㈠ 光伏检测实验室的光伏检测实验室组成
光伏产品按组成部分分为下列试验标准和相应检测设备:
l 组件质量检测标准及相关设备
l 单晶硅太阳能电池检验标准及相关设备
l EVA检验标准及相关设备
l 钢化玻璃检验标准及相关设备
l TPT检验标准及相关设备
l 铝型材检验标准及相关设备
l 涂锡焊带检验标准及相关设备
l 双组分有机硅导热封胶检验标准及相关设备
l 有机硅橡胶密封检验标准及相关设备 一、适用标准
GB/T 9535-1998标准仅适用于晶体硅组件,有关薄膜组件和其他环境条件如海洋或赤道条件的标准正在考虑中。本标准不适用于带聚光器的组件。本试验程序的目的是在尽可能合理的时间内确定组件的电性能和热性能,表明组件能够在规定的气候条件下长期使用。通过此试验的组件的实际使用寿命期望值将取决于组件的设计以及他们使用的环境和条件。
与国际标准水平对比,国内光伏标准的水平与国际水平相当,除等同采用IEC标准外,还结合国庆自行起草了国标和行标。 序号 标准编号 标准名称 等效及引用标准 1 GB/T2296-2001 太阳电池型号命名方法 无相关国际标准 2 GBT2297-1989 太阳光伏能源系统术语 目前IEC1863正在修订过程中,其ED2.0与ED1.0差别很大,GB的内容与ED1.0基本一致。 3 GB/T6492-1986 航天用标准电池 无相关国际标准 4 GB/T6494-1986 航天用太阳电池电性能测试方法 无相关国际标准 5 GB/T6495.1-1996 光伏器件 第1部分:光伏电流-电压特性的测量 等同采用IEC 60904-1(1987) 6 GB/T6495.2-1996 光伏器件 第2部分:标准太阳电池的要求 等同采用IEC 60904-2(1989) 7 GB/T6495.3-1996 光伏器件 第3部分:地面用光伏器件的测量原理以及标准光谱辐照度数据 等同采用IEC 80904-3(1989),目前该标准正准备进行修订 8 GB/T6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 等同采用IEC 60891(1987) 9 GB/T6496-1986 光伏器件 第5部分:用开路电压法确定光伏(PV)器件的等效电池温度(ECT) 等同采用IEC 60904-5(1993) 10 GB/T6497-1986 航天用太阳电池标定的一般规定 无相关国际标准 11 GB/T6497-1986 地面用太阳电池标定的一般规定 GB/T6495.2-1996及GB/T6495.3-1996两项国家标准中包含本标准内容,在最近的标准复审中已经建议废止本标准 12 GB/T9535-1998 地面用晶体硅光伏组件-设计鉴定和定型 该标准等效采用IEC61215(1993),对IEC标准中错误已经前后矛盾的章节进行了修改,目前IEC/TC82正在对该标准进行修改,对元标准中的一些试验方法进行了相应的增删,并且更改了一些参数。 13 GB/T11009-1989 太阳电池光谱响应测试方法 本标准已被GB/T6495.8 2002代替,在最近的标准复审中已经建议废止本标准 14 GB/T11010-1989 光谱标准太阳电池 无相关国际标准 15 GB/T11011-1989 非晶硅太阳电池电性能测试的一般规定 16 GB/T11012-1989 太阳电池电性能测试设备检验方法 无相关国际标准 17 GB/T12632-1990 单晶硅太阳电池总规范 无相关国际标准,鉴于国内存在单晶硅太阳电池的贸易,在最近的标准复审中已经建议修订本标准。 18 GB/T12637-1990 太阳模拟器通用规范 在该标准中规定的AM1.5太阳模拟器已经被新的国家标准(等同采用IEC904-0)替代,AM0主要用于空间太阳电池的测量,在标准复审中建议应制定一个新标准或制定相应的GJB 19 GB/T14008-1992 海上用太阳电池组件总规范 本标准被融已被GB/T9535-1998以及盐雾试验两项标准替代,在最近的标准复审中已经建议废止本标准 20 GB/T18210-2000 晶体硅光伏(PV)方针I-V特性的现场测量 等同采用IEC61829(1995) 21 GB/T18479-2001 地面用光伏(PV)发电系统-概述及导则 等同采用IEC61277(1995) 22 SJ/T9550.29-1993 地面用晶体硅太阳电池单体质量分等标准 无相关国际标准。该标准已经过时,在最近的标准复审中已经建议废止该标准 23 SJ/T9550.30-1993 地面用晶体硅太阳电池组件质量分等标准 无相关国际标准。该标准已经过时,在最近的标准复审中已经建议废止该标准 24 SJ/T9550.31-1993 航天用硅太阳电池单体质量分等标准 无相关国际标准。该标准已经过时,在最近的标准复审中已经建议废止该标准 25 SJ/T9550.32-1993 航天用硅太阳电池单体质量分等标准 无相关国际标准。该标准已经过时,在最近的标准复审中已经建议废止该标准 26 SJ/T10173-1991 TDA75单晶硅太阳电池 无相关国际标准。该标准已经过时,在最近的标准复审中已经建议废止该标准 27 SJ/T10174-1991 AM1.5稳态太阳模拟器 无相关国际标准。