势:
* 仪器仪表向智能化方向发展,产生智能仪器仪表;
* 测控设备的PC化,虚拟仪器技术将迅速发展;
* 仪器仪表网络化,产生网络仪器与远程测控系统。

几点建议:
* 开发具有自主知识产权的产品,掌握核心技术。
* 加强仪器仪表行业的系统集成能力。
* 进一步拓展仪器仪表的应用领域。

六、 数控技术向智能化、开放性、网络化、信息化发展

从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了51年的历程。近10年来,随着计算机技术的飞速发展,各种不同层次的开放式数控系统应运而生,发展很快。目前正朝着标准化开放体系结构的方向前进。就结构形式而言,当今世界上的数控系统大致可分为4种类型:

1. 传统数控系统;
2. “PC嵌入NC”结构的开放式数控系统;
3. “NC嵌入PC”结构的开放式数控系统;
4. SOFT型开放式数控系统。

我国数控系统的开发与生产,通过“七五”引进、消化、吸收,“八五”攻关和“九五”产业化,取得了很大的进展,基本上掌握了关键技术,建立了数控开发、生产基地,培养了一批数控人才,初步形成了自己的数控产业,也带动了机电控制与传动控制技术的发展。同时,具有中国特色的经济型数控系统经过这些年来的发展,产品的性能和可靠性有了较大的提高,逐渐被用户认可。

国外数控系统技术发展的总体发展趋势是:
* 新一代数控系统向PC化和开放式体系结构方向发展;
* 驱动装置向交流、数字化方向发展;
* 增强通信功能,向网络化发展;
* 数控系统在控制性能上向智能化发展。

进入21世纪,人类社会将逐步进入知识经济时代,知识将成为科技和生产发展的资本与动力,而机床工业,作为机器制造业、工业以至整个国民经济发展的装备部门,毫无疑问,其战略性重要地位、受重视程度,也将更加鲜明突出。

近年来,我国数控机床一直保持两位数增长。2001年,我国机床工业产值已进入世界第5名,机床消费额在世界排名上升到第3位,达47.39亿美元,仅次于美国的53.67亿美元。2002年产值达260亿元,产量居世界第4。但与发达国家相比,我国机床数控化率还不高,目前生产产值数控化率还不到30%;消费值数控化率还不到50%,而发达国家大多在70%左右。由于国产数控机床不能满足市场的需求,高档次的数控机床及配套部件只能靠进口,使我国机床的进口额呈逐年上升态势,2001年进口机床跃升至世界第2位,达24.06亿美元,比上年增长27.3%。

智能化、开放性、网络化、信息化成为未来数控系统和数控机床发展的主要趋势:
* 向高速、高效、高精度、高可靠性方向发展;
* 向模块化、智能化、柔性化、网络化和集成化方向发展;
* 向PC-based化和开放性方向发展;
* 出现新一代数控加工工艺与装备,机械加工向虚拟制造的方向发展。
* 信息技术(IT)与机床的结合,机电一体化先进机床将得到发展。
* 纳米技术将形成新发展潮流,并将有新的突破。
* 节能环保机床将加速发展,占领广大市场。

七、 工业控制网络将向有线和无线相结合方向发展

自从1977年第一个民用网系统ARCnet投入运行以来,有线局域网以其广泛的适用性和技术价格方面的优势,获得了成功并得到了迅速发展。然而,在工业现场,一些工业环境禁止、限制使用电缆或很难使用电缆,有线局域网很难发挥作用,因此无线局域网技术得到了发展和应用。随着微电子技术的不断发展,无线局域网技术将在工业控制网络中发挥越来越大的作用。

无线局域网(Wireless LAN)技术可以非常便捷地以无线方式连接网络设备,人们可随时、随地、随意地访问网络资源,是现代数据通信系统发展的重要方向。无线局域网可以在不采用网络电缆线的情况下,提供以太网互联功能。在推动网络技术发展的同时,无线局域网也在改变着人们的生活方式。无线网通信协议通常采用IEEE802.3和802.11。802.3用于点对点方式,802.11用于一点对多点方式。无线局域网可以在普通局域网基础上通过无线Hub、无线接入站(AP)、无线网桥、无线Modem及无线网卡等来实现,以无线网卡使用最为普遍。无线局域网的未来的研究方向主要集中在安全性、移动漫游、网络管理以及与3G等其它移动通信系统之间的关系等问题上。

