导航:首页 > 装置知识 > 金纳米粒子的制备实验装置图

金纳米粒子的制备实验装置图

发布时间:2021-12-05 22:48:26

① 纳米金的应用

纳米金的应用相当广泛,涉及到很多领域,简而言之可以概括为:

1.美容护肤

> 祛斑抗衰 > 无痕愈合 > 全效营养导入

② 纳米材料简介

纳米材料技术的概况
纳米级结构材料简称为纳米材料,是指其晶粒大小介于1纳米~100 纳米范围之间。由于它的尺寸已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于材料生产(超微粉、镀膜等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。
纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由 10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有 109倍之巨,所以二者行为上将产生明显的差异。
纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。
就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。
一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。
纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成时高反射率光泽面成强烈对比。纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。
纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。(中国建材报/8.3 汪一佛)

③ 关于纳米材料的问题

按导电塑料的制作方法分类,可分为结构型导电塑料和复合型导电塑料。
结构型导电塑料又称本征型导电塑料,是指本身具有导电性或经化学改性后具有导电性的塑料。结构型主要有:
(1)π共轭系高分子:如聚乙炔、(Sr)n、线型聚苯、层状高聚物等;
(2)金属螯合物:如聚酮酞菁;
(3)电荷移动型高分子络合物:如聚阳离子、CQ络合物。
这一类高分子材料的生产成本高、工艺难度大,至今尚无大量生产,现在广泛应用的导电高分子材料一般都是复合型高分子材料,其填充物质主要有:
a、金属分散系;
b、炭黑系;
c、有机络合物分散系。
3、按用途的不同分类,可分为:抗静电材料、导电材料和电磁波屏蔽材料。
所以普通添加塑料不肯有铜的导电性

④ 纳米技术的认识

理论含义

编辑

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术。1981年扫描隧道显微镜发明后,诞生了一门以1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品[2]。因此,纳米技术其实就是一种用单个原子、分子制造物质的技术。

从迄今为止的研究来看,关于纳米技术分为三种概念:

第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。

第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。

第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。

纳米雨衣伞是雨伞与雨衣的结合体,纳米雨伞收伞有三折伞和直杆伞的收伞形态(简单说,收伞时有长短两种选择)。纳米雨衣可由纳米雨伞转变而成,纳米雨衣又不同于一般的雨衣,因为纳米雨衣可以保证从头到脚绝对不湿。因为纳米材料,所以这雨伞可以一甩即干,雨伞转变为雨衣后,这雨衣也只需穿着时轻轻一跳也即可全干。

防水材料

2014年8月4日,澳大利亚运用新发明的布料,制成一款具有开创性的T恤衫,不管人们怎样尝试着浸湿它,此T恤都能保持良好的防水性能。

这件叫做“骑士”(The Cavalier)的白色T恤是百分之百棉质的。虽然表面看起来平淡无奇,但是其布料运用“疏水”纳米技术应用编织而成,使得这件T恤能够有效防止大部分液体和污渍的浸入。这种T恤可以用机器清洗,其防水功能最多可承受80次清洗。它的布料有天然自净功能,任何附着在上的污渍都能用水擦洗或冲干净。

和其他含有化学物质的防水应用不同,T恤仿照的是荷叶的自然疏水特点。此布料的发明对于餐馆和咖啡厅来说可能具有革命性的影响。此外,这种布料还可以运用在医疗行业或医院等地。

潜在危害

编辑

和生物技术一样,纳米科技也有很多环境和安全问题(比如尺寸小是否会避开生物的自然防御系统,还有是否能生物降解、毒性副作用如何等等)。

社会危害

纳米颗粒的危害

纳米材料(包含有纳米颗粒的材料)本身的存在并不是一种危害。只有它的一些方面具有危害性,特别是他们的移动性和增强的反应性。只有某些纳米粒子的某些方面对生物或环境有害,我们才面临一个真的危害[7]。

要讨论纳米材料对健康和环境的影响,我们必须区分两类纳米结构:

纳米尺寸的粒子被组装在一个基体、材料或器件上的纳米合成物、纳米表面结构或纳米组份(电子,光学传感器等),又称为固定纳米粒子。

“自由”纳米粒子,不管在生产的某些步骤中存还是直接使用单独的纳米粒子。

这些自由纳米粒子可能是纳米尺寸的单元素,化合物,或是复杂的混合物,比如在一种元素上镀上另外一张物质的“镀膜”纳米粒子或叫做“核壳”纳米粒子。

现代,公认的观点是,虽然我们需要关注有固定纳米粒子的材料,自由纳米粒子是最紧迫关心的。

因为,纳米粒子同它们日常的对应物实在是区别太大了,它们的有害效应不能从已知毒性推演而来。这样讨论自由纳米粒子的健康和环境影响具有很重要的意义。

更加复杂的是,当我们讨论纳米粒子的时候,我们必须知道含有的纳米粒子的粉末或液体几乎从来不会单分散化,而是具有一定范围内许多不同尺寸。这会使实验分析更加复杂,因为大的纳米粒子可能和小的有不同的性质。而且,纳米粒子具有聚合的趋势,而聚合的纳米粒子具有同单个纳米粒子不同的行为。

健康问题

纳米颗粒进入人体有四种途径:吸入,吞咽,从皮肤吸收或在医疗过程中被有意的注入(或由植入体释放)。一旦进入人体,它们具有高度的可移动性。在一些个例中,它们甚至能穿越血脑屏障。

纳米粒子在器官中的行为仍然是需要研究的一个大课题。基本上,纳米颗粒的行为取决于它们的大小,形状和同周围组织的相互作用活动性。它们可能引起噬菌细胞(吞咽并消灭外来物质的细胞)的“过载”,从而引发防御性的发烧和降低机体免疫力。它们可能因为无法降解或降解缓慢,而在器官里集聚。还有一个顾虑是它们同人体中一些生物过程发生反应的潜在危险。由于极大的表面积,暴露在组织和液体中的纳米粒子会立即吸附他们遇到的大分子。这样会影响到例如酶和其他蛋白的调整机制。

环境问题

主要担心纳米颗粒可能会造成未知的危害。

社会风险

纳米技术的使用也存在社会学风险。在仪器的层面,也包括在军事领域使用纳米技术的可能性。(例如,在MIT士兵纳米技术研究所[1]研究的装备士兵的植入体或其他手段,同时还有通过纳米探测器增强的监视手段。

在结构层面,纳米技术的批评家们指出纳米技术打开了一个由产权和公司控制的新世界。他们指出,就象生物技术的操控基因的能力伴随着生命的专利化一样,纳米技术操控分子的技术带来的是物质的专利化。过去的几年里,获得纳米尺度的专利像一股淘金热。2003年,超过800纳米相关的专利权获得批准,这个数字每年都在增长。大公司已经垄断了纳米尺度发明与发现的广泛的专利。例如,NEC和IBM这两家大公司持有碳纳米管这一纳米科技基石之一的基础专利。碳纳米管具有广泛的运用,并被看好对从电子和计算机、到强化材料、到药物释放和诊断的许多工业领域都有关键的作用。碳纳米管很可能成为取代传统原材料的主要工业交易材料。但是,当它们的用途扩张时,任何想要制造或出售碳纳米管的人,不管应用是什么,都要先向NEC或者IBM购买许可证。

⑤ 纳米符号是什么

纳米符号是nm,即为毫微米,是长度的度量单位。1纳米=10的负9次方米。1纳米相当于4倍原子大小,比单个细菌的长度还要小得多。

现实很多材料的微观尺度多以纳米为单位,如大部分半导体制程标准皆是以纳米表示。直至2017年2月,中央处理器,也叫做(CPU,Central Processing Unit)的制程是14nm。纳米别名:毫微米。

