① 奥氏粘度计的奥氏粘度计使用方法
1.先将奥氏粘度计用洗液和蒸馏水洗干净,然后烘干备用。
2.然后调节奥氏粘度计恒温槽至(25.0±0.1)℃。
3.用移液管取一定量待测液放入奥氏粘度计中,然后把奥氏粘度计垂直固定在恒温槽中,恒温5min~10min。
4.压缩洗耳球后,连接一根段橡皮管接于1管口,向管内吸气。待液体上升至1管A线上1cm处,拔开洗耳球。利用秒表测定液体流经AB两刻度间所需的时间。重复同样操作,测定5次,要求各次的时间相差不超过0.3s,取其平均值。
5.最后将奥氏粘度计中的待测液倾入回收瓶中,用热风吹干。再用移液管取相同体积蒸馏水从2管口放入粘度计中,与前述步聚相同,测定蒸馏水流经AB两刻度间所需的时间,重复同样操作,要求同前。
② 奥氏粘度计的使用方法和用途是什么
1.先将奥氏粘度计用洗液和蒸馏水洗干净,然后烘干备用。 2.然后调节奥氏粘度计恒温槽至(25.0±0.1)℃。 3.用移液管取一定量待测液放入奥氏粘度计中,然后把奥氏粘度计垂直固定在恒温槽中,恒温5min~10min。 4.用打气球接于D管并堵塞2管,向管内打气。待液体上升至C球的2/3处,停止打气,打开管口2。利用秒表测定液体流经两刻度间所需的时间。重复同样操作,测定5次,要求各次的时间相差不超过0.3s,取其平均值。 5.最后将奥氏粘度计中的待测液倾入回收瓶中,用热风吹干。再用移液管取10mL蒸馏水放入粘度计中,与前述步聚相同,测定蒸馏水流经m1至m2所需的时间,重复同样操作,要求同前。
奥氏粘度计制作容易,操作简便,具有较高的测量精度,特别适用于粘滞系数小的液体,如水、汽油、酒精、血浆或血清等的研究。
③ 澳氏粘度计为什么要垂直使用
澳氏粘度计的测定和应用
【实验原理】
高聚物摩尔质量不仅反映了高聚物分子的大小,而且直接关系到它的物理性能,是个重要的基本参数。与一般的无机物或低分子的有机物不同,高聚物多是摩尔质量大小不同的大分子混合物,所以通常所测高聚物摩尔质量是一个统计平均值。 测定高聚摩尔质量的方法很多,而不同方法所得平均摩尔质量也有所不同。比较起来,粘度法设备简单,操作方便,并有很好的实验精度,是常用的方法之一。
用该法求得的摩尔质量成为粘均摩尔质量。 粘度法测高聚物溶液摩尔质量时,常用名词的物理意义,如表2-30-1所示: (见后面的参考资料) 表2-30-1 常用名词的物理意义(见后面的参考资料) η0 纯溶剂的粘度,溶剂分子与溶剂分子间的内摩擦表现出来的粘度。 η 溶液的粘度,溶剂分子与溶剂分子之间、高分子与高分子之间和高分子与溶剂分子之间三者内摩擦的综合表现。 ηr 相对粘度,ηr=η/η0,溶液粘度对溶剂粘度的相对值。 ηsp 增比粘度,ηsp= (η - η0) / η0 = η / η0 –1 = ηr – 1,反映了高分子与高分子之间,纯溶剂与高分子之间的内摩擦效应 。 ηsp/C 比浓粘度,单位浓度下所显示出的粘度 。 [η] 特性粘度, ,反映了高分子与溶剂分子之间的内摩擦 。 高聚物稀溶液的粘度是它在流动时内摩擦力大小的反映,这种流动过程中的内摩擦主要有:纯溶剂分子间的内摩擦,记作η0;高聚物分子与溶剂分子间的内摩擦;以及高聚物分子间的内摩擦。这三种内摩擦的总和称为高聚物溶液的粘度,记作η。
实践证明,在相同温度下η>η0 ,为了比较这两种粘度,引入增比粘度的概念,以ηsp表示: ηsp =(η -η0)/η0 =η/ η0 - 1 = ηr 1式中,ηr称为相对粘度,反映的仍是整个溶液的粘度行为,而ηsp则是扣除了溶剂分子间的内摩擦以后仅仅是纯溶剂与高聚物分子间以及高聚物分子间的内摩擦之和。 高聚物溶液的ηsp往往随质量浓度C的增加而增加。为了便于比较,定义单位浓度的增比粘度ηsp/C为比浓粘度,定义lnηr /C为比浓对数粘度。