在工业自动化领域,有成千上万的感应器,检测器,计算机,PLC,读卡器等设备,需要互相连接形成一个控制网络,通常这些设备提供的通信接口是RS-232或RS-485。无线局域网设备使用隔离型信号转换器,将工业设备的RS-232串口信号与无线局域网及以太网络信号相互转换,符合无线局域网IEEE 802.11b和以太网络IEEE 802.3标准,支持标准的TCP/IP网络通信协议,有效的扩展了工业设备的联网通信能力。

计算机网络技术、无线技术以及智能传感器技术的结合,产生了“基于无线技术的网络化智能传感器”的全新概念。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。无线局域网技术能够在工厂环境下,为各种智能现场设备、移动机器人以及各种自动化设备之间的通信提供高带宽的无线数据链路和灵活的网络拓扑结构,在一些特殊环境下有效地弥补了有线网络的不足,进一步完善了工业控制网络的通信性能。

八、工业控制软件正向先进控制方向发展

自20世纪80年代初期诞生至今,工业控制软件已有20年的发展历史。工业控制软件作为一种应用软件,是随着PC机的兴起而不断发展的。工业控制软件主要包括人机界面软件(HMI),基于PC的控制软件以及生产管理软件等。目前,我国已开发出一批具有自主知识产权的实时监控软件平台、先进控制软件、过程优化控制软件等成套应用软件,工程化、产品化有了一定突破,打破了国外同类应用软件的垄断格局。通过在化工、石化、造纸等行业的数百个企业(装置)中应用,促进了企业的技术改造,提高了生产过程控制水平和产品质量,为企业创造了明显的经济效益。2000年,“九五”国家科技攻关计划项目“大型骨干石化生产系统控制及计算机应用技术”通过了验收。

作为工控软件的一个重要组成部分,国内人机界面组态软件研制方面近几年取得了较大进展,软件和硬件相结合,为企业测、控、管一体化提供了比较完整的解决方案。在此基础上,工业控制软件将从人机界面和基本策略组态向先进控制方向发展。

先进过程控制APC(Advanced Process Control)目前还没有严格而统一的定义。一般将基于数学模型而又必须用计算机来实现的控制算法,统称为先进过程控制策略。如:
* 自适应控制;
* 预测控制;
* 鲁棒控制;
* 智能控制(专家系统、模糊控制、神经网络)等。

由于先进控制和优化软件可以创造巨大的经济效益,因此这些软件也身价倍增。国际上已经有几十家公司,推出了上百种先进控制和优化软件产品,在世界范围内形成了一个强大的流程工业应用软件产业。因此,开发我国具有自主知识产权的先进控制和优化软件,打破外国产品的垄断,替代进口,具有十分重要的意义。

在未来,工业控制软件将继续向标准化、网络化、智能化和开放性发展方向。

结束语

工业信息化是指在工业生产、管理、经营过程中,通过信息基础设施,在集成平台上,实现信息的采集、信息的传输、信息的处理以及信息的综合利用等。在“十五”期间,国家用信息化带动工业化的工作重点有三个方面:一是以电子信息技术应用为重点,提高传统产业生产过程自动化、控制智能化和管理信息化水平;二是以先进制造技术应用为重点,推进制造业领域的优质高效生产,振兴装备制造业;三是改造提升重点产业的关键技术、共性技术及其相关配套技术水平、工艺和装备水平。国家实施高技术产业化的主要目标有两个:一是发展高技术,形成新兴产业,培育新的增长点;二是利用先进技术改造和优化传统产业,提高经济增长的质量。

