⑴ 紫外分光光度计由哪些部件构成各有什么作用
紫外-可见分光光度计由5个部件组成:
①辐射源。必须具有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。
②单色器
。它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。
③试样容器,又称吸收池。供盛放试液进行吸光度测量之用,分为石英池和玻璃池两种,前者适用于紫外到可见区,后者只适用于可见区。容器的光程一般为0.5~10厘米。
④检测器,又称光电转换器。常用的有光电管或光电倍增管,后者较前者更灵敏,特别适用于检测较弱的辐射。近年来还使用光导摄像管或光电二极管矩阵作检测器,具有快速扫描的特点。
⑤显示装置。这部分装置发展较快。较高级的光度计,常备有微处理机、荧光屏显示和记录仪等,可将图谱、数据和操作条件都显示出来。
紫外线指的是电磁波谱中波长从
10nm~400nm 辐射的总称,不能引起人们的视觉。1801
年德国物理学家里特发现在日光光谱的紫端外侧一段能够使含有溴化银的照相底片感光,因而发现了紫外线的存在。紫外线可以用来灭菌,过多的紫外线进入体内会对人体造成皮肤癌。
紫外线是指阳光中波长10至400纳米(nm)的光线,可分为UVA(紫外线A,波长320~400纳米,长波)、UVB(波长280~320纳米,中波)、UVC(波长100~280纳米,短波)。UVA致癌性最强,晒红及晒伤作用为UVB的1000倍。UVC可被臭氧层所阻隔。IR(Infrared)是红外线,可造成晒红、微血管扩张、皮肤炎,并促进紫外线的致癌性。紫外线照射会让皮肤产生大量自由基,导致细胞膜的过氧化反应,使黑色素细胞产生更多的黑色素,并往上分布到表皮角质层,造成黑色斑点。紫外线可以说是造成皮肤皱纹、老化、松弛及黑斑的最大元凶。 [1]
紫外线位于光谱中紫色光之外,为不可见光。它能使许多物质激发荧光,很容易让照相底片感光。当紫外线照射人体时,能促使人体合成维生素D,以防止患佝偻病,经常让小孩晒晒太阳就是这个道理。紫外线还具有杀菌作用,医院里的病房就利用紫外线消毒。但过强的紫外线会伤害人体,应注意防护。玻璃、大气中的氧气和高空中的臭氧层,对紫外线都有很强的吸收作用,能吸收掉太阳光中的大部分紫外线,因此能保护地球上的生物,使它们免受紫外线伤害。
⑵ 原子吸收光谱仪的基本结构及各部分主要功能是什么
原子吸收光谱仪的结构均由五部分组成,分别为激发光源、原子化器、单色器、检测与控制系统、数据处理系统,此外还有仪器背景校正系统。1> 光源:发射被测元素的特征光谱,必须是锐线光源如空心阴极灯(HCL)、无极放电灯(EDL)等。2> 原子化器:产生被测元素的原子蒸汽,有火焰和无火焰两类原子化器,无火焰包括石墨炉原子化器和氢化发生原子化器。火焰原子化器由燃烧头、雾化器组成。3> 分光系统(单色器):分出被测元素谱线(或共振线)。由狭缝、透镜、反射镜、光栅部分组成。4> 检测与控制系统:检测器用来完成光电信号的转换,即将光信号转换为电信号,检测器一般用光电倍增管,近年来固体检测器(面阵CCD等)也开始得到应用。控制系统用来控制和协调光谱各部件工作,AAS大部分采用单片机或通用PC机控制。矿石分析仪元素分析仪合金分析仪矿石检测仪 <<【返回】