当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可以忽略,此时比浓粘度趋近于一个极限值,即: 式中[η]主要反映了无限稀释溶液中高聚物分子与溶剂分子之间的内摩擦作用,称为特性粘度,可以作为高聚物摩尔质量的度量。由于ηsp与ηr均是无因次量,所以[η]的单位是浓度C单位的倒数。[η]的值取决于溶剂的性质及高聚物分子的大小和形态,可通过实验求得。因为根据实验,在足够稀的高聚物溶液中有如下经验公式: 图2-30-2 外推法求[η](见后面的参考资料) 上式中,κ和β分别称为Huggins和Kramer常数,这是两个直线方程,因此我们获得[η]的方法如图2-30-2所示:一种方法是以ηSP/C对C作图,外推到C→0的截距值;另一种是以lnηr/C对C作图,也外推到C→0的截距值,两条线应会合于一点,这也可校核实验的可靠性。
在一定温度和溶剂条件下,特性粘度[η]和高聚物摩尔质量M之间的关系通常用带有两个参数的Mark-Houwink经验方程式来表示: 图2-30-3 乌氏粘度计(见后面的参考资料) 式中M为粘均分子量;K为比例常数;α是与分子形状有关的经验参数。K和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K与α的数值可通过其它绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定得[η]。 由上述可以看出高聚物摩尔质量的测定最后归结为特性粘度[η]的测定。本实验采用毛细管法测定粘度,通过测定一定体积的液体流经一定长度和半径的毛细管所需时间而获得。所使用的乌氏粘度计如图2-30-3所示,当液体在重力作用下流经毛细管时,其遵守泊肃叶(Poiseuille)定律: 该式中,η为液体的粘度;ρ为液体的密度;L为毛细管的长度;r为毛细管的半径;t为V体积液体的流出时间;h为流过毛细管液体的平均液 柱高度;V为流经毛细管的液体体积;m为毛细管末端校正的参数(一般在r/L《1时,可以取m=1)。
对于某一只指定的粘度计而言,(10)式中许多参数是一定的,因此可以改写成: 该式中,B<1,当流出的时间t在2min左右(大于100s),该项(亦称动能校正项)可以忽略,即η=Aρt。 又因通常测定是在稀溶液中进行(C<1×10-2g·cm-3),溶液的密度和溶剂的密度近似相等,因此可将ηr写成 : 式中,t为测定溶液粘度时液面从a刻度流至b刻度的时间;t0为纯溶剂流过的时间。所以通过测定溶剂和溶液在毛细管中的流出时间,从(12)式求得ηr,再由图2-30-2求得[η]。
【仪器试剂】
恒温槽1套;乌贝路德粘度计1支;分析天平1台;移液管(10mL,2支、5mL,1支);停表1只;洗耳球1个;橡皮管夹2个;橡皮管(约5cm长,2根);吊锤1个。 聚丙烯酰胺(或聚乙烯醇) ;NaNO3(3mol·dm-3、1mol·dm-3)。
【实验步骤】
1. 粘度计的洗涤 先用热洗液(经砂心漏斗过滤)将粘度计浸泡,再用自来水、蒸馏水分别冲洗几次,每次都要注意反复流洗毛细管部分,洗好后烘干备用。
2. 调节恒温槽温度至(30.0± 0.1)℃,在粘度计的B管和C管上都套上橡皮管,然后将其垂直放入恒温槽,使水面完全浸没G球,并用吊锤检查是否垂直。
3. 溶液流出时间的测定 用移液管分别吸取已知浓度的聚丙烯胺溶液10mL和NaNO3溶液(3mol·dm-3)5mL,由A管注入粘度计中,在C管处用洗耳球打气,使溶液混合均匀,浓度记为C1,恒温15min,进行测定。
