1. 天然气液化装置中,三级制冷过程跟二级制冷过程的区别在哪里请详细描述!
一、液化天然气(LiquifiedNaturalGas,简称LNG)
主要成分是甲烷,被公认是地球上最干净的能源。无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,液化天然气的重量仅为同体积水的45%左右。其制造过程是先将气田生产的天然气净化处理,经一连串超低温液化后,利用液化天然气船运送。燃烧后对空气污染非常小,而且放出热量大,所以液化天然气好。
它是天然气经压缩、冷却,在-160度下液化而成。其主要成分为甲烷,用专用船或油罐车运输,使用时重新气化。20世纪70年代以来,世界液化天然气产量和贸易量迅速增加,2005年LNG国际贸易量达1888.1亿立方米,最大出口国是印度尼西亚,出口314.6亿立方米;最大进口国是日本763.2亿立方米。
二、国内外概况及发展趋势
1941 年在美国克利夫兰建成了世界第一套工业规模的 LNG 装置,液化能力为 8500 m3 /d 。从 60 年代开始, LNG 工业得到了迅猛发展,规模越来越大,基本负荷型液化能力在 2. 5 × 104 m3 /d 。据资料[3]介绍,目前各国投产的 LNG 装置已达 160 多套, LNG 出口总量已超过 46.1 8 × 106 t/a 。
天然气的主要成分是甲烷,甲烷的常压沸点是 -16 1 ℃ ,临界温度为 -84 ℃ ,临界压力为 4.1MPa 。 LNG 是液化天然气的简称,它是天然气经过净化(脱水、脱烃、脱酸性气体)后[4],采用节流、膨胀和外加冷源制冷的工艺使甲烷变成液体而形成的[5]。
2.1 国外研究现状
国外的液化装置规模大、工艺复杂、设备多、投资高,基本都采用阶式制冷和混合冷剂制冷工艺,目前两种类型的装置都在运行,新投产设计的主要是混合冷剂制冷工艺,研究的主要目的在于降低液化能耗。制冷工艺从阶式制冷改进到混合冷剂制冷循环,目前有报道又有 C Ⅱ -2 新工艺[6],该工艺既具有纯组分循环的优点,如简单、无相分离和易于控制,又有混合冷剂制冷循环的优点,如天然气和制冷剂制冷温位配合较好、功效高、设备少等优点。
法国 Axens 公司与法国石油研究所 (IFP) 合作,共同开发的一种先进的天然气液化新工艺—— Liquefin 首次工业化,该工艺为 LNG 市场奠定了基础。其生产能力较通用的方法高 15%-20% ,生产成本低 25% 。使用 Liquefin 法之后,每单元液化装置产量可达 600 × 104 t/y 以上。采用 Liquefin 工艺生产 LNG 的费用每吨可降低 25% [7] 。该工艺的主要优点是使用了翅片式换热器和热力学优化后的工艺,可建设超大容量的液化装置。 Axens 已经给美国、欧洲、亚洲等几个主要地区提出使用该工艺的建议,并正在进行前期设计和可行性研究。 IFP 和 Axens 开发的 Liquefin 工艺的安全、环保、实用及创新特点最近已被世界认可,该工艺获得了化学工程师学会授予的“工程优秀奖” [8] 。
美国德克萨斯大学工程实验站,开发了一种新型天然气液化的技术—— GTL 技术已申请专利。该技术比目前开发的 GTL 技术更适用于小规模装置,可加工 30.5 × 104 m3 /d 的天然气。该实验站的 GTL 已许可给合成燃料 (Synfuels) 公司。该公司在 A & M 大学校园附近建立了一套 GTL 中试装置,目前正在进行经济性模拟分析。新工艺比现有技术简单的多,不需要合成气,除了发电之外,也不需要使用氧气。其经济性、规模和生产方面都不同于普通的费托 GTL 工艺。第一套工业装置可能在 2004 年上半年建成[9]。