由于大力发展工业自动化是加快传统产业改造提升、提高企业整体素质、提高国家整体国力、调整工业结构、迅速搞活大中型企业的有效途径和手段,国家将继续通过实施一系列工业过程自动化高技术产业化专项,用信息化带动工业化,推动工业自动化技术的进一步发展,加强技术创新,实现产业化,解决国民经济发展面临的深层问题,进一步提高国民经济整体素质和综合国力,实现跨越式发展。

⑷ 自动钻孔机的发展趋势

自动化钻孔机发展趋势:
1、底盘专业化。目前国内外生产的自动化钻孔功牙机绝大多数应用的是专用底盘,只有少数应用的是挖掘机底盘或起重机底盘,这些底盘在设计上没有兼顾自动化钻孔功牙机施工特点,在稳定性方面存在着一定缺陷。

2、控制技术的智能化。在起钻桅控制、自动垂直调平、回转倒土控制、发动机的监控、钻孔深度测量及显示、车身工作状态动画显示及虚拟仪表显示、故障检测、报警及信息显示等方面逐步实现智能化控制。

3、多功能化。即钻机采用的是多用途模块式设计,国外钻机一般可用于;大口径短螺旋和旋挖斗回转施工;长螺旋施工;全护筒跟管施工:全护筒跟管+磨桩机施工:液压抓斗地下连续墙施工;高压旋喷施工;潜孔锤施工;预制桩施工。以上不同工法的施工,自动化钻孔功牙机厂家提醒只需要选装不同的工作附件,便可做到一机多用,节约使用成本。

4、安全保护。钻机的设计充分考虑操作人员的安全,并采取了一些措施:驾驶室前窗配有fops:卷扬的高度限位;驾驶室内操作台安全控制:发动机、液压等参数显示、报警等。

5、上、下车独特的水平调节系统。钻机的上车与下车的连接机构采用了独特的设计形式,通过左右特别的两个油缸,可进行上下车倾斜调节,自动化钻孔功牙机厂家提醒当下车底盘倾斜时,上车驾驶室仍为水平,此功能既保证了钻孔时的垂直度,又可使操作手在舒适的位置长时间工作而不会感到疲倦。

6、动力头mcs系统——套管钻进增扭装置。增加套管跟管钻进增扭系统,可减省摆管机的应用,大幅度降低使用成本。

钻孔机行业领先者:

⑸ 自动化专业在未来有何走向

毕业后可在涉及电子信息自动化技术的公司、企业、设计院、研究所和高校等单位从事技术开发、科学研究及管理工作。

该专业毕业生有着广阔的就业渠道,因为自动化技术的应用广泛,其就业领域也五花八门。根据近几年毕业生就业的情况看,他们的工作都非常理想,收入状况也颇为乐观。

与该专业就业领域相关联的行业借助市场经济的搞活和对外开放程度的加深,也获得了飞速发展。民航、铁路、金融、通信系统、税务、海关等部门的自动化程度越来越高,科研院所、高科技公司也借助强大的人才优势,发展迅猛。

发展前景

就业方向

自动化类企业:自动化工程、自动化设计、软件工程、自动控制、数据采集。

电气类企业:电力工程、系统运行、电力电子技术、供电技术。

考研方向

控制工程、控制科学与工程、控制理论与控制工程、检测技术与自动化装置。

⑹ 工业4.0时代的自动化发展趋势有什么特点

工业4.0时代的自动化发展趋势有4大特点
1、自动化系统内部的横向连接。通过全集成自动化、集成架构等统一平台将控制、驱动、低压配电等系统深度集成,在单一的编程环境中为可扩展运动和机器控制提供集成的平台。这种集成可减少需要储存的备件数量,而控制平台的开放性则可确保与第三方组件轻松集成。此外,在每台机器上使用的可视化及信息软件需实现标准化处理方式。
2、与下层现场传感和数据采集层及上层企业管理系统的纵向连接。从机器运行和能源使用到变量处理和材料使用,在生产过程的每个环节中,控制器、传感器及其它设备均会产生大量数据。来自生产车间的数据在几年之内就会在数量上超过公司产生的业务数据。即便是现在,也有大量的此类数据正在通过现场的PLC进行分析。当务之急乃是将所有来自各工厂运行系统不断剧增的数据与来自业务应用的信息相结合,从而打造运营智能,尤其是远程维护解决方案和基于云技术的服务,以应对持续增加的围绕数据分析的服务需求。如远程状态监测可以对个别部件的运动进行分析或对整个驱动链实施在线连续监测。
3、基于开放标准和统一协议的通讯网络。若要充分利用智能化网络技术的优势,需要借助统一网络基础设施,来实现工厂内所有设备彼此之间的相互通信。未来,网络交换设备将得到更广泛的利用。独立IP的应用可以使产品和设备具备可识别的独立身份、便于追踪、定位和监测。此外,标准通讯可使更多的数字设备融入生产线网络,如摄像机、RFID读卡器、数字平板、安全磁卡等,以提高生产管理的精细化。