⑶ 简述变压器的构造及各部件的作用。
变压器的最基本结构部件是由铁芯、绕组和绝缘所组成。此外为了安全可靠的运行,还装设有油箱、冷却装置、保护装置。其结构简图如图2-2-2。
下面分析各部件的作用:
(1) 铁芯:变压器的铁芯是磁力线的通路,起集中和加强磁通的作用,同时用以支持绕组。
(2) 绕组:变压器的绕组是电流的通路,靠绕组通入电流,并借电磁感应作用产生感应电动势。
(3) 油箱:油箱是油浸式变压器的外壳,变压器主体放在油箱中,箱内充满变压器油。
(4) 油枕:油枕也叫辅助油箱,它是由钢板做成的圆桶形容器,水平安装在变压器油箱盖上,用弯曲联管与油箱连接,油枕的一端装有油位指示计,油枕的容积一般为变压器油箱所装油体积的8%~10%。其作用是变压器内部充满油,而由于油枕内油位在一定限度,当油在不同温度下膨胀和收缩时有回旋余地,并且油枕内空余的位置小,使油和空气接触的少,减少了油受潮和氧化的可能性,另外,储油柜内的油比油箱上部的油温低很多,几乎不和油箱内的油对流。在油枕和油箱的连接管上装有瓦斯继电器,来反映变压器的内部故障。
(5) 呼吸器:呼吸器内装有干燥剂即硅胶,用来吸收空气中的水分。
(6) 防爆管:防爆管安装在变压器的油箱盖上。防爆管的顶端装有一个玻璃片,当变压器内部发生故障,产生高压,油里面的气体便冲破玻璃片排到油箱外,释放压力,从而保护变压器油箱不被破坏。
(7) 温度计:温度计安装在油箱盖上的侧温筒内,用来测量油箱内的上层油温。
(8) 套管:套管是将变压器高、低压绕组的引线引到油箱外部的绝缘装置。它既是引线对地(外壳)的绝缘,又担负着固定引线的作用。
(9) 冷却装置:冷却装置是将变压器在运行中产生的热量散发出去的设备。
(10) 净油器:又称温差滤过器。它的主要部分是用钢板焊成的圆筒形净油罐,安装在变压器油箱的一侧,罐内充满硅胶、活性氧化铝等吸附剂。在运行中,由于上层油和下层油之间的温差,于是变压器油从上向下流动经过净油器形成对流,油与吸附剂接触,其中的水分、酸和氧化物等被吸收,使油得到净化。延长油的使用期限。强油循环变压器的净油器是靠油流压差使变压器油流经净油泵,达到净化的目的。
⑷ 填料塔主要由那些部件组成,各部件的作用及构造是怎样的
塔内件和填料及塔体共同构成了一个完整的填料塔,塔内件是填料塔专的组成部分。塔内件的属作用是为了使气液在塔内有更好地接触,以便于发挥填料塔的最大生产能力和最大效率,所以说塔内件设计的好坏直接影响到整个填料塔的操作运行和填料性能的发挥。
此外,填料塔的“放大效应”除了填料本身固有的因素之外,塔内件对它的影响也很大。塔内件主要包括以下几个部分:液体分布装置;填料压紧装置;填料支撑装置;液体收集再分布及进出料装置;气体进料及分布装置;除沫装置。
(4)吸收装置的构成及各构件的作用扩展阅读
填料为填料塔中的传质元件,它可以有不同的分类。填料的类型有两大类:拉西环矩鞍填料;鲍尔环;鲍尔环是在拉西环的壁面上开一层或两层长方形小窗。波纹填料有丝网形和孔板形两大类。
对填料的基本要求有:传质效率高,要求填料能提供大的气液接触面。即要求具有大的比表面积,并要求填料表面易于被液体润湿。只有润湿的表面才是气液接触表面。生产能力大,气体压力降小。因此要求填料层的空隙率大。不移引起偏流和沟流。经久耐用具有良好的耐腐蚀性,较高的机械强度和必要的耐热性。取材容易,价格便宜。