纳米技术在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性。

发展历史

1981年,科学家发明研究纳米的重要工具———扫描隧道显微镜,原子、分子世界从此可见。

1990年,首届国际纳米科技会议在美国巴尔的摩举办,纳米技术形式诞生。

1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是铁的10倍,成为纳米技术研究的热点。

1989年美国斯坦福大学搬走原子团,用氙原子打出“斯坦福大学”英文名字,1999年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”。之后中国科学院北京真空物理实验室操纵原子成功写出“中国”二字。

1997年,美国科学家首次成功地用单电子移动单电子,这种技术可用于研制速度和存储容量比现在提高成千上万的量子计算机。同年,美国纽约大学科学发现,DNA可用于建造纳米层次上的机械装置。

⑥ 热电材料的两种应用方式

单向凝固法,烧结法

⑦ 纳米材料及其在环保中的应用

纳米技术具有极大的理论和应用价值,纳米材料被誉为“21世纪最有前途的材料”。纳米技术研究在0.1~100nm尺度范围内物质具有的特殊性能及其应用。广义的纳米材料是指在三维空间中,至少有一维达到纳米尺度范围,或以其为基本单位所构成的材料[1]。纳米材料具有辐射、吸收、杀菌、吸附等特性,众多研究表明这些新特性将在环境保护领域产生深远的影响。本文就纳米材料及其在环境保护领域的应用进行了阐述。 1 纳米材料的基本性质[2,3] 1.1 表面效应 用高倍电子显微镜对金超微颗粒(直径为2.1~3μm)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体等)的晶型,既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10μm后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 1.2 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生特殊的光学、热学、磁学、力学、声学、超导电性、介电性能以及化学性能等一系列新奇的性质。 2 纳米材料在大气污染治理方面的应用 2.1 空气中硫氧化物的净化 二氧化硫、一氧化碳和氮氧化物是影响人类健康的有害气体,如果在燃料燃烧的同时加入纳米级催化剂不仅可以使煤充分燃烧,不产生一氧化硫气体,提高能源利用率,而且会使硫转化成固体的硫化物。如用纳米Fe2O3作为催化剂,经纳米材料催化的燃料中硫的含量小于0.01%,不仅节约了能源,提高能源的综合利用率,也减少了因为能源消耗所带来的环境污染问题,而且使废气等有害物质再利用成为可能。 2.2 汽车尾气净化 汽车尾气排放直接污染人们的生活空间及呼吸层,对人体健康影响极大。开发替代燃料或研究用于控制汽车尾气对大气污染材料,对净化环境具有重要的意义。用纳米复合材料制备与组装的汽车尾气传感器[4],通过汽车尾气排放的监控,可及时对超标排放进行报警,并通过调整合适的空燃比,减少富油燃烧,达到降低有害气体排放和燃油消耗的目的。纳米稀土钛矿型复合氧化物对汽车尾气所排放的NO、CO等具有良好的催化转化作用,可以替代昂贵的重金属催化剂用作汽车尾气催化剂。 2.3 室内空气净化 新装修房间空气中的有机物浓度大大高于室外,而光催化剂可以很好地降解甲醛、甲苯等污染物,纳米TiO2的降解效果最佳。纳米TiO2经光催化产生的空穴和形成于表面的活性氧膜化能与细菌细胞或细胞内组成成分进行生化反应,使细菌头单元失活而导致细胞死亡,并且使细菌死亡后产生的内毒素分解,即利用纳米TiO2的光催化性能不仅能杀死环境中的细菌,而且能同时降解由细菌释放出的有毒复合物[5]。在医院的病房、手术室及生活空间安放纳米TiO2光催化剂可具有杀菌、除臭作用。 3 在水污染治理方面的应用 3.1 处理无机污染废水 污水中的重金属对人体的危害很大,重金属的流失也是资源的浪费。纳米粒子能对水中的重金属离子通过光电子产生很强的还原能力[6]。