该标准已经过时,在最近的标准复审中已经建议废止该标准 28 SJ/T10459-1993 太阳电池温度系数测试方法 GB/T9535(IEC1215)中包含了部分该标准的内容,在最近的标准复审中,优于空间太阳电池对温度系数的测量有特殊的要求,建议修改该标准,分为空间、地面两部分,空间应用部分制定相应的GJB。 29 SJ/T10460-1993 太阳光伏能源系统用图形符号 无响应国际标准 30 SJ/T10698-1996 非晶硅标准太阳电池 无响应国际标准 31 SJ/T11127-1997 光伏(PV)发电系统的过压保护导则 等同采用IEC 61173(1992) 32 SJ/T11209-1999 光伏器件 第6部分:标准太阳电池组件的要求 等同采用IEC 60904-6(1994) 33 GB/T 18912-2002 光伏组件盐雾腐蚀试验 等同采用IEC 61701(1995) 34 GB/T 18911-2002 地面用薄膜光伏组件-设计鉴定和定型 等同采用IEC 61646(1996) 35 GB/T 6495.8-2002 光伏器件 第8部分:光伏器件光谱响应的测量 等同采用IEC 60904-8(1998) 36 GB/T 19393-2003 直接耦合光伏(PV)扬水系统的评估 等同采用IEC 61702(1995) 37 GB/T 19394-2003 光伏(PV)组件紫外试验 等同采用IEC 61345(1998) 38 GB/T 2003年报批 光伏系统性能监测测量、数据转换以及分析导则 等同采用IEC 61724(1998) 39 GB/T 2003年报批 光伏系统功率调节器效率测量程序 等同采用IEC 61683(1999) 40 GB/T 6495.7-2006 光伏器件 第7部分:光伏器件测量过程中引起的光谱失配误差的计算 等同采用IEC 60904-7(1998) 41 GB/T 6495.9-2006 光伏器件 第9部分:太阳模拟器性能要求 等同采用IEC 60904-9(1995) 42 GB/T 2003年报批 独立光伏系统技术规范 无相关国际标准 为与国际检测标准接轨,同时也为我国光伏产品早日走向国际市场,质量检测中心完全采用国际电工委员会IEC标准进行各种校准和检测。采用标准部分摘录如下:
IEC61215--地面用晶体硅光伏组件设计鉴定和定型(GB/T 9535-1998)
IEC61646--低买能用薄膜型光伏组件设计鉴定和定型
IEC60904-1--光伏电流-电压特性的测量(GB/T 6495.1-1996)
IEC60904-2--标准太阳电池的要求(GB/T 6495.2-1996)
IEC60904-3--地面用光伏器件的测量原理及标准光谱辐照度数据(GB/T 6495.3-1996)
IEC60891--晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法(GB/T6495.4-1996)
IEC61194--独立光伏系统的特性参数
IEC61829--晶体硅光伏方阵I-V特性的实地测量
二、适用设备
1、少子寿命测试仪
2、傅立叶红外测试仪
3、数字式四探针测试仪
4、金相显微镜
5、动态图像颗粒测试仪
6、激光粒度仪
7、低温傅立叶红外测试仪
8、辉光放电质谱仪
9、电感耦合等离子体发射光谱仪
10、扫描电子显微镜及能普
11、C分析仪
12、O分析仪
13、硅片厚度测试仪
14、半自动无接触硅片测试仪
15、太阳光模拟器
16、热重热差综合分析仪
17、硅片强度测试仪
18、激光椭偏仪
19、太阳能电池量子效率测试系统
20、太阳能电池I-V特性测量系统
北京海瑞克科技发展有限公司提供全套检测设备。 一、适用标准
光伏组件执行的最新标准为2005年颁布的IEC 61215-2005《地面用晶体硅光伏组件--设计鉴定和定型Crystalline silicon terrestrial photovaltaic (PV) moles - Design qualification and type approval》,检测项目如下:
1、外观检查
2、最大功率确定
3、绝缘试验
4、温度系数的测量
5、电池标称工作温度的测量
6、标准测试条件的标称工作温度下的性能
7、低辐照度下的性能
8、室外暴露试验
9、热斑耐久试验
10、紫外预处理试验
11、热循环试验
12、湿-冻试验
13、湿-热试验
14、引出端强度试验
15、湿漏电流试验
16、机械载荷试验
17、冰雹试验
18、旁路二极管热性能试验
二、适用仪器
1、外观鉴定:略
2、最大功率确定:I-V曲线测试仪
3、绝缘试验:绝缘电阻测试仪
4、光老练试验机
5、UV实验箱
6、雨淋实验箱
7、冰雹实验箱
8、沙尘实验箱
9、盐雾实验箱
10、冷冻湿热循环实验箱
11、高温高湿实验箱
北京海瑞克科技发展有限公司提供全套实验检测设备。 一、材料介绍
用作光伏组件封装的EVA,主要对以下几点性能提出要求:
1、熔融指数,影响EVA的融化速度
2、软化点,影响EVA开始软化的温度点
3、透光率:对于不同的光谱分布有不同的透光率,这里主要指的是在AM1.5的光谱分布条件下的透光率
4、密度:胶联后的密度
5、比热:胶联后的比热,反映胶联后的EVA吸收相同热量的情况下温度升高数值的大小
6、热导率:胶联后的热导率,反映胶联后的EVA的热导性能
7、玻璃化温度:反映EVA的抗低温性能。