⑸ 原子吸收分光光度计各个部分的作用
原子吸收分光光度计有单光束和双光束两种类型如果将原子化器当作分光光度计的比色皿,其仪器的构造与分光光度计很相似。与分光光度计相比,不同点:
(1)采用锐线光源[为什么?];
(2)单色器在火焰与检测器之间。如果像分光光度计那样,把单色器置于原子化器之前,火焰本身所发射的连续光谱就会直接照射在PMT上,会导致PMT寿命缩短,甚至不能正常工作。
(3)原子化系统:除了光源发射的光外,还存在:a. 火焰本身所发射的连续光谱;b. 原子吸收中的原子发射现象。在原子化过程中,基态原子受到辐射跃迁到激发态后,处于不稳定状态,返回基态时,可能将能量又以光的形式释放出来。故既存在原子吸收,也有原子发射。产生的辐射也不一定在一个方向上,但对测量仍将产生一定干扰。
消除干扰的措施:对光源进行调制。将发射的光调制成一定频率,检测器只接受该频率的光信号;原子化过程发射的非调频干扰信号不被检测。a. 机械调制:在光源的后面加一个由同步马达带动的扇形板作机械斩波器。当Chopper以一定的速度转动时,当光源的光以一定的频率断续通过火焰。因而在检测器后面将得到交流信号,而火焰发射的信号是直流信号,在检测系统中采用交流放大器,可排除。b.电调制:即对空心阴极灯采用脉冲供电(400~500Hz)。优点,能提高等的发射强度及稳定性,延长灯的寿命。 近代仪器多采用此法。
单光束原子吸收分光光度计:结构简单、价廉;但易受光源强度变化影响,灯预热时间长,分析速度慢。
双光束仪器一束光通过火焰,一束光不通过火焰,直接经单色器此类仪器可消除光源强度变化及检测器灵敏度变动影响。可消除光源不稳定性造成的误差。
可见,原子吸收分光光度计一般由光源,原子化器,单色器,检测器等四部分组成。
一、光源
1.作用:提供待测元素的特征谱线——共振线。获得较高的灵敏度和准确度。
光源应满足如下要求:
①. 辐射的共振线半宽度明显小于吸收线的半宽度---—锐线光源(Δν≤2×10-3nm);
②. 共振辐射强度足够大,以保证有足够的信噪比;
③. 稳定性好,背景小 。
常用的光源是空心阴极灯(Hollow Cathode Lamp)。
2. 空心阴极灯:
a.构造:低压气体放电管(Ne、Ar);一个阳极:钨棒(末端焊有钛丝或钽片,作用是吸收有害气体);一个空心圆柱形阴极:待测元素(由待测元素制成,或将待测元素衬在内壁如低熔点金属、难加工金属、活泼金属采用合金); 一个带有石英窗的玻璃管,管内充入低压惰性气体 。
①.雾化器:作用是将试样溶液分散为极微细的雾滴,形成直径约10μm的雾滴的气溶胶(使试液雾化)。对雾化器的要求:a. 喷雾要稳定;b.雾滴要细而均匀; c. 雾化效率要高。 d.有好的适应性。其性能好坏对测定精密度、灵敏度和化学干扰等都有较大影响。因此,雾化器喷是火焰原子化器的关键部件之一。
常用的雾化器有以下几种:气动雾化器,离心雾化器,超声喷雾器和静电喷雾器等。目前广泛采用的是气动雾化器。
其原理如图所示:高速助燃气流通过毛细管口时,把毛细管口附近的气体分子带走,在毛细管口形成一个负压区,若毛细管另一端插入试液中,毛细管口的负压就会将液体吸出,并与气流冲击而形成雾滴喷出。