如纳米TiO2能将高氧化态汞、银、铂等贵重金属离子吸附于表面,井将其还原为细小的金属晶体,既消除了废水的毒性,又回收了贵重金属。 3.2 处理有机污染废水 大量研究表明纳米TiO2等作为光催化剂,在阳光下催化氧化水中的有机污染物,使其迅速降解。至今为止己知纳米TiO2能处理80余种有毒污染物,它可以将水中的各种有机物很快完全催化氧化成水和CO等无害物质图。例如Pintar等在间歇式反应器中纳米Ru/TiO2作催化剂,对酸性或碱性牛皮纸漂白废水进行光催化降解,废水中的有机总碳TOC的去除率可达到99.6%,并使废水完全脱色。经光催化湿空气氧化处理后的工厂废水对弧菌的毒性的实验表明,用该方法处理后的工厂漂白废水完全可以进一步生物降解。 3.3 自来水的净化处理 新型纳米级净水剂[7]的吸附能力和絮凝能力是普通净水剂Al2O3的10~20倍,能将污水中悬浮物完全吸附并沉淀,然后采用纳米磁性物质、纤维和活性炭净化装置,有效地除去水中的铁锈、泥沙以及异味等。再经过由带有纳米孔径的处理膜和带有不同纳米孔径的陶瓷小球组装的处理装置后,可以100%除去水中的细菌、病毒,得到高质量的纯净水。这是因为细菌、病毒的直径比纳米大,在通过纳米孔径的膜和陶瓷小球时,会被过滤掉,水分子及水分子直径以下的矿物质、元素则保留下来。 4 在其它环保领域的应用 4.1 噪声控制 飞机、车辆、船舶等发动机工作的噪声可达上百分贝,容易对环境造成噪声污染。当机器设备等被纳米技术微型化以后,其互相撞击、磨擦产生的交变机械作用力将大为减少,噪声污染便可得到有效控制。运用纳米技术开发的润滑剂,既能在物体表面形成永久性的固态膜,产生极好的润滑作用,大大降低机器设备运转时的噪声,又能延长设备的使用寿命[8]。 4.2 固体废物处理 纳米技术及纳米材料应用于城市固体垃圾处理,主要有两个方面[9]:一是可以将橡胶制品、塑料制品、废印刷电路板等制成超微粉末,除去其中的异物,成为再生原料回收;二是利用纳米TiO2催化技术可以使城市垃圾快速降解,其速度可达到大颗粒TiO2的10倍以上,从而缓解大量城市垃圾给城市环境带来的压力。 4.3 防止电磁辐射 近年来电磁场对人体健康的影响问题已经成为一个新的研究热点。在强烈辐射区工作并需要电磁屏蔽时,通过在墙内加入纳米材料层或涂上纳米涂料,能大大提高遮挡电磁波辐射性能。中科院理化所利用纳米技术研究出了新一代手机电磁屏蔽材料,可以实现手机信号抗干扰能力,同时大大降低电磁波辐射。 4.5 在照明工程方面的应用 火力发电排放的CO2、SO2、烟尘悬浮物等会引起温室效应、酸雨和环境污染,通过照明节电可以带来巨大的社会、经济和生态效益[10]。在照明工程中,最理想的节电措施是充分利用太阳光来照明,利用一些纳米材料的光致发光特性是可行的办法,白昼吸收自然光并贮存起来,晚上再直接把光射到需要的地方。这从多孔硅光致发光现象得到了验证。 5 结语 随着纳米科技和纳米材料的研究深入,特别是纳米科技与环境保护和环境治理的进一步有机结合,许多环保难题将会得到解决。有理由相信,纳米科技作为一门新兴科学,必将对环境保护产生深远的影响,利用纳米科技解决环境污染问题将成为未来环境保护发展的必然趋势。 参考文献 [1] Swlli E, Morris S. Photocatalysis for water purification[J]. Water Res, 1999, 33(8): 5-7. [2] 李泉, 曾广斌. 纳米粒子[J]. 化学通报, 1995, 6: 29-31. [3] 李良果, 郑庆龙, 张克. 纳米粒子结构分析[J]. 化工新型材料, 1991, 19(12) : 12-13. [4] 覃爱苗, 廖雷. 纳米技术及纳米材料在环境治理中的应用[J]. 中山大学学报(自然科学版), 2004, 43(增刊): 225-228. [5] 杨健森. 纳米环保技术的发展现状与前景[J]. 科技通报, 2002, 18(4): 340-343. [6] 马荣萱, 李继忠. 纳米技术及其材料在环境保护中的应用[J]. 环境科学与技术, 2006, 29(7): 112-115. 来源:[ http://www.jdzj.com ]机电之家·机电行业电子商务平台!