测定方法如下:将C管用夹子夹紧使之不通气,在B管处用洗耳球将溶液从F球经D球、毛细管、E球抽至G球2/3处,解去C管夹子,让C管通大气,此时D球内的溶液即回入F球,使毛细管以上的液体悬空。毛细管以上的液体下落,当液面流经a刻度时,立即按停表开始记时间,当液面降至b刻度时,再按停表,测得刻度a、b之间的液体流经毛细管所需时间。重复这一操作至少三次,它们间相差不大于0.3s,取三次的平均值为t1。 然后依次由A管用移液管加入5mL、5mL、10mL、15mLNaNO3溶液(1mol·dm-3),将溶液稀释,使溶液浓度分别为C2、C3、C4、C5,用同法测定每份溶液流经毛细管的时间t2、t3、t4、t5。应注意每次加入NaNO3溶液后,要充分混合均匀,并抽洗粘度计的E球和G球,使粘度计内溶液各处的浓度相等。 4. 溶剂流出时间的测定 用蒸馏水洗净粘度计,尤其要反复流洗粘度计的毛细管部分。用1mol·dm-3NaNO3洗1~2次,然后由A管加入约15mL1mol·dm-3NaNO3溶液。用同法测定溶剂流出的时间t0。 实验完毕后,粘度计一定要用蒸馏水洗干净。
【注意事项】 — 高聚物在溶剂中溶解缓慢,配制溶液时必须保证其完全溶解,否则回影响溶液起始浓度,而导致结果偏低。 — 粘度计必须洁净,高聚物溶液中若有絮状物不能将它移入粘度计中。 — 本实验溶液的稀释是直接在粘度计中进行的,因此每加入一次溶剂进行稀释时必须混合均匀,并抽洗E球和G球。 — 实验过程中恒温槽的温度要恒定,溶液每次稀释恒温后才能测量。 — 粘度计要垂直放置,实验过程中不要振动粘度计,否则影响结果的准确性。
④ 为什么用奥氏黏度计时,加入标准物及被测物的体积应相同为什么测定黏度时要保持温度恒定
1、
设两种液体在本身重力作用下分别流经同一毛细管,且流出的体积相等,则式中,p
=
hgρ,其中h为推动液体流动的液位差;ρ为液体密度;g为重力加速度。如果每次取用试样的体积一定,则可保持h在实验中的情况相同,因此可得:若已知标准液体的黏度和密度,则可得到被测液体的黏度。2、恒温槽的温度要保持恒定。加入样品后待恒温才能进行测定,因为液体的黏度与温度有关,一般温度变化不超过±0.2℃。
⑤ 液体粘度的测定(奥氏粘性记法)实验思考题:为什么水与酒精的体积必须相同,且实验时均保持竖直
中南的
⑥ 奥氏粘度计的奥氏粘度计要垂直放入恒温槽的原因
因为奥氏粘度计在标定的时候,就是利用重力的原理,奥氏粘度计就是奥斯瓦尔德(W.Ostwald)设计的。它是带有两个球泡的U形玻璃管,Ⅰ泡上、下放各有一刻痕A和B,其下方为一段毛细管。使用时,使体积相等的两种不同液体分别流过Ⅰ泡下的同一毛细管,由于两种液体的粘滞系数不同,因而流完的时间不同。
测定时,一般都是用水作为标准液体。先将水注入Ⅱ泡内,然后吸入Ⅰ泡中,并使水面达到刻痕A以上。由于重力作用,水经毛细管流入Ⅱ泡,当水面从刻痕A降到刻痕B时,记下其间经历的时间t1,然后在Ⅱ泡内换以相同体积的待测液体,用相同的方法测出相应的时间t2根据式
奥氏粘度计制作容易,操作简便,具有较高的测量精度,特别适用于粘滞系数小的液体,如水、汽油、酒精、血浆或血清等的研究。
⑦ 用奥氏粘度计测量黏度的问题
读秒测粘度,在同等条件下,同等体积,不同温度条件下油漆粘度不一样,这是非牛顿液体,如果你了解了什么是非粘度液体,就好办了。
⑧ 用奥氏粘度计测定粘度时为什么必须吸取一定量的液体使用比重瓶测定液体密度是应注意哪些问题
奥氏粘度计测定时,标准液和待测液的体积必须相同,因为液体下流时所受的压力差ρgh与管2中液面高度有关
⑨ 求《恒温槽调节及影响恒温槽灵敏度》实验报告
《恒温槽调节及影响恒温槽灵敏度》实验报告
一、实验目的1.了解恒温槽的构造及恒温原理,考察恒温槽灵敏度的影响因素,掌握恒温槽的使用方法。 2.学习使用热敏电阻及自动平衡记录仪测定温差的方法