形成雾滴的速率:a. 与溶液的粘度和表面张力等物理性质有关。b. 与助燃器的压力有关:增加压力,助燃气流速加快,可是雾滴变小。但压力过大,单位时间进入雾化室的试液量增加,反而使雾化效率下降。c.与雾化器的结构有关;如气体导管和毛细管孔径的相对大小。
②.燃烧器:试液雾化后进入预混和室(雾化室),与燃气在室内充分混合。对雾化室的要求是能使雾滴与燃气、助燃气混合均匀,“记忆”效应小。雾化室设有分散球(玻璃球),较大的雾滴碰到分散球后进一步细微化。另有扰流器,较大的雾滴凝结在壁上,然后经废液管排出。最后只有那些直径很小,细而均匀的雾滴才能进入火焰中。(雾化率10%)。
燃烧器可分为:“单缝燃烧器”(喷口是一条长狭缝,a.缝长10cm,缝宽0.5~0.6cm,适应空气-乙炔火焰;b. 缝长5cm,缝宽0.46cm,适应N2O-乙炔火焰)、“三缝燃烧器”(喷口是三条平行的狭缝)和“多孔燃烧器”(喷口排在一条线上小孔)。
目前多采用“单缝燃烧器”。做成狭缝式,这种形状即可获得原子蒸气较长的吸收光程,又可防止回火。 但“单缝燃烧器”产生的火焰很窄,使部分光束在火焰周围通过,不能被吸收,从而使测量的灵敏度下降。采用“三缝燃烧器”,由于缝宽较大,并避免了来自大气的污染,稳定性好。但气体耗量大,装置复杂。
③.火焰: 原子吸收所使用的火焰,只要其温度能使待测元素离解成自由的基态原子就可以了。如超过所需温度,则激发态原子增加,电离度增大,基态原子减少,这对原子吸收是很不利的。因此,在确保待测元素能充分原子化的前提下,使用较低温度的火焰比使用较高温度火焰具有较高的灵敏度。但对某些元素,温度过低,盐类不能离解,产生分子吸收,干扰测定。表8-3。可见,火焰的温度取决于燃气和助燃气的种类以及其流量。
按照燃气和助燃气比例不同,可将火焰分为三类:
a.化学计量火焰:温度高,干扰少,稳定,背景低,适用于测定许多元素。
b.富燃火焰:还原性火焰,燃烧不完全,测定较易形成难熔氧化物的元素Mo、Cr稀土等。
c. 贫燃火焰:火焰温度低,氧化性气氛,适用于碱金属测定。
火焰的组成关系到测定的灵敏度、稳定性和干扰等。常用的火焰有空气—乙炔、氧化亚氮—乙炔、空气—氢气等多种。
i. 空气---乙炔火焰:空气—乙炔火焰最为常用。其最高温度2300℃,能测35种元素。但不适宜测定已形成难理解氧化物的元素,如Al,Ta,Zr,Ha等。
贫燃性空气—乙炔火焰,其燃助比小于1:6,火焰燃烧高度较低,燃烧充分,温度较高,但范围小,适用于不易氧化的元素。富燃性空气—乙炔火焰,其燃助比大于1:3,火焰燃烧高度较高,温度较贫然性火焰低,噪声较大,由于燃烧不完全,火焰成强还原性气氛(如CN,CH,C等),有利于金属氧化物的离解:
MO+C→M+CO
MO+CN→M+N+CO
MO+CH→M+C+OH
故适用于测定较易形成难熔氧化物的元素。
日常分析工作中,较多采用化学计量的空气—乙炔火焰(中性火焰),其燃助比为1:4。这种火焰稳定、温度较高、背景低、噪声小,适用于测定许多元素。
Ii.氧化亚氮—乙炔焰:其燃烧反应为:
5N2O→5N2+5/2O2+Q (大量Q使乙炔燃烧)
C2H2+5/2O2→2CO2+H2O
火焰温度达3000℃。火焰中除含C,CO,OH等半分解产物外,还含有CN,NH等成分,因而具有强化原性,可使许多易形成难离解氧化物元素原子化(如Al,B,Be,Ti,V,W,Ta,Zr,Ha等),