2.2 国内研究现状
早在 60 年代,国家科委就制订了 LNG 发展规划, 60 年代中期完成了工业性试验,四川石油管理局威远化工厂拥有国内最早的天然气深冷分离及液化的工业生产装置,除生产 He 外,还生产 LNG 。 1991 年该厂为航天部提供 30tLNG 作为火箭试验燃料。与国外情况不同的是,国内天然气液化的研究都是以小型液化工艺为目标,有关这方面的文献发表较多[10],以下就国内现有的天然气液化装置工艺作简单介绍。
2.2.1 四川液化天然气装置
由中国科学院北京科阳气体液化技术联合公司与四川简阳市科阳低温设备公司合作研制的 300l/h 天然气液化装置,是用 LNG 作为工业和民用气调峰和以气代油的示范工程。该装置于 1992 年建成,为 LNG 汽车研究提供 LNG 。
该装置充分利用天然气自身的压力,采用气体透平膨胀机制冷使天然气液化,用于民用天然气调峰或生产 LNG ,工艺流程合理,采用气体透平膨胀机,技术较先进。该装置基本不消耗水、电,属节能工程,但液化率很低,约 10% 左右,这是与它的设计原则一致的。
2.2.2 吉林油田液化天然气装置
由吉林油田、中国石油天然气总公司和中科院低温中心联合开发研制的 500l/h 撬装式工业试验装置于 1996 年 12 月整体试车成功,该装置采用以氮气为冷剂的膨胀机循环工艺,整个装置由 10 个撬块组成,全部设备国产化 [11]。
该装置采用气体轴承透平膨胀机;国产分子筛深度脱除天然气中的水和 CO2 ,工艺流程简单,采用撬装结构,符合小型装置的特点。采用纯氮作为制冷工质,功耗比采用冷剂的膨胀机循环要高。没有充分利用天然气自身压力,将天然气在中压下( 5.0MPa 左右)液化(较高压力下液化既可提高氮气的制冷温度,又可减少制冷负荷),因此该装置功耗大。
2.2.3 陕北气田液化天然气
1999 年 1 月建成投运的 2 × 104 m3 /d “陕北气田 LNG 示范工程”是发展我国 LNG 工业的先导工程,也是我国第一座小型 LNG 工业化装置。该装置采用天然气膨胀制冷循环,低温甲醇洗和分子筛干燥联合进行原料气净化,气波制冷机和透平膨胀机联合进行低温制冷,燃气机作为循环压缩机的动力源,利用燃气发动机的尾气作为加热分子筛再生气的热源。该装置设备全部国产化。装置的成功投运为我国在边远油气田上利用天然气生产 LNG 提供了经验[12]。
2.2.4 中原油田液化天然气装置
中原油田曾经建设了我国最大的 LNG 装置,原料气规模为 26.6 5 × 104 m3 /d 、液化能力为 1 0 × 104 m3 /d 、储存能力为 1200 m3 、液化率为 37.5%[13]。目前,在充分吸取国外先进工艺技术的基础上,结合国内、国外有关设备的情况,主要针对自身气源特点,又研究出 LNG 工艺技术方案 [14] 。该工艺流程采用常用的分子筛吸附法脱水,液化工艺选用丙烷预冷 + 乙烯预冷 + 节流。
装置在原料气量 30× 104 m3 /d 时,收率高达 51.4% ,能耗为 0.13 Kwh/Nm3 。其优点在于各制冷系统相对独立,可靠性、灵活性好。但是工艺相对较复杂,须两种制冷介质和循环,设备投资高。由于该厂充分利用了油田气井天然气的压力能,所以液化成本低。
2.2.5 天津大学的小型液化天然气( LNG )装置