二、实验原理恒温槽装置示意图如图1所示,由槽体、恒温介质、加热器(或冷却器)、温度指示器、搅拌器和温度控制器等部分组成。继电器必须和接触温度计、加热器配套使用。接触温度计是一支可以导电的特殊温度计,又称为导电表或水银控制器,如图2所示。它有两个电极,一个固定与底部的水银球相连,另一个可调电极是金属丝,由上部伸入毛细管内。顶端有一磁铁,可以旋转螺旋丝杆,用以调节金属丝的高低位置,从而调节设定温度。当温度升高时,毛细管中水银柱上升与一金属丝接触,两电极导通,使继电器线圈中电流断开,加热器停止加热; 当温度降低时,水银柱与金属丝断开,继电器线圈通过电流,使加热器线路接通,温度又回升。如此,不断反复,使恒温槽控制在一个微小的温度区间波动,被测体系的温度也就限制在一个相应的微小区间内,从而达到恒温的目的。
恒温槽的温度控制装置属于“通”“断”类型,当加热器接通后,恒温介质温度上升,热量的传递使水银温度计中的水银柱上升。但热量的传递需要时间,因此常出现温度传递的滞后,往往是加热器附近介质的温度超过设定温度,所以恒温槽的温度超过设定温度。同理,降温时也会出现滞后现象。由此可知,恒温槽控制的温度有一个波动范围,并不是控制在某一固定不变的温度。为了考察诸因素对恒温槽灵敏度的影响,需要用热敏电阻测量恒温槽内介质温度的涨落,一般要配用不平衡电桥和自动记录仪。
影响恒温槽灵敏度的因素很多,大体有:(1) 加热器功率;(2) 搅拌器的转速;(3) 恒温介质的流动性;(4) 各部件的位置;(5) 环境温度与设定温度的差值。 图1: 恒温槽的装置示意
1、 浴槽;2、加热器;3、搅拌器;4、温度计
5、接触温度计;6、继电器; 7、热敏电阻 图2:接触温度计结构示意图
1、磁铁;2、固定螺钉;3、螺杆;4、标铁;
5、钨丝;6、水银柱;7、水槽;8、接触点引线
三、实验仪器恒温槽、不平衡电桥、记录仪、变压器、变阻箱、电子继电器、热敏电阻
四、操作步骤1、安装恒温槽,将加热圈放入槽体,安装接触温度计、精密温度计,固定搅拌器,安装搅拌杆,调节各连线布局合理。2、调节恒温槽至30°C。顺时针转动接触温度计上方磁铁,调节标铁位置,使其上连低于指定温度1-2°C。接通电源,打开搅拌器开关,调节转速,打开电子继电器开关。黄灯亮,加热器开始加热,黄灯灭,观察水银温度计,若低于30°C,以逐步逼近的调节方法,使恒温槽温度恒定在30°C±0.1°C的范围内。恒温槽温度达到30°C后,固定温度计螺钉。3、将甲电池连接至电桥上,将电阻箱与电桥相连,接好热敏电阻,将记录仪信号线接至电桥上,将电压器与电子继电器相连。打开电源,调节好记录仪,调节加热器电压为220伏,正常搅拌速度,打开电桥开关至通路。根据热敏电阻阻值,调节电阻箱数值,观察记录仪画出的温度波动曲线。其它条件不变,调节电压为80伏,观察记录仪画出的温度波动曲线,考察加热功率对恒温槽的影响。恢复加热器电压220伏,降低搅拌器转速,观察记录仪画出的温度波动曲线,考察搅拌速度对恒温槽的影响。
五、实验数据处理实验中记录的不同条件下恒温槽温度波动峰如图1所示。从记录纸上读出各条件下温度波动的峰高数,计算温度波动值,数据列于表1中。
实验结果说明,低的加热功率及高的搅拌速率有利于提高恒温槽的灵敏度,实验中采取的220V、正常搅拌(恒温介质液面刚有小漩涡)条件下,能够满足一般实验要求恒温槽温度波动在±0.1°C的灵敏度要求范围。
图1 加热功率及搅拌速率对恒温槽温度波动的影响 表1 加热功率及搅拌速率对恒温槽灵敏度的影响
220V,正常搅拌 80V,正常搅拌 220V,慢速搅拌 峰Ⅰ格数/个 41.510.255.5峰Ⅱ格数/个42.010.556.8峰Ⅲ格数/个40.510.357.0峰平均格数/个41.310.356.4平均温度(°C) 0.190.0470.26温度波动(°C) ±0.095±0.024±0.13说明:记录仪0.0046°C/格
六、分析及结论根据实验得知,影响恒温槽灵敏度的因素很多,大体有:
(1)恒温介质的流动性:流动性好,传热性能好,则控温灵敏度高; (2)加热器的功率:功率适宜,热容量小,则控温灵敏度高;(3)搅拌器的转速:搅拌速率要足够大,才能保证恒温槽内温度均匀。