8、断裂张力强度:胶联后的EVA断裂张力强度,放映了EVA胶联后的抗断裂机械强度
9、断裂延长率:胶联后的EVA断裂延长率,反映了EVA胶联后的延伸显性能
10、张力系数:胶联后的EVA张力系数,反映了EVA胶联后的张力大小
11、吸水性:直接影响七对电池片的密封性能
12、胶联率:EVA的胶联度直接影响到他的抗渗水性
13、玻璃强度:反映了EVA与玻璃的粘接强度
14、耐紫外光老化:影响到组件的户外使用寿命
15、耐热老化:影响到组件的户外使用寿命
16、耐低温环境老化:影响到组件的户外使用寿命
二、质量要求
1、外观检验:EVA表面无折痕、无污点、平整、半透明、无污迹、压花清晰
2、用精度为0.01mm测厚仪测定,在幅度方向至少测五点,取平均值,厚度符合协定厚度,允许工程为正负0.03mm。 用精度1mm的钢尺测定,幅度符合协定厚度,允许公差为正负3.0mm。
3、透光率检验:(1)取胶膜尺寸为50mm*50mm,用50mm*50mm*1mm的载玻玻璃,以玻璃/胶膜/玻璃三层叠合。 (2)将上述样品至于层压机内,加热到100℃,抽真空5min,然后加压0.5Mpa,保持5min,再放入固化箱中,按产品要求的固化温度和时间进行胶联固化,然后取出冷却至室温。 (3)按GB2410规定进行检验。
4、胶联度检验(1)仪器装置及器具:容量为500ml到1000ml,24''磨口回流冷凝管,赔温度控制仪的电加热套或电加热油浴;真空烘箱;用0.125mm(120目)不锈钢丝网,剪取80mm*40mm,对着成40mm正方形,两侧对折进6mm后固定,职称顶端开口的袋。 (2)试剂 二甲苯 A.R级 (3)试样制备 取胶膜一块,将TPT/胶膜/胶膜/玻璃叠合后,按平时一次固化工艺固化胶联,(或按照厂家工艺要求固化胶联)将移交练好的胶膜剪成小碎片待用。
(4)检验步骤
将不锈钢丝网袋洗净、烘干、承重W1(精确到0.01g)。
取试样0.5g+-0.01g,放入不锈钢丝网袋中,城中为W2(精确到0.01g)
封住袋口做成试样包,并称重为W3(精确到0.01g)
试样包用细铁丝悬吊在回流冷凝管下的烧瓶中,烧瓶内加入1/2二甲苯溶剂,加热到140℃左右,溶剂沸腾回流5h~6h时,回流速度保持在20滴/分~40滴/分。
冷却取出试样包,悬挂除去溶剂液滴,然后放入真空烘箱内,温度控制在140℃,真空度为0.08Mpa,干燥3h,完全出去溶剂。
将试样包从真空烘箱内取出,放置干燥器中冷却20min后,取出承重为W4(精确到0.01g)
结果计算
C=[1-(W3-W4)/(W2-W1)]*100%
式中:
C-胶联度(%)
W1-空袋重量
W2-装有试样的袋重
W3-试样包重
W4-经容积萃取和干燥后的试样包中
5、剥离强度检验
(1)取两块尺寸为300mm*20mm胶膜作为试样,分别按TPT/胶膜/胶膜/玻璃叠合。
(2)按平时一次固化工艺进行固化
(3)按GB/T2790规定进行检验
6、耐紫外光老化检验
将胶膜放置于老化箱内连续照射100h后,目测对比
7、均匀度检验
取相同尺寸的10张胶膜进行承重,然后对比每张胶膜的重量,最大与最小之间不得超过1.5%。
三、适用设备
1、熔融指数仪
2、维卡软化点测试仪
3、紫外可见分光光度计
4、密度天平
5、热茶分析仪
6、低温试验箱
7、万能材料试验机(含大变形引伸计、拉伸夹具)
8、表面张力测定仪
9、胶联度测试仪
10、剥离强度试验机
11、标准紫外光老化试验机
12、椭偏仪/反射膜厚仪
北京海瑞克科技发展有限公司提供全套检测设备。 一、质量要求
1)钢化玻璃标准厚度为3.2mm,允许偏差0.2mm
2)钢化玻璃尺寸为1574*802mm,允许偏差为0.5mm,两对角线允许偏差0.7mm
3)钢化玻璃允许每米边上有长度不超过10mm,自玻璃边部想玻璃板表面延伸深度不超过过2mm,自板面向玻璃另一面延伸不超过玻璃厚度三分之一的爆边。
4)钢化玻璃内部不允许有长度小于1mm的集中的气泡。对于长度大于1mm但是不大于6mm的旗袍每平方米不得超过6个。
5)不允许有结石、裂纹、缺觉的情况发生。
6)钢化玻璃在可见光波段内透射比不小于90%
7)钢化玻璃表面与un需每平方米内宽度小于0.1mm,长度小于50mm的划伤数量不多于4调。每平方米宽度0.1-0.5妈妈长度小于50mm的划伤不超过1条。
8)钢化玻璃不允许有波形弯曲,弓形完全不允许超过过0.2%。根据GB/T9963-1998中4.4,4.5,4.6条款进行试验,在50mm*50mm的区域内碎片数必须超过40个。
二、适用设备
1、冲击试验机
2、紫外可见分光光度计 一、质量要求
a)外观检验:抽检TPT表面无褶皱,无明显划伤。
b)用精度0.01mm测厚仪测定,在幅度方向至少测五点,取平均值,厚度复合协定厚度,允许公差为±0.03mm。
用精度1mm的钢尺测定,幅度复合协定厚度,允许公差为±3.0mm
c)抗拉强度,纵向≥170N/10mm,横向≥170N/mm。
d)抗撕裂强度,纵向≥140N/mm,横向≥140N/mm
e)层间剥落强度,纵向≥4N/cm,横向≥4N/cm
f)EVA剥落强度,纵向≥20N/cm,横向≥20N/cm
g)尺寸稳定性0.5h150℃,纵向≤2%,横向≤1.25%
二、适用设备
1、测厚仪
2、万能材料试验机(含拉力、撕裂夹具) 一、质量要求
选用GB/T2059-2000标准TU1无氧铜带。