小型 LNG 装置与大型装置相比,不仅具有原料优势、市场优势而且投资低、可搬迁、灵活性大[15]。 LNG 装置主要是用胺基溶剂系统对天然气进行预处理,脱除 CO2 等杂质;分子筛脱水;液化几个步骤。装置采用单级混合制冷系统;闭合环路制冷循环用压缩机压缩制冷剂。单级混合制冷剂工艺操作简便、效率高,适用于小型 LNG 装置。
压缩机的驱动机可用燃气轮机或电动马达。电价低的地区可优先考虑电动马达(成本低、维修简单)。在燃料气价格低的地区,燃气透平将是更好的选择方案。经济评估结果表明,采用燃气轮机驱动机的液化装置,投资费要比选用电动马达高出 200 万~ 400 万美元。据对一套 15 × 106ft 3 /d 液化装置进行的成本估算,调峰用的 LNG 项目储罐容积为 10 万 m3 ,而用于车用燃料的 LNG 项目仅需 700m3 储罐,导致最终调峰用的 LNG 成本为 2.03 ~ 2.11 美元 /1000ft3 ,而车用 LNG 成本仅 0.98 ~ 0.99 美元 /1000 ft3 。
2.2.6 西南石油学院液化新工艺
该工艺日处理 3.0 × 104 m3 天然气,主要由原料气 ( CH4 : 95.28% , CO2 :2.9% ) 脱 CO2 、脱水、丙烷预冷、气波制冷机制冷和循环压缩等系统组成。 以 SRK 状态方程作为基础模型,开发了天然气液化工艺软件。 天然气压缩机的动力采用天然气发动机,小负荷电设备用天然气发电机组供电,解决了边远地区无电或电力紧张的难题。由于边远地区无集输管线可利用,将未能液化的天然气循环压缩,以提高整套装置的天然气液化率。
装置采用一乙醇胺法( MK-4 )脱除 CO2 。由于处理量小,脱二氧化碳的吸收塔和再生塔应采用高效填料塔 [16] 。由于混合制冷剂,国内没有成熟的技术和设计、运行管理经验,仪表控制系统较复杂。同时考虑到原料气中甲烷含量高,有压力能可以利用。故采用天然气直接膨胀制冷作为天然气液化循环工艺[17]。气波制冷属于等熵膨胀过程,气波制冷机是在热分离机的基础上,运用气体波运动的理论研制的。在结构上吸收了热分离机的一些优点,同时增加了微波吸收腔这一关键装置,在原理上与热分离机存在明显不同,更加有效地利用气体的压力,提高了制冷效率。
2.2.7 哈尔滨燃气工程设计研究院与哈尔滨工业大学
LNG 系统主要包括天然气预处理、天然气的低温液化、天然气的低温储存及天然气的气化和输出等[18]。经过处理的天然气通过一个多级单混冷凝过程被液化,制冷压缩机是由天然气发动机驱动。 LNG 储罐为一个双金属壁的绝热罐,内罐和外罐分别是由镍钢和碳钢制成 [19] 。
循环气体压缩机一般采用天然气驱动,可节省运行费用而使投资快速收回。压缩机一般采用非润滑式特殊设计,以避免天然气被润滑油污染[20]。采用装有电子速度控制系统的透平,而且新型透平的最后几级叶片用钻合金制造,改善了机械运转。安装于透平压缩机上的新型离合器是挠性的,它们的可靠性比较高,还可以调整间隙。
2. 低温甲醇洗工艺
德国林德(LINDE)公司低温甲醇洗装置。采用的是“一步法五塔流程”即流程中设置了五个塔。五个塔分别是:
C-401 洗涤塔 作用:利用甲醇在低温下洗涤脱除工艺气中的CO2、H2S和COS等,净[wiki]化工[/wiki]艺气;
浮阀塔 共有86块塔板
C-402 CO2解析塔 作用:减压解吸溶解于甲醇中的CO2并生产无硫CO2产品气, 回收冷量。
浮阀塔 共有68块塔板
C-403 H2S浓缩塔 作用:进一步解吸溶解于甲醇中的CO2,回收冷量;同时浓缩溶解在甲醇中的H2S。
浮阀塔 共有87块塔板
C-404 热再生 作用:对甲醇进行彻底的热再生,使其中的H2S以及CO2等 彻底解吸获得贫甲醇和富H2S酸气。