4、移动技术和虚拟化。目前在平板电脑或智能手机上访问生产数据,信息和工厂员工已能够实现“移动”并随时随地访问应用程序。未来,很多情况下需要使用云技术处理和存储来自各地的数据,又要在各地实时地使用这些数据。移动技术让人变得机动灵活。人们可以随时随地与任何相关人事联系,可以与全球同事交流分享经验知识、解决业务问题。不管技术专家身在何处,呼叫中心代表都可以实时向其咨询问题,而专家本人也可以随地访问世界上任意地点的设备服务历史以及其它装置的历史,还能够核对工厂更新和其它咨询。例如,很多油井地处分散的偏远地区,过去,技术人员需要奔波于各个油井之间将数据下载到闪存卡中,而现在则可以直接从云端下载数据,通过远程监视设备和过程。他们可以实时生成报告,而不是按天或者按周。

虚拟化可以降低对物理服务器和其它硬件的依赖性,同时节约工厂的能源成本。虚拟化技术还可以改善机器的可靠性,打造低成本高可用性的备份解决方案,同时允许操作系统的多个实例在单一硬件上运行。最新的DCS系统已经应用虚拟化服务器实现更快的处理速度及降低生命周期成本。

⑺ 自动控制系统的发展及技术现状是什么

1基本概念

如图4-1所示框图说明了控制系统的基本概念,动作信号通过(经由)控制系统元件后,提供一个指示,此系统的目的就是将变量c控制于该指示内。一般来说,被控变量为系统的输出,而动作信号为系统的输入。举一个简单的例子,汽车的方向控制(Steering Control),两个前轮的方向可视为被控制变量,即输出;而其方向盘的位置可视为输入,即动作信号e。再如,若我们要控制汽车的速度,则加速器的压力总和为动作信号,而速度则视为被控变量。

图4-13自动化生产线

5)大系统理论的诞生

系统和控制理论的应用从60年代中期开始逐渐从工业方面渗透到农业﹑商业和服务行业,以及生物医学﹑环境保护和社会经济各个方面。由于现代社会科学技术的高度发展出现了许多需要综合治理的大系统,现代控制理论又无法解决这样复杂的问题,系统和控制理论急待有新的突破。在计算机技术方面,60年代初开始发展数据库技术,1970年提出关系数据库,到80年代数据库技术已经达到相当的水平。60年代末计算机技术和通信技术相结合产生了数据通信。1969年美国国防部高级研究局的阿帕网(ARPA)的第一期工程投入使用取得成功,开创了计算机网络的新纪元。数据库技术和计算机网络为80年代实现管理自动化创造了良好的条件。管理自动化的一个核心问题是办公室自动化,这是从70年代开始发展起来的一门综合性技术,到80年代已初步成熟。办公室自动化为管理自动化奠定了良好的基础。

国际自动控制联合会(IFAC)于1976年在意大利的乌第纳召开了第一届大系统学术会议,于1980年在法国的图鲁兹召开第二届大系统学术会议。美国电气与电子工程师学会(IEEE)于1982年10月在美国弗吉尼亚州弗吉尼亚海滩举行了一次国际大系统专题讨论会。1980年在荷兰正式出版国际性期刊《大系统──理论与应用》。这些活动标志着大系统理论的诞生。