1)外观检验:抽检涂锡带表面光滑,色泽发亮,边部不能有毛刺
2)厚度(mm):0.01≤单面≤0.045
3)电阻率(标准)≤0.01725Ω mm2/m
4)抗拉强度(软)≥196;抗拉强度(半硬)≥245
5)伸长率(软)≥30;伸长率(半硬)≥8
6)成品体积电阻系数:(2.02±0.08)*10-8mΩ
7)涂层融化温度≤245℃
8)侧边弯曲度:每米长度自中心处测量不超过1.5mm
9)应具有增功率现象
10)使用寿命≥25年
二、适用设备
1、低电阻测试仪
2、万能材料试验机
3、熔点测定仪
㈡ 金属材料物理性能测试机的机械性能
(一)应力的概念,物体内部单位截面积上承受的力称为应力。由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。
(二)机械性能,金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项:
1.强度
这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:
(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPaσb=Pb/Fo式中:Pb?C至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo?C拉伸试样原来的横截面积。
(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。对于塑性高的材料,在拉伸曲线上会出现明显的屈服点,而对于低塑性材料则没有明显的屈服点,从而难以根据屈服点的外力求出屈服极限。因此,在拉伸试验方法中,通常规定试样上的标距长度产生0.2%塑性变形时的应力作为条件屈服极限,用σ0.2表示。屈服极限指标可用于要求零件在工作中不产生明显塑性变形的设计依据。但是对于一些重要零件还考虑要求屈强比(即σs/σb)要小,以提高其安全可靠性,不过此时材料的利用率也较低了。
(3)弹性极限:材料在外力作用下将产生变形,但是去除外力后仍能恢复原状的能力称为弹性。金属材料能保持弹性变形的最大应力即为弹性极限,相应于拉伸试验曲线图中的e点,以σe表示,单位为兆帕(MPa):σe=Pe/Fo式中Pe为保持弹性时的最大外力(或者说材料最大弹性变形时的载荷)。
(4)弹性模数:这是材料在弹性极限范围内的应力σ与应变δ(与应力相对应的单位变形量)之比,用E表示,单位兆帕(MPa):E=σ/δ=tgα式中α为拉伸试验曲线上o-e线与水平轴o-x的夹角。弹性模数是反映金属材料刚性的指标(金属材料受力时抵抗弹性变形的能力称为刚性)。
2.塑性,
金属材料在外力作用下产生永久变形而不破坏的最大能力称为塑性,通常以拉伸试验时的试样标距长度延伸率δ(%)和试样断面收缩率ψ(%)延伸率δ=[(L1-L0)/L0]x100%,这是拉伸试验时试样拉断后将试样断口对合起来后的标距长度L1与试样原始标距长度L0之差(增长量)与L0之比。在实际试验时,同一材料但是不同规格(直径、截面形状-例如方形、圆形、矩形以及标距长度)的拉伸试样测得的延伸率会有不同,因此一般需要特别加注,例如最常用的圆截面试样,其初始标距长度为试样直径5倍时测得的延伸率表示为δ5,而初始标距长度为试样直径10倍时测得的延伸率则表示为δ10。断面收缩率ψ=[(F0-F1)/F0]x100%,这是拉伸试验时试样拉断后原横截面积F0与断口细颈处最小截面积F1之差(断面缩减量)与F0之比。实用中对于最常用的圆截面试样通常可通过直径测量进行计算:ψ=[1-(D1/D0)2]x100%,式中:D0-试样原直径;D1-试样拉断后断口细颈处最小直径。δ与ψ值越大,表明材料的塑性越好。3.硬度,金属材料抵抗其他更硬物体压入表面的能力称为硬度,或者说是材料对局部塑性变形的抵抗能力。因此,硬度与强度有着一定的关系。根据硬度的测定方法,主要可以分为:
(1)布氏硬度(代号HB),用一定直径D的淬硬钢球在规定负荷P的作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下表面积为F的压痕,以试件的单位表面积上能承受负荷的大小表示该试件的硬度:HB=P/F。在实际应用中,通常直接测量压坑的直径,并根据负荷P和钢球直径D从布氏硬度数值表上查出布氏硬度值(显然,压坑直径越大,硬度越低,表示的布氏硬度值越小)。布氏硬度与材料的抗拉强度之间存在一定关系:σb≈KHB,K为系数,例如对于低碳钢有K≈0.36,对于高碳钢有K≈0.34,对于调质合金钢有K≈0.325,…等等。