⑧ 纳米材料有什么应用

纳米技术应用非常的广泛,广泛的应用在航天科技,医疗器械以及智能领域方面。尤其是在如今这个科技时代纳米技术就显得更加的重要了,可以说纳米技术贯穿了我们的衣食住行在纺织物当中。添加适量的纳米颗粒之后,就可以起到一个杀菌除味的效果。而且纤维虽然说非常的结实,但是在秋天的事或者是冬天的时候很容易起静电,摸上去十分的烦人,但是如果加入金属纳米颗粒的话,就可以使这种静电现象消除。


现在甚至有能够进入血管的纳米机器人,它可以帮助你清理血液当中的有害物质,也能够疏导血栓。可以说这个技术在几十年前是根本不敢想象的,而如今却成为了最为先进的医疗手段之一。使得许多的病人重获新生。所以说纳米材料的应用范围非常的宽广,并且还在不断的延伸,是一件非常具有潜力的技术。


⑨ 什么是纳米材料

纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。

而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。

在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。美国科学家利用自组装技术将几百只单壁纳米碳管组成晶体索“Ropes”,这种索具有金属特性,室温下电阻率小于0.0001Ω/m;将纳米三碘化铅组装到尼龙-11上,在X射线照射下具有光电导性能, 利用这种性能为发展数字射线照相奠定了基础。

(9)金纳米粒子的制备实验装置图扩展阅读:

纳米新材料

纳米新材料配方是一门在100 纳米以内空间内,通过自然更改直接排序原子与分子创造出来的新纳米材料的项目。纳米新材料与该领域是现代力量和现代技术创新的起点,新的规律和原理的发现与全新的理念创设给予基础科学,提供了新的机会,这会成为许多领域的重要改革新动力。纳米新材料配方由于SAIZU细小,拥有很多奇特的性能。

1988年Baibich 等第一次在纳米Fe/ Cr MS里发现磁电阻变化率达到百分之五十,与一般的ME比起来要大一个级别,并且是负值的,各向一样,称作GMR 。之后还在纳米体系的、隧道结和Perovskite结构、颗粒膜中发现巨ME。里面Perovskite结构在一九九三年是发现且具有极大ME,叫做CMR ,在隧道结中找到的为TMR。

阅读全文

与金纳米粒子的制备实验装置图相关的资料

热点内容
小水电自动化装置 浏览:728
机械里面的工装是什么意思是什么 浏览:829
暖气分水器阀门数字 浏览:22
gps工具箱如何看全景 浏览:639
消防管道主阀门65价格 浏览:469
空调夏天使用制冷开多少度最节能 浏览:408
迷你世界推拉机械臂最长是多少 浏览:886
称重仪表封铅在什么地方 浏览:772
空调制冷没水什么原因 浏览:239
医疗器材技术支持怎么写 浏览:813
消防器材都怎么叫 浏览:635
粤达五金制品有限公司怎么样 浏览:645
cad制图插件学院派工具箱 浏览:637
供热管道常用的阀门 浏览:560
字节跳动公司健身器材有哪些 浏览:835
广东联营五金制品有限公司 浏览:881
次声波和超声波为什么人听不到 浏览:107
烟台弘盛环卫设备有限公司怎么样 浏览:6
鑫宝五金制品有限公司招聘信息 浏览:632
汽车配件生产需要什么设备设施 浏览:968