6)人工智能和模式识别

用机器来模拟人的智能,虽然是人类很早以前就有的愿望,但其实现还是从有了电子计算机以后才开始的。1936年,图灵提出了用机器进行逻辑推理的想法。50年代以来,人工智能的研究是基于充分发挥计算机的用途而展开的。

早期的人工智能研究是从探索人的解题策略开始,即从智力难题﹑弈棋﹑难度不大的定理证明入手,总结人类解决问题时的心理活动规律,然后用计算机模拟,让计算机表现出某种智能。1948年美国数学家维纳在《控制论》一书的附注中首先提出制造弈棋机的问题。1954年美国国际商业机器公司(IBM)的工程师塞缪尔应用启发式程序编成跳棋程序,存储在电子数字计算机内,制成能积累下棋经验的弈棋机。1959年该弈棋机击败了它的设计者。1956年赫伯特·西蒙和艾伦·纽厄尔等研制了一个称为逻辑理论家的程序,用电子数字计算机证明了怀特海和罗素的名著《数学原理》第二章52条定理中的33条定理。1956年M.L.明斯基、J.麦卡锡、纽厄尔、西蒙等10位科学家发起在达特茅斯大学召开人工智能学术讨论会,标志人工智能这一学科正式诞生。1960年人工智能的4位奠基人,即美国斯坦福大学的麦卡锡、麻省理工学院的明斯基、卡内基梅隆大学的纽厄尔和西蒙组成了第一个人工智能研究小组,有力地推动了人工智能的发展。从1967年开始出版不定期刊物《机器智能》,共出版了9集。从1970年开始出版期刊《人工智能》。从1969年开始每两年举行一次人工智能国际会议(IJCAI)。这些活动进一步促进了人工智能的发展。70年代以来微电子技术和微处理机的迅速发展,使人工智能和计算机技术结合起来。一方面在设计高级计算机时广泛应用人工智能的成果,另一方面又利用超级微处理机实现人工智能,大大地加速了人工智能的研究和应用。人工智能的基础是知识获取﹑表示技术和推理技术,常用的人工智能语言则是LISP语言和PROLOG语言,人工智能的研究领域涉及自然语言理解﹑自然语言生成﹑机器视觉﹑机器定理证明﹑自动程序设计﹑专家系统和智能机器人等方面。人工智能已发展成为系统和控制研究的前沿领域。

1977年E.A.费根鲍姆在第五届国际人工智能会议上提出了知识工程问题。知识工程是人工智能的一个分支,它的中心课题就是构造专家系统。1973—1975年费根鲍姆领导斯坦福大学的一个研究小组研制成功一个用于诊治血液传染病和脑膜炎的医疗专家系统MYCIN,能学习专家医生的知识,模仿医生的思维和诊断推理,给出可靠的诊治建议。1978年费根鲍姆等人研制成功水平很高的化学专家系统DENDRAL。1982年美国学者W.R.纳尔逊研制成功诊断和处理核反应堆事故的专家系统REACTOR。中国也已经研制成功中医专家系统和蚕育种专家系统。现在专家系统已应用在医学﹑机器故障诊断﹑飞行器设计﹑地质勘探﹑分子结构和信号处理等方面。

为了扩大计算机的应用,使计算机能直接接受和处理各种自然的模式信息,即语言﹑文字﹑图像﹑景物等,模式识别研究受到人们的重视。1956年,塞尔弗里奇等人研制出第一个字符识别程序,随后出现了字符识别系统和图像识别系统,并形成了以统计法和结构法为核心的模式识别理论,语音识别和自然语言理解的研究也取得了较大进展,为人和计算机的直接通信提供了新的接口。

60年代末到70年代初美国麻省理工学院﹑美国斯坦福大学和英国爱丁堡大学对机器人学进行了许多理论研究,注意到把人工智能的所有技术综合在一起,研制出智能机器人,如麻省理工学院和斯坦福大学的手眼装置﹑日立公司有视觉和触觉的机器人等。由于机器人在提高生产率,把人从危险﹑恶劣等工作条件下替换出来,扩大人类的活动范围等方面显示出极大的优越性,所以受到人们的重视。机器人技术发展很快,并得到越来越广泛的应用,并在工业生产﹑核电站设备检查﹑维修﹑海洋调查﹑水下石油开采﹑宇宙探测等方面大显身手,正在研究中的军用机器人也具有较大的潜在应用价值。关于机器人的设计﹑制造和应用的技术形成了机器人学。