(2)洛氏硬度(HR)用有一定顶角(例如120°)的金刚石圆锥体压头或一定直径D的淬硬钢球,在一定负荷P作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下某个深度的压痕。由洛氏硬度机自动测量压坑深度并以硬度值读数显示(显然,压坑越深,硬度越低,表示的洛氏硬度值越小)。根据压头与负荷的不同,洛氏硬度还分为HRA、HRB、HRC三种,其中以HRC为最常用。洛氏硬度HRC与布氏硬度HB之间有如下换算关系:HRC≈0.1HB。除了最常用的洛氏硬度HRC与布氏硬度HB之外,还有维氏硬度(HV)、肖氏硬度(HS)、显微硬度以及里氏硬度(HL)。这里特别要说明一下关于里氏硬度,这是目前最新颖的硬度表征方法,利用里氏硬度计进行测量,其检测原理是:里氏硬度计的冲击装置将冲头从固定位置释放,冲头快速冲击在试件表面上,通过线圈的电磁感应测量冲头距离试件表面1毫米处的冲击速度与反弹速度(感应为冲击电压和反弹电压),里氏硬度值即以冲头反弹速度和冲击速度之比来表示:HL=(Vr/Vi)?1000式中:HL-里氏硬度值;Vr-冲头反弹速度;Vi-冲头冲击速度(注:实际应用装置中是以冲击装置中的闭合线圈感应的冲击电压和反弹电压代表冲击速度和反弹速度)。冲击装置的构造主要有内置弹簧(加载套管,不同型号的冲击装置有不同的冲击能量)、导管、释放按钮、内置线圈与骨架、支撑环以及冲头,冲头主要采用金刚石、碳化钨两种极高硬度的球形(不同型号的冲击装置其冲头直径有不同)。优点:里氏硬度计的主机接收到冲击装置获得的信号进行处理、计算,然后在屏幕上直接显示出里氏硬度值,便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值,同时可折算出材料的抗拉强度σb,还可以将测量结果储存、直接打印输出或传送给计算机作进一步的数据处理。
3.应用范围:
里氏硬度计是一种便携袖珍装置,可应用于各种金属材料、工件的表面硬度测量,特别是大型锻铸件的测量,其最大的特点是可以任意方向检测,免去了普通硬度计对工件大小、测量位置等的限制。
4.韧性
金属材料在冲击载荷作用下抵抗破坏的能力称为韧性。通常采用冲击试验,即用一定尺寸和形状的金属试样在规定类型的冲击试验机上承受冲击载荷而折断时,断口上单位横截面积上所消耗的冲击功表征材料的韧性:αk=Ak/F单位J/cm2或Kg·m/cm2,1Kg·m/cm2=9.8J/cm2αk称作金属材料的冲击韧性,Ak为冲击功,F为断口的原始截面积。5.疲劳强度极限金属材料在长期的反复应力作用或交变应力作用下(应力一般均小于屈服极限强度σs),未经显著变形就发生断裂的现象称为疲劳破坏或疲劳断裂,这是由于多种原因使得零件表面的局部造成大于σs甚至大于σb的应力(应力集中),使该局部发生塑性变形或微裂纹,随着反复交变应力作用次数的增加,使裂纹逐渐扩展加深(裂纹尖端处应力集中)导致该局部处承受应力的实际截面积减小,直至局部应力大于σb而产生断裂。在实际应用中,一般把试样在重复或交变应力(拉应力、压应力、弯曲或扭转应力等)作用下,在规定的周期数内(一般对钢取106~107次,对有色金属取108次)不发生断裂所能承受的最大应力作为疲劳强度极限,用σ-1表示,单位MPa。除了上述五种最常用的力学性能指标外,对一些要求特别严格的材料,例如航空航天以及核工业、电厂等使用的金属材料,还会要求下述一些力学性能指标:蠕变极限:在一定温度和恒定拉伸载荷下,材料随时间缓慢产生塑性变形的现象称为蠕变。通常采用高温拉伸蠕变试验,即在恒定温度和恒定拉伸载荷下,试样在规定时间内的蠕变伸长率(总伸长或残余伸长)或者在蠕变伸长速度相对恒定的阶段,蠕变速度不超过某规定值时的最大应力,作为蠕变极限,以表示,单位MPa,式中τ为试验持续时间,t为温度,δ为伸长率,σ为应力;或者以表示,V为蠕变速度。高温拉伸持久强度极限:试样在恒定温度和恒定拉伸载荷作用下,达到规定的持续时间而不断裂的最大应力,以表示,单位MPa,式中τ为持续时间,t为温度,σ为应力。金属缺口敏感性系数:以Kτ表示在持续时间相同(高温拉伸持久试验)时,有缺口的试样与无缺口的光滑试样的应力之比:式中τ为试验持续时间,为缺口试样的应力,为光滑试样的应力。或者用:表示,即在相同的应力σ作用下,缺口试样持续时间与光滑试样持续时间之比。抗热性:在高温下材料对机械载荷的抗力。
㈢ 谁知道哪里有符合IEC6278的光伏组件动态机械载荷试验机
可以把你的具体实验要求发过来看看,也许能帮上你?
㈣ 起重机械超载保护装置安全技术规范的试验室试验
6.1.1 一般规定
除6.1.6、6.1.7、6.1.8、6.1.9和6.1.13条试验外,每项试验后,均按6.1.2条检测动作误差,应符合5.10条规定。具有显示功能的装置,同时检测显示误差,应符合5.9条规定。具有预警信号的装置,同时检测预警信号,应符合5.8.1条规定。
对每个测试点均应反复试验三次。
6.1.1.2 开始试验直至6.1.13条试验结束,不得调整装置设定点。
6.1.1.3 如果没有特殊说明,试验顺序从6.1.2条至6.1.13条依次进行。蓄电池供电的装置,可不做6.1.7、6.1.8和6.1.9条试验。
6.1.2 动作误差试验
6.1.2.1 试验方法
将装置组成一个完整系统,模拟起重机工况进行试验,对应每个测试点,加载使装置动 作。
6.1.2.2 测试点的选择
对额定起重量不变的起重机,测试点为装置设定点。
对额定起重量不随工作幅度变化的起重机,测试点为最大工作幅度点。
对额定起重量随工作幅度变化的起重机,测试点应不少于起重机特性表(曲线)范围内 所对应的五个点,并应尽可能包括最大、中间和最小三个点。
6.1.3 振动试验
振动试验过程中,装置为非通电状态。
6.1.3.1 按表1规定条件进行试验。
表1
振动频率Hz 加速度 振动时间(h)
上下 左右 前后
30 4g 4 2 2
6.1.3.2 振动试验后,零部件不得松动、脱落、破损,导线不得断开。
6.1.4 冲击试验
冲击试验过程中,装置为非通电状态。
