Ⅰ 关于电容器的国家标准都有那些
GB 6916 湿热带电力电容器
GB 50227 并联电容器装置设计规范
GB 6915 高原电力电容器
GB/T 20993 高压直流回输电系统用直流滤波电容器
GB 3983.2 高电答压并联电容器
Ⅱ 并联电容器装置设计规范的9.2 通风
9.2.1 高压电容器室的通风量,应按消除室内余热计算,余热量包括设备散热量和通过围护结构传入的太阳辐射热。
9.2.2 高压电容器室的夏季排风温度,不宜超过40℃。
9.2.3 串联电抗器小间的通风量,应按消除室内余热计算,但余热量不计入太阳辐射热;排风温度不宜超过45℃,进排风温度差不宜超过15℃。
9.2.4 高压并联电容器装置室,宜采用自然通风。当自然通风不能满足要求时,可采用自然进风和机械排风。
9.2.5 高压并联电容器室的进排风口,应采取防止鸟类、鼠、蛇类等小动物进入和防雨雪飘进的措施。
9.2.6 在风沙较大地区,高压电容器室应设置防尘措施;进风口宜设置过滤装置。
9.2.7 高压并联电容器装置的布置,应减少太阳辐射热对电容器的影响,并宜布置在夏季通风良好的方向上。
9.2.8 应根据当地的气温条件,在高压电容器室的屋面设置保温层或隔热层。
附录A并联电容器装置接线图例 A.0.1 接入电网方式(图A.0.1-1~图A.0.1-3)。
A.0.2 高压电容器组与配套设备连接(图A.0.2)。
注:避雷器接线根据工程设计选定的方式接入。
A.0.3 低压并联电容器装置接线(图A.0.3)。
注:C2~Cn回路均与C1回路相同。
A.0.4 操作过电压保护用避雷器接线方式(图A.0.4-1~A.0.4-4)。
A.0.5 高压电容器组保护接线(图A.0.5-1~A.0.5-4)。
附录B电容器组投入电网时的涌流计算 B.0.1 同一电抗率的电容器组单组投入或追加投入时,涌流应按下列公式计算:
(B.0.1)其中
式中I*ym——涌流峰值的标么值(以投入的电容器组额定电流峰值为基准值);
Q——电容器组总容量(Mvar);
Qo——正在投入的电容器组容量(Mvar);
Q——所有原已运行的电容器组容量(Mvar);
β——电源影响系数。
1 总 则
1.0.1 为使电力工程的并联电容器装置设计贯彻国家的技术经济政策,做到安全可靠、术先进、经济合理和运行检修方便,制订本规范。
1.0.2 本规范适用于220kv及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计。
1.0.3 并联电容器装置的设计,应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式。
1.0.4 并联电容器装置的设备选型,应符合国家现行的产品标准的规定。
1.0.5 并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定。
2 术语、符号、代号
2.1 术语
2.1. 高压并联电容器装置 installation of high voltage shunt capacitors
由高压并联电容器和相应的一次及二次配套设备组成,可独立运行或并联运行的装置。
2.1.2 低压并联电容器装置 installation of low voltage shunt capacitors
由低压并联电容器和相应的一次及二次配套元件组成,可独立运行或并联运行的装置。
2.1.3 并联电容器的成套装置 complete set of installation for shunt capacitors
由制造厂设计组装设备向用户供货的整套并联电容器装置。
2.1.4 单台电容器 capacitor unit
由一个或多个电容器元件组装于单个外壳中并有引出端子的组装体。
2.1.5 电容器组 capacitor bank
电气上连接在一起的一群单台电容器。
2.1.6 电抗率 reactance ratio
串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示。
2.1.7 放电器、放电元件 discharge device、discharge component
装在电容器内部或外部的,当电容器从电源脱开后能将电容器端子间的电压在规定时间内降低到规定值的设备或元件。
2.1.8 串联段 series section
在多台电容器连接组合中,相互并联的单台电容器群。
2.1.9 剩余电压 resial voltage
单台电容器或电容器组脱开电源后,电容器端子间或电容器组端子间残存的电压。
2.1.10 涌流 inrush transient current
电容器组投入电网时的过渡过电流。
2.1.11 外熔丝 external fuses
装于单台电容器外部并与其串联连接,当电容器发生故障时用以切除该电容器的熔丝。
2.1.12 内熔丝internal fuses
装于单台电容器内部与元件或元件组串联连接,当元件发生故障时用以切除该元件或元件组的熔丝。
2.1.13 放电容量 discharging capacity
放电器允许连接的电容器组的容量。
2.1.14 不平衡保护 unbalance protection
利用电容器组内两个相关部分之间的电容量之差形成的电流差或电压差构成的保护。
Ⅲ 并联电容器串联电抗器,电抗器前置式需校验其近区抗短路能力是否能满足要求