浮阀塔 共有30块塔板
C-405 甲醇/水分离 作用:实现甲醇和水的分离,回收甲醇同时保证循环甲醇中的水含量。
筛板塔 共有51块塔板
3. 煤制甲醇工艺
煤制甲醇工艺
气化
a)煤浆制备
由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。
为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。
煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。
为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。
b)气化
在本工段,煤浆与氧进行部分氧化反应制得粗合成气。
煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应:
CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S
CO+H2O—→H2+CO2
反应在6.5MPa(G)、1350~1400℃下进行。
气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。
离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。
气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。
气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。
c)灰水处理
本工段将气化来的黑水进行渣水分离,处理后的水循环使用。
从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。
闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。
闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。
洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环使用。
2)变换
在本工段将气体中的CO部分变换成H2。
本工段的化学反应为变换反应,以下列方程式表示:
CO+H2O—→H2+CO2
由气化碳洗塔来的粗水煤气经气液分离器分离掉气体夹带的水分后,进入气体过滤器除去杂质,然后分成两股,一部分(约为54%)进入原料气预热器与变换气换热至305℃左右进入变换炉,与自身携带的水蒸汽在耐硫变换催化剂作用下进行变换反应,出变换炉的高温气体经蒸汽过热器与甲醇合成及变换副产的中压蒸汽换热、过热中压蒸汽,自身温度降低后在原料气预热器与进变换的粗水煤气换热,温度约335℃进入中压蒸汽发生器,副产4.0MPa蒸汽,温度降至270℃之后,进入低压蒸汽发生器温度降至180℃,然后进入脱盐水加热器、水冷却器最终冷却到40℃进入低温甲醇洗1#吸收系统。
另一部分未变换的粗水煤气,进入低压蒸汽发生器使温度降至180℃,副产0.7MPa的低压蒸汽,然后进入脱盐水加热器回收热量,最后在水冷却器用水冷却至40℃,送入低温甲醇洗2#吸收系统。
气液分离器分离出来的高温工艺冷凝液送气化工段碳洗塔。
气液分离器分离出来的低温冷凝液经汽提塔用高压闪蒸气和中压蒸汽汽提出溶解在水中的CO2、H2S、NH3后送洗涤塔给料罐回收利用;汽提产生的酸性气体送往火炬。