总结人工智能研究的经验和教训,人们认识到,让机器求解问题必须使机器具有人类专家解决问题的那些知识,人工智能的实质应是如何把人的知识转移给机器的问题。1977年,费根鲍姆首倡专家系统和知识工程,于是以知识的获取﹑表示和运用为核心的知识工程发展起来。自70年代以来,人工智能学者已研制出用于医疗诊断﹑地质勘探﹑化学数据解释和结构解释﹑口语和图像理解﹑金融决策﹑军事指挥﹑大规模集成电路设计等各种专家系统。智能计算机﹑新型传感器﹑大规模集成电路的发展为高级自动化提供了新的控制方法和工具。

50年代以来,在探讨生物及人类的感觉和思维机制,并用机器进行模拟方面,取得一些进展,如自组织系统﹑神经元模型﹑神经元网络脑模型等,对自动化技术的发展有所启迪。同一时期发展起来的一般系统论﹑耗散结构理论﹑协同学和超循环理论等对自动化技术的发展提供了新理论和新方法。

⑻ 简述工业自动化控制系统发展分哪几个阶段发展趋势如何

由中国提出的《工业自动化系统与集成 机床数控系统 一般要求》国际标准提案,经国际标准化组织自动化系统与集成技术委员会物理设备控制分会(ISO/TC184/SC1)批准正式立项,是ISO/TC184/SC1中首次由中国提出并成功立项的项目。

在“高档数控机床与基础制造装备”科技重大专项等国家科技计划支持及机床行业共同努力下,中国数控系统在功能、性能等方面得到了大幅提升,有效支撑了数控系统产业创新发展。这项国际标准的成功立项,标志着中国在国际标准规则工作中的主导权和话语权将进一步提升。下文将对我国工业自动控制系统装置制造行业的发展现状与趋势作出分析。

一、工业增加值达到28万亿元

经过新中国成立以来60余年的工业化进程,尤其是改革开放以来的30余年的快速工业化进程,中国工业化取得了巨大的成就,经济发展水平得到了极大的提升,中国已经整体步入工业化中期的前半阶段。中国的基本经济国情已从一个农业经济大国转变为工业经济大国。

2007-2017年,我国工业增加值保持着逐年上升的趋势,但同比增速有所下降。2017年全部工业增加值28.00万亿元,比上年增长6.4%。规模以上工业增加值增长6.6%。

图表1:2007-2017年全国工业增加值及其增长情况(单位:万亿元,%)


——更多数据参考前瞻产业研究院发布的《2020-2025年中国工业自动控制系统装置制造行业产销需求预测与转型升级分析报告》。

阅读全文

与自动装置发展趋势相关的资料

热点内容
zhj轴承尺寸是多少 浏览:157
这些锁止装置各起到什么作用 浏览:320
机械穿什么异界套装 浏览:778
做阀门销售怎么跑业务 浏览:592
尚酷仪表盘跟什么通用 浏览:187
桑拿炉自动喷淋装置接线图 浏览:622
乙酰苯胺水解制备苯胺的实验装置 浏览:218
实验室制取硫酸装置图 浏览:458
电力系统安全自动装置题库 浏览:277
水库阀门是什么意思 浏览:418
压缩机排气阀门关闭不严 浏览:447
芜湖市华益阀门公司怎么样 浏览:174
儿科肺炎治疗仪仪器怎么用 浏览:1000
现在恒温库用什么样的制冷机 浏览:813
游戏工具箱顶部横滑 浏览:891
zy型液压自动张紧装置 浏览:664
尼尔机械纪元屠村任务怎么做 浏览:450
为什么要对化工装置进行安全设计 浏览:322
电动工具名牌有哪些要求 浏览:542
什么情况下采用双闸板阀门 浏览:130