在高低压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。下面总结电容器串联电抗器时,电抗率选择的一般规律。1,电网谐波中以3次为主根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。2,电网谐波中以3、5次为主(1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。3,电网谐波以5次及以上为主(1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议:(1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。(2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。(3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗器混合装设。通过对电容器组正常运行时的静态过电压情况和无功过补时电容器端的电压升高的分析计算,选用0.5%~1%的w电抗器,防止电容器组投切时产生的过电压。
Ⅳ 并联电容器装置设计规范的5.8 导体及其他
5.8.1 单台电容器至母线或熔断器的连接线应采用软导线,其长期允许电流不应小于单台电容器额定电流的1.5倍。
5.8.2 电容器组的汇流母线和均压线的导线截面应与分组回路的导体截面一致。
5.8.3 双星形电容器组的中性点连接线和桥形接线电容器组的桥连接线,其长期允许电流不应小于电容器组的额定电流。
5.8.4 并联电容器装置的所有连接导体,应满足动稳定和热稳定的要求。
5.8.5 用于高压并联电容器装置的支柱绝缘子,应按电压等级、泄漏距离、机械荷载等技术条件选择和校验。
5.8.6 用于高压电容器组不平衡保护的电流互感器,应符合下列要求:
5.8.6.1 额定电压应按接入处电网电压选择。
5.8.6.2 额定电流不应小于最大稳态不平衡电流。
5.8.6.3 应能耐受故障状态下的短路电流和高频涌放电流。并应采取装设间隙或装设避雷器等保护措施。
5.8.6.4 准确等级可按继电保护要求确定。
5.8.7 用于高压电容器组不平衡保护的电压互感器,应符合下列要求:
5.8.7.1 绝缘水平应按接入处电网电压选择。
5.8.7.2 一次额定电压不得低于最大不平衡电压。
5.8.7.3 一次线圈作电容器的放电回路时,应满足放电容量要求。
5.8.7.4 准确等级可按电压测量要求确定。
6 保护装置和投切装置
Ⅳ 在供配电设计中,算出需要进行无功补偿的量之后怎样选择并联电容器的型号和组合方式。
摘要 电网谐波中以3次为主根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。2,电网谐波中以3、5次为主(1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。3,电网谐波以5次及以上为主(1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次
Ⅵ 关于并联电容器的问题
我在外地,没有查看原文,但我想这二句话是连在一起的吗,应该不是一个问题。
1、“电容器分组应根据加大单组容量,减少组数的原则确定”是基于第二路电容器组投入时,有追加涌流的关系,你看一下规范附件中应该有涌流的计算公式,组数越多,则追加涌流会一组比一组大,涌流的加大,就象“短路”一样,造成低电压,当低到一定程度,会使有低电压保护的装置动作跳闸,影响正常供电,因而才出现了加大单组容量,减少组数的原则。这种情况一般是指高压电容器,在高压,负荷一般比较平稳,功率因数变化不大。
2、“减少组数,增加补偿路数”是基于细致补偿,是根据负荷的大小及变化情况,及时增、减电容器数量,只有减少组数,才能作到细致补偿。这种情况一般是指低压电容器。
Ⅶ 并联电容器在什么情况下加装串联电抗器如何选择
低压电容柜应该都串联电抗器,根据gb50227-2008《并联电容器装置设计规范》,应该所有的电容器补偿都应串联电抗器
Ⅷ 国家电气执行的新"规范","标准"
1、安全电压标准
安全电压是指不带任何防护设备的情况下,人体接触到的对人体各部分组织,如皮肤、心脏、神经等没有任何损坏的电压。通常很难确定一个对人体完全适合的最高安全电压。
世界各国对于安全电压的规定不尽相同。有50、40、36、25、24V等,许多国家采用36V 为安全电压。国际电工委员会(IEC)规定安全电压限定值为50V,25V 以下电压可不考虑防止电击的安全措施。
我国规定36、24、12V三个电压等级为安全电压级别,以供不同场所使用。在有高压触电危险地区的安全电压为36V,无高压触电危险地区的安全电压为24V。
在潮湿、有导电尘埃、高温和金属容器内工作时,则以12V为安全电压。安全电压的规定是从总体上考虑的,对于某些特殊情况、某些人也不一定绝对安全。可见,即使在规定的安全电压下工作,也不可粗心大意。
2、安全距离标准
安全距离指在各种工作条件下,带电导体和周围接地体、地面、不同相的带电导体以及工作人员之间必须保持的最小距离。
安全距离大小与施加于导体的放电特性及电压等级密切相关。对于雷电过电压,安全距离要根据避雷器的特性决定。对于操作过电压,安全距离根据电网可能出现的过电压倍数决定。
电网允许的最高工作电压,因为其值不会超过110%,可以不考虑。电工专业规程中规定动作的各种情况下的安全距离,是电工设计人员、运行和检修人员在工作中必须遵守的凭据。
(8)并联电容装置设计规范现行版本扩展阅读:
随着科学技术的发展,系统和设备越来越复杂,功能越来越完善,人们对操作和维修却要求越来越简单、易行。这就需要电气信息的表达更有全局的概念,将复杂的系统作为一个整体、给各个类别以清晰的符号表示,以便快速检索和查询。
常用电气安全标准的介绍以国家标准为依据,包括电气基础标准、电气安全标准、电气设备及运行标准、电气设计标准以及电气控制线路的绘制原则、图形及文字符号等内容。用于为从事电气工作人员,提供常用电气国家标准和与业务相关的电气技术标准指南。