3)低温甲醇洗
本工段采用低温甲醇洗工艺脱除变换气中CO2、全部硫化物、其它杂质和H2O。
a)吸收系统
本装置拟采用两套吸收系统,分别处理变换气和未变换气,经过甲醇吸收净化后的变换气和未变换气混合,作为甲醇合成的新鲜气。
由变换来的变换气进入原料气一级冷却器、氨冷器、进入分离器,出分离器的变换气与循环高压闪蒸气混合后,喷入少量甲醇,以防止变换气中水蒸气冷却后结冰,然后进入原料气二级冷却器冷却至-20℃,进入变换气甲醇吸收塔,依次脱除H2S+COS、CO2后在-49℃出吸收塔,然后经二级原料气冷却器,一级原料气冷却器复热后去甲醇合成单元。净化气中CO2含量约3.4%,H2S+COS<0.1PPm。
来自甲醇再生塔经冷却的甲醇-49℃从甲醇吸收塔顶进入,吸收塔上段为CO2吸收段,甲醇液自上而下与气体逆流接触,脱除气体中CO2,CO2的指标由甲醇循环量来控制。中间二次引出甲醇液用氨冷器冷却以降低由于溶解热造成的温升。在吸收塔下段,引出的甲醇液大部分进入高压闪蒸器;另一部分溶液经氨冷器冷却后回流进入H2S吸收段以吸收变换气中的H2S和COS,自塔底出来的含硫富液进入H2S浓缩塔。为减少H2和CO损失,从高压闪蒸槽闪蒸出的气体加压后送至变换气二级冷却器前与变换气混合,以回收H2和CO。
未变换气的吸收流程同变换气的吸收流程。
b)溶液再生系统
未变换气和变换气溶液再生系统共用一套装置。
从高压闪蒸器上部和底部分别产生的无硫甲醇富液和含硫甲醇富液进入H2S浓缩塔,进行闪蒸汽提。甲醇富液采用低压氮气汽提。高压闪蒸器上部的无硫甲醇富液不含H2S从塔上部进入,在塔顶部降压膨胀。高压闪蒸器下部的含硫甲醇富液从塔中部进入,塔底加入的氮气将CO2汽提出塔顶,然后经气提氮气冷却器回收冷量后,作为尾气高点放空。
富H2S甲醇液自H2S浓缩塔底出来后进热再生塔给料泵加压,甲醇贫液冷却器换热升温进甲醇再生塔顶部。甲醇中残存的CO2以及溶解的H2S由再沸器提供的热量进行热再生,混和气出塔顶经多级冷却分离,甲醇一级冷凝液回流,二级冷凝液经换热进入H2S浓缩塔底部。分离出的酸性气体去硫回收装置。
从原料气分离器和甲醇再生塔底出来的甲醇水溶液经泵加压后甲醇水分离器,通过蒸馏分离甲醇和水。甲醇水分离器由再沸器提供。塔顶出来的气体送到甲醇再生塔中部。塔底出来的甲醇含量小于100PPm的废水送水煤浆制备工序或去全厂污水处理系统。
c)氨压缩制冷
从净化各制冷点蒸发后的-33℃气氨气体进入氨液分离器,将气体中的液粒分离出来后进入离心式制冷压缩机一段进口压缩至冷凝温度对应的冷凝压力,然后进入氨冷凝器。气氨通过对冷却水放热冷凝成液体后,靠重力排入液氨贮槽。液氨通过分配器送往各制冷设备。
4)甲醇合成及精馏
a)甲醇合成
经甲醇洗脱硫脱碳净化后的产生合成气压力约为5.6MPa,与甲醇合成循环气混合,经甲醇合成循环气压缩机增压至6.5MPa,然后进入冷管式反应器(气冷反应器)冷管预热到235℃,进入管壳式反应器(水冷反应器)进行甲醇合成,CO、CO2和H2在Cu-Zn催化剂作用下,合成粗甲醇,出管壳式反应器的反应气温度约为240℃,然后进入气冷反应器壳侧继续进行甲醇合成反应,同时预热冷管内的工艺气体,气冷反应器壳侧气体出口温度为250℃,再经低压蒸汽发生器,锅炉给水加热器、空气冷却器、水冷器冷却后到40℃,进入甲醇分离器,从分离器上部出来的未反应气体进入循环气压缩机压缩,返回到甲醇合成回路。