6.1.4.1 按表2规定条件进行实验。
冲击加速度 冲击时间ms 冲击次数(h)
上下 左右 前后
30g <18 3 3 3
6.1.4.2 合格评定同6.1.3.2条。
6.1.5 温度试验
温度试验过程中,装置为非通电状态。
6.1.5.1 将装置放人高温试验箱,待箱内温度达到60℃后,历时16h,取出后在30min
内完成测试。
6.1.5.2 将装置放人低温试验箱,待箱内温度达到-20℃后,历时16h,取出后在
30min内完成测试。
6.1.6 电压波动试验
交流供电时,分别施加110%及85%额定电压60min及10min;蓄电池供电时,分别施
加135%及85%的额定电压60min及10min。在试验过程中期和后期按6.1.2条检测动作误
差。
6.1.7 抗干扰试验
在装置的供电电源上迭加一个具有下述参数的尖脉冲电压:
脉冲幅值:1000V;
脉冲宽度:0.1-2 ;
脉冲频率:5-10Hz。
施加的时间不少于30min,在此期间装置应工作正常,检测动作误差应符合5.10条规
定。
6.1.8 绝缘电阻试验
按GB 998第6.2.2条选择试验用兆欧表,在装置的电源进线端与外壳金属部分之间进
行试验,绝缘电阻值应符合5.14条相应规定。
6.1.9 耐压试验
按GB 998第6.3条进行试验,在装置的电源进线端与外壳金属部分之间施加试验电压。
电压等级按表3选择。
表3
测定部分额定电压 试验电压(v)
Uo≤60 500
60∠Uo≤125 1000
125∠Uo≤250 1500
250∠Uo≤500 2000
500∠Uo≤750 2500
6.1.10 湿热试验
湿热试验过程中,装置为非通电状态。
试验前,装置应先通过6.1.8和6.1.9条试验。
试验方法按GB 2423.3规定进行。试验时间48h,试品取出恢复2h后,进行6.1.8和 6.1.9条规定的试验。
6.1.11 防护等级试验
防护等级按5.16条规定。
试验方法和合格评定按GB 4942.2第6章和第7章相应规定进行。
6.1.12 过载能力试验
对取力传感器施加相当于配用起重机规定的最大载荷试验值,加载三次。
6.1.13 报警音响试验
使装置发出报警音响,用声级计测量,音响强度应符合5.8.2条规定。
6.2 装机试验
6.2.1 试验前的准备
试验用起重机应按规定进行调整检查和试运行。试验场地、环境条件应符合有关规定。
试验用重物精度不低于1%,并应满足试验范围需要,装置应预先标定。
6.2.2 额定起重能力试验
按配用起重机有关标准中额定载荷试验方法和程序,吊运相应的额定载荷进行试验,起 重机应能正常工作。
6.2.3 综合误差试验
6.2.3.1 试验方法
对额定起重量不变的起重机,按本条a进行。
对额定起重量随工作幅度变化的起重机,允许带载变幅的按本条b进行;不允许带载变 幅的按本条c进行。
对应每个测试点应反复试验三次,综合误差应符合5.6条规定。
具有显示功能的装置,同时检测显示误差,应符合5.9条相应规定。具有预警信号的装 置,同时检测预警信号。
a.吊起重物后停止起升,逐渐加载至装置动作,实测起重量。
b.对应每个测试点准备试验重物,以小于测试点的工作幅度起吊,逐渐增加工作幅度 使装置动作,实测工作幅度后在起重特性表上查出对应的额定起重量。
如果实测工作幅度在起重特性表上不能直接查到相应额定起重量,应按起重机制造厂提 供的计算方法和其他规定的方法计算出额定起重量(以下同)。
c.对应每个测试点的工作幅度,吊起重物后停止起升,逐渐加载使装置动作,实测起重量。实测工作幅度后,在起重特性表上查出对应的额定起重量。
6.2.3.2 注意事项
每次测试中,应监视所加试验重物的总重量,如果超过了起重机当时状态所对应额定起 重量的110%时,无论装置动作与否,必须立即停止该次试验。
6.2.4 最大超载防护能力
任选起重机一种状态,缓慢起吊110%额定起重量,装置应能执行4.1条规定功能。
6.3 疲劳强度试验
试验在疲劳试验机上进行,试验次数按5.18条规定,试验载荷取起重机中级载荷状态下的载荷谱,加载频率为10-30Hz。试验后装置不得损坏并可调整,检测动作误差应符合 5.10条规定。
6.4 工业性运行试验
试验条件应符合配用起重机的正常使用条件,装置连续无故障工作时间不得少于500h, 在试验中期和后期按6.2.3条检测综合误差,测试点按6.1.2.2条规定选择。
工业性运行试验应有试验报告,并应包括装置累积工作时间、起重机典型工况条件、环 境参数、综合误差、故障、维修及设计、工艺、制造、安装等各方面改进措施。
㈤ 你好请较下,太阳能组件机械载荷试验的判定标准是什么
机械载荷试验判定标准如下:(来自IEC 61215)
1、在试验过程中无间歇断路现象;
2、标准测试条件下最大输出功率的衰减不超过试验前的5%;
3、绝缘电阻应满足初始试验的同样要求;
4、无以下规定的严重外观缺陷;
a) 破损、开裂或损伤的外表,包括上表面、下表面、边框以及接线盒。
b) 弯曲或不规整的外表,包括上表面、下表面、边框以及接线盒,导致组件的安装和/或工作都
受到影响。
c) 某个电池的一条裂纹,其延伸导致组件减少该电池面积10%以上。
d) 在组件的边缘和任何一部分电路之间形成连续的气泡或脱层通道。
e) 丧失机械完整性,导致组件的安装和/或工作都受到影响。
以上望采纳,感谢!