MO+CN→M+N+CO
MO+NH→M+N+OH
产生的基态原子又被CN,NH等气氛包围,故原子化效率高。另由于火焰温度高,化学干扰也少。可适用于难原子化元素的测定,用它可测定70多种元素。
iii.氧屏蔽空气---乙炔火焰:用氧气流将空气-乙炔火焰与大气隔开。特点是温度高、还原性强。适合测定Al等一些易形成难离解氧化物的元素。
2. 无火焰原子化装置
无火焰原子化装置是利用电热、阴极溅射、等离子体或激光等方法使试样中待测元素形成基态自由原子。目前广泛使用的是电热高温石墨炉原子化法。
石墨炉原子器本质就是一个电加热器,通电加热盛放试样的石墨管,使之升温,以实现试样的蒸发、原子化和激发。
①.结构:See. Power Point
石墨炉原子器由石墨炉电源、炉体和石墨管三部分组成。将石墨管固定在两个电极之间(接石墨炉电源),石墨管具有冷却水外套(炉体)。石墨管中心有一进样口,试样由此注入。
石墨炉电源是能提供低电压(10V),大电流(500A)的供电设备。当其与石墨管接通时,能使石墨管迅速加热到2000~3000度的高温,以使试样蒸发、原子化和激发。炉体具有冷却水外套(水冷装置),用于保护炉体。当电源切断时,炉子很快冷却至室温。炉体内通有惰性气体(Ar,N2),其作用是:a.防止石墨管在高温下被氧化;b.保护原子化了的原子不再被氧化;c.排除在分析过程中形成的烟气。另外,炉体两端是两个石英窗。
②.石墨炉原子化过程一般需要经四部程序升温完成
a. 干燥:在低温(溶剂沸点)下蒸发掉样品中溶剂。通常干燥的温度稍高于溶剂的沸点。对水溶液,干燥温度一般在100℃左右。干燥时间与样品的体积有关,一般为20~60s不等。对水溶液,一般为1.5s/μL。
b. 灰化:在较高温度下除去比待测元素容易挥发的低沸点无机物及有机物,减少基体干扰。
c. 高温原子化:使以各种形式存在的分析物挥发并离解为中性原子。原子化的温度一般在2400~3000℃(因被测元素而已),时间一般为5~10s。可绘制A—T,A—t曲线来确定。
d. 净化(高温除残):升至更高的温度,除去石墨管中的残留分析物,以减少和避免记忆效应。
③.石墨炉原子化法的特点
优点:
a.试样原子化是在惰性气体保护下,愈强还原性的石墨介质中进行的,有利于易形成难熔氧化物的元素的原子化。
b.取样量少。通常固体样品,0.1~10mg,液体样品1~50μL。
c.试样全部蒸发,原子在测定区的平均滞留时间长,几乎全部样品参与光吸收,绝对灵敏度高。10-9~10-13g。一般比火焰原子化法提高几个数量级。
d.测定结果受样品组成的影响小。
f.化学干扰小。
缺点:
a.精密度较火焰法差(记忆效应),相对偏差约为4—12%(加样量少)。b.有背景吸收(共存化合物分子吸收),往往需要扣背景。
3. 其它原子化法(化学原子化法)
①.氢化物原子化法
氢化物原子化方法属低温原子化方法(原子化温度700~900゜C)。主要应用于:As、Sb、Bi、Sn、Ge、Se、Pb、Ti等元素。
原理:在酸性介质中,与强还原剂硼氢化钠反应生成气态氢化物。例
AsCl3 +4NaBH4 + HCl +8H2O = AsH3 +4NaCl +4HBO2+13H2
将待测试样在专门的氢化物生成器中产生氢化物,然后引入加热的石英吸收管内,使氢化物分解成气态原子,并测定其吸光度。