一部分循环气作为弛放气排出系统以调节合成循环圈内的惰性气体含量,合成弛放气送至膜回收装置,回收氢气,产生的富氢气经压缩机压缩后作为甲醇合成原料气;膜回收尾气送至甲醇蒸汽加热炉过热甲醇合成反应器副产的中压饱和蒸汽(2.5MPa),将中压蒸汽过热到400℃。
粗甲醇从甲醇分离器底部排出,经甲醇膨胀槽减压释放出溶解气后送往甲醇精馏工段。
系统弛放气及甲醇膨胀槽产生的膨胀气混合送往工厂锅炉燃料系统。
甲醇合成水冷反应器副产中压蒸汽经变换过热后送工厂中压蒸汽管网。
b)甲醇精馏
从甲醇合成膨胀槽来的粗甲醇进入精馏系统。精馏系统由预精馏塔、加压塔、常压塔组成。预精馏塔塔底出来的富甲醇液经加压至0.8MPa、80℃,进入加压塔下部,加压塔塔顶气体经冷凝后,一部分作为回流,一部分作为产品甲醇送入贮存系统。由加压塔底出来的甲醇溶液自流入常压塔下塔进一步蒸馏,常压塔顶出来的回流液一部分回流,一部分作为精甲醇经泵送入贮存系统。常压塔底的含甲醇的废水送入磨煤工段作为磨煤用水。在常压塔下部设有侧线采出,采出甲醇、乙醇和水的混合物,由汽提塔进料泵送入汽提塔,汽提塔塔顶液体产品部分回流,其余部分作为产品送至精甲醇中间槽或送至粗甲醇贮槽。汽提塔下部设有侧线采出,采出部分异丁基油和少量乙醇,混合进入异丁基油贮槽。汽提塔塔底排出的废水,含少量甲醇,进入沉淀池,分离出杂醇和水,废水由废水泵送至废水处理装置。
c)中间罐区
甲醇精馏工序临时停车时,甲醇合成工序生产的粗甲醇,进入粗甲醇贮罐中贮存。甲醇精馏工序恢复生产时,粗甲醇经粗甲醇泵升压后送往甲醇精馏工序。
甲醇精馏工序生产的精甲醇,进入甲醇计量罐中。经检验合格的精甲醇用精甲醇泵升压送往成品罐区甲醇贮罐中贮存待售。
5)空分装置
本装置工艺为分子筛净化空气、空气增压、氧气和氮气内压缩流程,带中压空气增压透平膨胀机,采用规整填料分馏塔,全精馏制氩工艺。
原料空气自吸入口吸入,经自洁式空气过滤器除去灰尘及其它机械杂质。过滤后的空气进入离心式空压机经压缩机压缩到约0.57MPa(A),然后进入空气冷却塔冷却。冷却水为经水冷塔冷却后的水。空气自下而上穿过空气冷却塔,在冷却的同时,又得到清洗。
经空冷塔冷却后的空气进入切换使用的分子筛纯化器空气中的二氧化碳、碳氢化合物和水分被吸附。分子筛纯化器为两只切换使用,其中一只工作时,另一只再生。纯化器的切换周期约为4小时,定时自动切换。
净化后的空气抽出一小部分,作为仪表空气和工厂空气。
其余空气分成两股,一股直接进入低压板式换热器,从换热器底部抽出后进入下塔。另外一股进入空气增压机。
经过空气增压机的中压空气分成两部分,一部分进入高压板式换热器,冷却后进入低温膨胀机,膨胀后空气进入下塔精馏。另一部分中压空气经过空气增压机二段压缩为高压空气,进入高压板式换热器,冷却后经节流阀节流后进入下塔。
空气经下塔初步精馏后,获得富氧液空、低纯液氮、低压氮气,其中富氧液空和低纯液氮经过冷器过冷后节流进入上塔。经上塔进一步精馏后,在上塔底部获得液氧,并经液氧泵压缩后进入高压板式换热器,复热后出冷箱,进入氧气管网。
在下塔顶部抽取的低压氮气,进入高压板式换热器,复热后送至全厂低压氮气管网。
从上塔上部引出污氮气经过冷器、低压板式换热器和高压板式换热器复热出冷箱后分成两部分:一部分进入分子筛系统的蒸汽加热器,作为分子筛再生气体,其余污氮气去水冷塔。
从上塔中部抽取一定量的氩馏份送入粗氩塔,粗氩塔在结构上分为两段,第二段氩塔底部的回流液经液体泵送入第一段顶部作为回流液,经粗氩塔精馏得到99.6?Ar,2ppmO2的粗氩,送入精氩塔中部,经精氩塔精馏在精氩塔底部得到纯度为99.999%Ar的**氩作为产品抽出送入进贮槽。