㈥ 太阳能热水器检测设备仪器装备有哪些
机械载荷试验机 冰雹冲击试验机等。东莞市宏图公司生产相关检测设备。
㈦ 江汉油田的科学技术
中国石化集团江汉石油管理局勘察设计研究院是国家批准注册的甲级勘察、甲级设计、甲级测绘、甲级专项工程设计、甲级工程咨询、甲级工程总承包和工程监理的大型综合性设计、研究单位,持有国家劳动部批准的Ⅰ、Ⅱ、Ⅲ类压力容器设计证书,能独立承担国内外大中型工程设计任务。于1997年3月通过ISO9001质量体系认证,能承担工程项目的设计→设备、材料采购→现场施工管理(质量控制、费用控制、进度控制)→装置试运投产、交付使用等全过程服务。本院创建于1975年,现有职工336人,其中工程技术人员280余人,包括教授级高工3人,高级工程师119人,工程师164人;集团公司优秀设计师3人,省部级专家4人;注册一级建筑师4人,注册二级建筑师8人,注册一级结构师11人,注册监理工程师9人,注册造价师4人,注册质量工程师2人,执业律师1人。设有25个专业,重点从事油气田地面建设、油气长输管道、油气加工及利用、机械制造、电力、化工、建筑、市政、道路与通信等工程的勘察、设计、咨询、科研、监理总承包和软件开发。
建院以来,我院先后完成了江汉、河南、广西、青海、江苏等油田共计年产1200多万吨面建设工程及6000余公里油、气长输管道工程及油气加工与利用工程的设计、勘察、科研等任务。还先后在新疆、青海、辽河、广西、河南、江苏、长庆、鄯善、江汉等油田及广东、海南、福建、浙江、上海、深圳、武汉等省市承担了油气加工、长输管道、大中型油气库、城市液化气管道输送工程,完成了张家港四星级宾馆、中国石油大厦(28层)等一批高层建筑的。
设计与施工管理服务。在国际合作中,我院先后同美国、法国、日本、英国、加拿大、瑞士等公司在油气集输工艺、天然气处理与加工工艺、盐硝工艺、氯碱工艺、漂粉精工艺、天然气燃气轮机发电、水质处理等领域进行了卓有成效的合作。由最初的对西方石油工程的设计、采办、建设、投运模式的初步了解,到熟悉且能完全独立操作的程度。我院陆续从事的国外项目有:巴基斯坦PARCO(800km)管线、GNPOC联合处理站改造工程、BAMBOO油田改扩建工程、UNITY电站、苏丹6#/7#发电机组、苏丹2#/4#泵站、喀土穆成品油库、苏丹FULA油田地面工程、伊拉克东巴油田产能方案等。在完成这些项目的过程中,我院不仅获得了较好的经济效益,更主要的是锻炼了队伍,培养和造就了一批从事国外项目的技术人员。 中国石化集团江汉石油管理局勘察设计研究院工程测量专业具有国家建设部和原中国石油天然气总公司颁发的甲级勘察资格证书。并同时具备国家测绘局首批颁发的《甲级测绘单位资格证书》,于1997年通过国家ISO9001质量保证体系认证,现有专业技术人员30多人,并配备有全球卫星定位仪(GPS)、全站试测距仪、红外光电测距仪、自动定位水下测深仪以及高精度经纬仪和自动安平水准仪。测量专业主持完成了多项油近年来工程、气田产能工程测量,大型长距离输油、输气管道测量,沙漠公路测量,全球卫星定位仪(GPS)控制网测量,高精度水准控制网,高精度光电测距导线网测量以及建、构筑沉降监测等大型项目。
工程测量专业在圆满完成院下达的各项生产任务的前题下,在一批专业学科带头人感召影响下,专业技术人员努力加强知识更新,提高专业技术水平,由我院的总公司优秀青年勘察师、局有突出贡献的科技专家宋长松高级工程师主持研制的《数字化地形地籍测绘与管理系统》软件达到了国内领先水平,曾获原中国石油天然气总公司科技进步二等奖,他所主持研制的《工程测量线路制图》软件获集团公司科技进步一等奖,联合国TIPS发明创新科技之星奖,已延伸到油气管道设计、输电线路设计、高等级道路设计以及工业站场竖向设计,工程测量专业提供给设计人员的资料已全部为计算机数字与图形文件,并已形成勘察设计一体化规模,该一体化软件已在国内石油、煤炭、铁路、城建以及土地等部门广泛推广应用,取得了明显的社会与经济效益。工程测量专业除严格执行石油行业规范标准外,既可完全按国家规范标准进行运作,也可按国际标准制图,形成一套完整的质量保证体系。工程测量专业除以最满意的水平和可靠的质量服务于国内客户外,也已具备向国外客户服务的实力。98年底至今,在CPECC组织苏丹穆格兰德油田地面建设项目中,设计院派出的21名工程师中有工程测量工程师4人,他们以娴熟的专业技术和严谨、敬业的工作态度,受到了业主的好评,工程测量专业已获得总公司级奖励以及国家奖励多项。 中国石化集团江汉石油管理局勘察设计研究院工程地质专业具有建设部颁发的甲级勘察资质证书。1997年通过中设质量中心ISO9001质量体系认证。现有勘察人员30多人,其中,高级工程师5人,工程师9人,助理工程师12人,熟练技术工人10多人。拥有勘察设备主要有:车装工程钻机1台,车装静力触探机2台,轻便工程钻机5台,轻便静力触探机3台,平板载荷试验机1套,同时拥有土工试验室1个。能承担常规岩土工程勘察任务及各种岩土参数的现场及室内试验工作,满足各类工程的需要。勘察设备齐全、技术力量雄厚。工程地质专业技术人员结合多年的工作实践研制开发了静力触探分析制图软件、钻探及静探工程地质剖面图制图软件、线路工程地质勘察及穿跨越地质剖面制图软件、土工试验资料整理及岩土参数的统计分析软件等。我们单位使用这些软件,做到了内业资料及成品图件计算机化,确保提供给甲方的资料准确、快速、美观。
