1. 这种制冷元器件名叫什么
半导体制冷片,电子制冷板.
2. 饮水机制冷原理 饮水机如何制冷
夏天饮水量激增,饮水机销售也随着夏天的到来而迎来了高峰,尤其是具有制冷功能的饮水机非常畅销。在这里小编要介绍的是饮水机制冷原理,一起来看看吧。
一、饮水机制冷原理
要了解饮水机制冷原理首先要知道饮水机的分类。饮水机制冷原理按制冷方式分类可分为压缩机制冷型和电子制冷型两类,压缩制冷的原理跟冰箱原理差不多,而电子制冷则是通过芯片来制冷的。
饮水机制冷原理是什么之压缩机制冷型饮水机:
压缩机制冷型饮水机利用绕在不锈钢水箱壁外的蒸发器,吸收热量使水降温,其制冷容量在3l左右,制冷功率在75-110w之间,具有整机可靠性高、制冷效率高、制冷速度快、冷水供应量大等特点,适合饮水人数较多的家庭、单位使用。
饮水机制冷原理是什么之电子制冷型饮水机:
电子制冷型饮水机制冷原理则是采用半导体元件制冷,具有功耗小、运行噪声低、无污染、自动控制和售价低等特点。制冷速度较慢,供应冷水量较少,适合饮水人数少的家庭、单位使用。
二、饮水机如何制冷
电子制冷型饮水机制冷原理跟冰箱制冷原理相同,下面我们就重点了解一下压缩式制冷饮水机如何制冷。
当按下压缩式制冷饮水机制冷开关,压缩机启动运行,将蒸发器中已吸热气化的制冷剂蒸汽吸回,并随之压缩成高温、高压气体,送至冷凝器,经冷凝器向外界空气中散热冷凝成高压液体,再经毛细管节流降压流入蒸发器内,吸收冷胆热量而使水温下降,然后被压缩机吸回。如此循环以达到降温的目的。
当水温随时间降到设定温度时,制冷温控器触点断开,制冷绿色指示灯熄灭,压缩机停转,转入保温工况。断电后水温逐渐回升,当升到设定温度时,制冷温控器触点动作闭合,接通电源绿色指示灯亮,压缩机运行。如此循环,将水温控制在4-12℃之间。
以上就是小编为您介绍的饮水机制冷原理,希望能够帮助到您。更多关于饮水机制冷原理的相关资讯,请继续关注土巴兔装修网。
3. 什么是半导体制冷
导语:半导体这个东西对于大家来说肯能是比较陌生的,因为半导体是一种科研上用的东西,在我们日常生活中是比较少见的。我们日常生活中见到的主要是一些半导体制作的产品,比如说我们常用的半导体收音机以及半导体制作的其他的一些产品。最近几年来,随着科技的发展,人们又将半导体用于了制冷技术。那么到底什么是半导体呢?半导体制冷技术究竟是什么样的呢,它的工作原理是什么样的呢?今天小编就来给大家简单的介绍一下什么是半导体以及什么是半导体制冷技术。
什么是半导体:
要想很好的了解什么是半导体制冷技术,首先就必须要明确半导体的概念,也就是要知道什么是半导体以及和半导体相关的一些信息。半导体中的导指的就是是否导电的意思。半导体指的就是在平常的温度下,在导体和绝缘体之间的材料。半导体既不是导体又是绝缘体,而是介于二者之间的一种神奇的材料。半导体的最大的优点就是它的导电性可以受到人们的控制,人们只要改变温度就可以改变半导体的导电性,这就是人们青睐半导体的原因之一。
半导体制冷:
半导体因为它的独特的优点,所以它的作用是非常大的,而且它的用途非常广泛。半导体用于制冷就是近几年来人们开发利用半导体的一个很好的例子。半导体材料在最近几年里呈现出了迅速发展的趋势,所以各国科研部门都在加大对于半导体制冷技术的研究。半导体制冷其实是一种热电制冷,因为热电器本来就是一种半导体,所以人们把它叫做半导体制冷器。半导体制冷器的制冷效果是非常好的,所以一直是人们青睐的对象。
半导体制冷的应用:
既然半导体制冷器有这么好的效果,这么多的优点,那么半导体制冷技术都会应用到那些领域呢?接下来小编介绍一下。一般来说半导体的应用领域主要有农业领域、医疗领域以及日常生活等方面。农业方面主要是用来给温室大棚控制温度;医疗方面主要是用来研究一些新的技术;日常主要是用来给家用电器降温。
以上就是小编今天为大家介绍的关于半导体以及半导体制冷的一些介绍。如果大家对半导体制冷感兴趣的话,可以了解一下具体的内容。
4. 集成电路块制冷的原理是什么~
半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即: Qab=Iπabπab称做导体A和B之间的相对帕尔帖系数 ,单位为[V], πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab帕尔帖系数的大小取决于构成闭合回路的材料的性质和接点温度,其数值可以由赛贝克系数αab[V.K-1]和接头处的绝对温度T[K]得出πab=αabT与塞贝克效应相,帕尔帖系也具有加和性,即:Qac=Qab+Qbc=(πab+πbc)I因此绝对帕尔帖系数有πab=πa- πb金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。