特点:原子化温度低 ;灵敏度高(对砷、硒可达10-9g);基体干扰和化学干扰小。
②.冷原子化法
主要应用于:各种试样中Hg元素的测量;
汞在室温下,有一定的蒸气压,沸点为357 °C 。只要对试样进行化学预处理还原出汞原子,由载气(Ar或N2)将汞蒸气送入吸收池内测定。
原理:将试样中的汞离子用SnCl2或盐酸羟胺完全还原为金属汞后,用气流将汞蒸气带入具有石英窗的气体测量管中进行吸光度测量。
特点:常温测量;灵敏度、准确度较高(可达10-8g汞)
⑹ 底盘测功试验台的组成及各部分的作用是什么
:底盘测功试验台,一般由滚筒装置、功率吸收装置(即加载装置)、测量装置、辅助装置四版部分组成。权 滚筒装置 滚筒相当于连续移动的路面 功率吸收装置 用来模拟车辆在道路上行驶所受的各种阻力。 测量装置 用于检测驱动力和车速。 功率指示装置 指示装置直接显示驱动轮的输出功率。 控制装置 用来控制试验过程,显示或打印试验结果。
⑺ 往复式压缩机的构成及各主要部件的作用
往复式压缩机是容积式压缩机的一种,其主要部件包括气缸、曲柄连杆机构、活塞组件、填料(也就是压缩机的密封件)、气阀、机身与基础、管线及附属的设备等。
1)气缸:
气缸是压缩机主要零部件之一,应有良好的表面以利于润滑和耐磨,还应具有良好的导热性,以便于使摩擦产生的热能以最快的速度散发出去;还要有足够大的气流通道面积及气阀安装面积,使阀腔容积达到恰好能降低气流的压力脉动幅度,以保证气阀正常工作并降低功耗。余隙容积应小些,以提高压缩机的效率。
2)曲柄连杆机构:
该机构包括十字头、连杆、曲轴、滑导等——它是主要的运转和传动部件件,将电机的圆周运动经连杆转化为活塞的往复运动,同时它也是主要的受力部件。
3)活塞组件:
主要有活塞头、活塞环、托瓦和活塞杆。活塞的形状和尺寸与气缸有密切关系,分为双作用和单作用活塞。活塞环用以密封气缸内的高压气体,防止其从活塞和气缸之间的间隙泄漏。托瓦的作用顾名思义是起支撑活塞的作用,所以托瓦也是易损件,托瓦材质的好坏也直接影响压缩机的使用寿命。
4)填料 :
活塞杆填料主要用于密封气缸内座与活塞杆之间的间隙,阻止气体沿活塞杆径向泄漏。填料环的制造及安装涉及“三个间隙”。分别为轴向间隙(保证填料环在环槽内能自由浮动),径向间隙(防止由于活塞杆的下沉使填料环受压造成变形或者损坏)和切向间隙(用于补偿填料环的磨损)。
5)气阀:
是压缩机最主要的组件,同时也是最容易损坏的零件。其设计的好坏会直接影响到压缩机的排气量、功耗及运转可靠性。好的气阀应具有以下特点:高效节能(占轴功率的3%~7%),气密性与动作及时性完美结合,寿命长(一般实际寿命8000h),形成的余隙容积小,噪音低,温升小,可翻新使用。
(7)吸收装置的构成及各构件的作用扩展阅读
往复式压缩机的工作过程可分成膨胀、吸入、压缩和排气四个过程。
例:单吸式压缩机的气缸,这种压缩机只在气缸的一段有吸入气阀和排除气阀,活塞每往复一次只吸一次气和排一次气。
(1) 膨胀:当活塞向左边移动时,缸的容积增大,压力下降,原先残留在气缸中的余气不断膨胀。
(2) 吸入:当压力降到稍小于进气管中的气体压力时,进气管中的气体便推开吸入气阀进入气缸。随着活塞向左移动,气体继续进入缸内,直到活塞移至左边的末端(又称左死点)为止。