十年来,工程地质专业先后承担了江汉油田地面工程建设、山东清河油田地面工程建设、江汉钻头厂、沙市石油第四机械厂、沙市石油钢管厂、天门石油第三机械厂、沙洋石油仪表厂等大中型厂矿建设的岩土工程勘察工作。承担了新疆塔里木油田英东公路、轮库公路及轮库、洪钟、钟荆、青海油田涩格、长庆油田靖-吴-华-马、河南油田魏荆、川汉、西洛、建万等长输管道工程的岩土工程勘察工作。共完成大中型勘察项目30多项,均保质保量地完成了任务,取得了良好的信誉。其中,沙市石油第四机械厂、沙市石油钢管厂、江汉钻头厂的岩土工程勘察、江汉油田软土地基承载力研究、石油行业静力触探技术标准研制等项目曾获得石油部、湖北省优秀勘察奖或科技进步奖。 江汉油田石油工程技术研究院具备各类油气田、卤矿开发工艺研究、产品试制、性能测试、部分化工产品开发研制的能力。迄今为止,全院已累计完成330多个科研项目的研究,其中303项成果获得国家、省(部)级和局(分公司)级三等奖以上的奖励,已形成适用于盐湖盆地砂岩油藏、复杂断块油藏、疏松砂岩油藏、低渗透油藏、稠油油藏、敏感性特殊油藏及碳酸盐岩气藏开发的九大配套技术。其中,获国家发明专利的“抽油井环空测试技术”在国内过环空测试领域独占鳌头,已在大庆等15个油田推广应用;“环空保护与软密封隔离技术”属国内首创,并已在吐哈等油田推广1000多井次;以高温高压压分注、酸化、压裂、解膏、堵水为核心的“油层改造与保护技术”,为油田开发提供了可靠的技术保障。江汉采油工艺研究院在分层注水、分层压裂、分层酸化、堵水配套工艺技术方面做了大量的研究工作,尤其是在深井、低渗透井和高温高压分层注水、压裂研究方面,其配套技术得到了较大的发展与完善,已形成比较成熟的系列配套工艺技术。
该配套工艺技术已在江汉油田和国内的吐哈油田、玉门油田、长庆油田、中原油田、冀东油田、胜利油田、青海油田、广西油田、江苏油田、华北油田获得了广泛的应用,累计推广达2000余井次。其中深井高温高压分层注水工艺配套技术在国内各油田的推广应用中工艺成功率达99%,投捞测配成功率93%;下入的最大井深为4820m,适应套管5~7in,最高注水压力38MPa,反洗排量为30m3/h,解封灵活可靠。在已实施的分注管柱中还进行了100余井次的不动管柱酸化增注施工,最高施工压力达到45MPa。这不仅扩大了应用范围,而且还节省了大量的作业费用。可以说,分层注水工艺配套技术功能齐全、性能优良,且具有高密封效果,能适应深井高温高压分层注水的特点,已获得了各油田的广泛认可。
2002年三月份集团公司验收的《高温高压注堵酸压封隔器及管柱研究》技术处于国内领先水平;分层酸化、压裂工艺配套技术在国内各油田的推广应用中成功率达97%,下入的最大井深为3560m,适应套管5~7in,分层压裂最高压力81.3Mpa。在卡堵水方面,本院卡堵水工具与管柱在江汉、中原、江苏、青海、冀东、南阳等油田已应用200多井次,卡堵水封隔器下入井深3840m,堵水层压力为14-36Mpa,温度为120-160℃,成功率100%。
经现场使用证明,该院研制的分层注水、压裂、酸化、堵水等配套工艺技术,功能齐全,性能优良,且具有高密封效果,能适应各油田分层注水、压裂、酸化的需要,并获得了各油田的广泛认可。我院承担的中石化集团公司注册的科研项目“高温高压注、堵、酸、压封隔器及管柱研究”,2002年通过了中石化集团公司专家评委的技术鉴定验收,专家评委评定该项目“整体技术国内领先”。
水力活塞泵 科学大会奖
油气井压裂酸化缓蚀剂 科学大会奖
水力活塞泵 科学大会奖
江汉Ⅴ型水力活塞泵抽油配套工艺 科学大会奖
7461-102油气井酸化高效缓蚀剂 科学大会奖
深井压裂工艺配套 科学大会奖
SW-140型双金属井下温度计 科学大会奖
抽油机井不起泵测压工艺配套技术 科学大会奖
756封隔器深井堵水选采工艺配套 科学大会奖
江752-6深井注水封隔器推广 推广优秀奖
抽油井环空测试仪器及工艺技术推广 推广优秀奖
φ22分测仪与地面系统研究 分公司一等奖
注水井环空保护与软密封隔离技术和注水井流量温度测试仪 集团公司三等奖
HCR环空测试软件包总公司软件开发奖
中区南部油水井综合治理配套工艺技术 管理局一等奖
注水井流量温度测试仪 管理局一等奖
㈧ 太阳能光伏镀膜玻璃的产品外观检验需要进行哪些记录,急需
太阳能光伏产业主要的测试仪器;
1、太阳能光伏组件测试箱、2、晶体版型湿冻湿热温度循环试验权箱、3、热斑耐久试验机、4、紫外预处理试验、5、机械载荷试验机(气压式、液压供选择)、6、冰雹冲击试验机、7、旁路二极管热性能试验机等。
补充:
参考资料; http://www.bangtest.net/s04/bangtest/yjml/20101126/2571044/1.html
㈨ 光伏组件机械载荷测试失效后应该怎么分析
1、静态机械载荷测试标准要求
IEC
61215、IEC
61646标准中给出了光伏组件机械载荷试验测试方法,这两份标准为静态机械载荷测试。在光伏组件前表面和背表面上,逐步将负荷加到2400Pa,使其均匀分布。保持负荷1小时,测试完毕后,检查试验过程中有无间歇断路现象,是否有严重外观缺陷,对其进行标准测试条件下的zui大输出功率试验和绝缘电阻试验
2、动态机械载荷测试标准要求
IEC
62782对光伏组件的动态机械载荷试验给出了比较系统的测试方法:将光伏组件放置在动态载荷系统中,用直流源的正负极连接组件的正负极,并施加适当的电流。对光伏组件施加动态机械载荷,循环1000次,每分钟完成1~3个循环,zui大压力为±1000Pa,在极限压力下保持的时间至少7±3秒,测试过程中监测组件的电路连续性。在动态机械载荷施加前后,还应对组件进行一系列测试如:IEC
61215或IEC
61646中的10.1、10.2、10.3、10.15以及电致发光测试和IR红外成像测试等,来分析动态机械载荷对组件的影响。为更好模拟实际测试条件,动态机械载荷测试势必是未来发展的方向。
㈩ 沙袋做机械载荷如何做
做光伏组件的静态载荷测试吗?
型号:HTPV-08C
名称:沙袋式机械载荷
目的:测试光伏组件在雪或覆冰等静态的抗压能力。加速组件材料疲劳,检验组件的真实可靠性。
满足标准:IEC 61215-2-2016
设备介绍:
支架材质:铝型材
施压方式:沙袋
沙袋重量:10KG/只
沙袋数量:120 只
本设备用沙袋作为施压重力源,操作方便快捷,压力均匀,铝型材支架,安装方便。是最经济的静态
机械载荷方案。亦可根据客户需要增加电流监控、环境温度监控等功能。用沙袋做确实麻烦,每次做完需要搬下来,翻面后再把沙袋放上去。
我这里还有有电动控制沙袋载荷试验机,经济又节省时间。
需要的话私我发资料给你看看