制冷材料AVIoffe和AFIoffe指出,在同族元素或同种类型的化合物质间,晶格热导率Kp随着平均原子量A的增长呈下降趋势。RWKeyes通过实验推断出,KpT近似于Tm3/2ρ2/3A-7/6成比例,即近似与原子量A成正比,因此通常应选取由重元素组成的化合物作为半导体制冷材料。半导体制冷材料的另一个巨大发展是1956年由AFIoffe等提出的固溶体理论,即利用同晶化合物形成类质同晶的固溶体。固溶体中掺入同晶化合物引入的等价置换原子产生的短程畸变,使得声子散射增加,从而降低了晶格导热率,而对载流子迁移率的影响却很小,因此使得优值系数增大。例如50%Bi2Te3-50%Bi2Se3固溶体与Bi2Te3相比较,其热导率降低33%,而迁移率仅稍有增加,因而优值系数将提高50%到一倍。Ag(1-x)Cu(x)Ti Te、Bi-Sb合金和YBaCuO超导材料等曾经成为半导体制冷学者的研究对象,并通过实验证明可以成为较好的低温制冷材料。下面将分别介绍这几种热电性能较好的半导体制冷材料。二元固溶体,无论是P型还是N型,晶格热导率均比Bi2Te3有较大降低,但N型材料的优值系数却提高很小,这可能是因为在Bi2Te3中引入Bi2Se3时,随着Bi2Se3摩尔含量的不同呈现出两种不同的导电特性,势必会使两种特性都不会很强,通过合适的掺杂虽可以增强材料的导电特性,提高材料的优值系数,但归根结底还是应该在本题物质上有所突破。
5. 有没有通电能致冷(制冷)的电子元器件
有啊,这个叫做珀尔帖效应——当电流通过热电偶时,其中一个结点散发热而另一个结点吸收热,这个现象由法国物理学家Jean Peltier在1834年发现。而电偶一般是由半导体所组成的装置。
6. 电冰箱有哪些电子元件
制冷压缩机,温度控制器,散热器(铜管),调温开关(设定冷藏室温度),照明灯泡,磁吸门,自动控制除霜设备,显示器(冷藏温度显示)等.
7. 饮水机上的电子制冷的原理是什么
有两种类型
1.半导体直冷式冷热饮水机(常用的就是这种,就是采用制冷片)
按下制冷开关后,交流电压经电源变压器降压、整流二极管作全波整流以及电容滤波后,输出直流电压供半导体致冷组件制冷和风机排风,同时,制冷指示灯点亮。由于直冷式冷热饮水机不设自动控温,因此开机后制冷指示灯常亮。
2.压缩式制冷饮水机
当按下压缩式制冷饮水机制冷开关,制冷绿色指示灯亮,压缩机启动运行,将蒸发器中已吸热气化的制冷剂蒸汽吸回,并随之压缩成高温、高压气体,送至冷凝器,经冷凝器向外界空气中散热冷凝成高压液体,再经毛细管节流降压流入蒸发器内,吸收冷胆热量而使水温下降,然后被压缩机吸回。如此循环,达到降温的目的。当水温随时间降到设定温度时,制冷温控器触点断开,制冷绿色指示灯熄灭,压缩机停转,转入保温工况。断电后水温逐渐回升,当升到设定温度时,制冷温控器触点动作闭合,接通电源绿色指示灯亮,压缩机运行。如此循环,将水温控制在4-12℃之间。 望采纳答案,感谢了。
8. 半导体制冷原理
半导体制冷原理
半导体制冷又称电子制冷,或者温差电制冷,是从50年代发展起来的一门介于制冷技术和半导体技术边缘的学科,它利用特种半导体材料构成的P-N结,形成热电偶对,产生珀尔帖效应,即通过直流电制冷的一种新型制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。
半导体制冷器特点
半导体制冷器具有无噪声、无振动、不需制冷剂、体积小、重量轻等特点,且工作可靠,操作简便,易于进行冷量调节。但它的制冷系数较小,电耗量相对较大,故它主要用于耗冷量小和占地空间小的场合,如电子设备和无线电通信设备中某些元件的冷却。
有的也用于家用冰箱,但不经济。半导体制冷片是一个热传递的工具。当一块N型半导体材料和一块P型半导体材料联结成的热电偶对中有电流通过时,两端之间就会产生热量转移,热量就会从一端转移到另一端,从而产生温差形成冷热端。
9. 电制冷原理
电制冷原理:、
热电制冷的机理完全不同于蒸汽压缩式制冷、吸收式制冷。它是以温差电现象为基础的制冷方法。
用两种不同的金属丝相互连接在一起,形成一个闭合电路,把两个连接点分别放在温度不同的两处,就会在两个连接点之间产生一个电势差——接触电动势。同时闭合电路中就有电流通过。反过来,将两种不同的金属线相互连接形成的闭合线路已通直流电,会产生两个不同温度的连接点。只要通以直流电,就会是其中一个连接点变热,另一个连接点变冷。这就是帕尔帖效应,亦称温差电现象。生产冷端就是我们需要的制冷。
10. 有没有通电能致冷(制冷)的电子元器件哪里有卖,什么价格
半导体致冷器的工作原理是:当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定。你可以在淘宝上找找。