(3) 压缩:当活塞调转方向向右移动时,缸的容积逐渐缩小,这样便开始了压缩气体的过程。由于吸入气阀有止逆作用,故缸内气体不能倒回进口管中,而出口管中气体压力又高于气缸内部的气体压力,缸内的气体也无法从排气阀跑到缸外。
出口管中的气体因排出气阀有止逆作用,也不能流入缸内。因此缸内的气体数量保持一定,只因活塞继续向右移动,缩小了缸内的容气空间(容积),使气体的压力不断升高。
(4) 排出:随着活塞右移,压缩气体的压力升高到稍大于出口管中的气体压力时,缸内气体便顶开排出气阀的弹簧进入出口管中,并不断排出,直到活塞移至右边的末端(又称右死点)为止。然后,活塞又开始向左移动,重复上述动作。
活塞在缸内不断的往复运动,使气缸往复循环的吸入和排出气体。活塞的每一次往复成为一个工作循环,活塞每来或回一次所经过的距离叫做冲程。
⑻ 填料吸收塔装置主要由哪些部件组成
填料吸收塔主要有塔体,填料,循环泵,风机,喷淋系统等五部分组成,苏州百诚防腐设备版专业制造聚丙权烯喷淋塔。
填料塔内件包括:填料,用于提供交换面积;筒体,不用说;分布器,用于液体分布;栅板,用于支撑填料;有的吸收塔还有扩大段,用于不溶物系的分离。
填料塔主要由哪些部件组成?各有何作用?
化工原理P241
支承板、液体分布器、液体在分布器、
除沫器
⑼ 简要说明可见-紫外分光光度计由哪几个部件组成,各有什么作用吸光度的测量条件如何选择为什么
解:光源、单色器、吸收池、检测器、处理和显示器
(1) 单色器的作用是把光源发出的连续光谱分解成单色光,并能准确方便地“取出”所需要的某一波长的光,它是分光光度计的心脏部分。单色器主要由狭缝、色散元件和透镜系统组成。其中色散元件是关键部件,色散元件是棱镜和反射光栅或两者的组合,它能将连续光谱色散成为单色光。狭缝和透镜系统主要用来控制光的放相册,调节光的强度和“取出”所需要的单色光,狭缝对单色器的分辨率其重要作用,它对单色光的纯度在一定范围内起着调节作用。
吸收池又叫比色皿,是用于盛放待测液和决定透光液层厚度的器件。
(2) 吸收池一般为长方体(也有圆鼓形或其他形状,但长方体最普遍),其底及二测为毛玻璃,另两面为光学透光面。根据光学透光面的材质,吸收池有玻璃吸收池和石英池两种。玻璃吸收池用于可见光光区测定。若在紫外区测定,则必须使用石英吸收池。吸收池的规格是以光程为标志的。紫外-可见分光光度计常用的吸收池规格有:0.5cm、1.0cm、2.0cm、3.0cm、5.0cm等。
(3) 检测器又称接收器,其作用是对透过吸收池的光作出响应,并把它转变成电信号输出,其输出电信号大小与透过光的强度成正比。常用的检测器有光电池、光电管及光电倍增管等,它们都是基于光电效应原理制成的。作为检测器,对光电转化器的要求是:光电转换有恒定的函数关系,响应灵敏度要高、速度要快,噪声低、稳定性高,产生的电信号易于检测放大等。
⑽ 原子吸收分光光度法所用仪器有哪几部分组成,每个主要部分的作用是什么
原子吸收分光光度计主要有光源、原子化系统、单色器、检测系统共四个部分组成。
光源:发射待测元素的特征光谱,供测量用。
原子化系统:讲试样中的待测元素转化为原子蒸气。
单色器:将待测元素的吸收线与邻近谱线分开并阻止其他谱线进入检测器,使检测系统只接受共振吸收线。
检测系统:给出待测元素的透光率或吸光度。