① 王海涛的经典论文
太阳能热泵系统的稳定性
王海涛, 王造奇
( 1. 安徽建筑工业学院 环境工程学院, 安徽 合肥 230027; 2. 中国科学技术大学 热科学和能源工程系, 安徽 合肥 230022)
摘 要: 在相同的压缩机频率、冷凝水温和相同的电子膨胀阀开度下, 文章对 PV/ T- SAH P 系统的动态性能
进行了实验和分析, 就不同太阳辐照度和环境温度对 PV/ T- SAH P 系统性能的影响进行了对比, 提出了光伏-
太阳能热泵( PV/ T- SAH P)的系统稳定性原理, 指出 PV/ T- SAH P 系统需要解决的一些问题。
关键词: PV/ T- SAH P 系统; 最小过热度; 稳定性
中图分类号: TK519 文献标识码: A 文章编号: 1003- 5060( 2008) 07- 1008- 04
在太阳能热泵系统中, 蒸发器所吸收的热能大多数来自太阳能, 太阳辐照度随着季节、早晚时差的不同而不同, 而压缩机的容量又是额定的, 因此文献[ 1] 指出, 在其他条件一定的情况下, 集热器的容量和压缩机的容量是否匹配直接影响系统的工作性能[ 1- 6] 。由于系统通常在非设计工况下运行, 按设计工况确定的集热器面积与压缩机的容量往往不匹配, 因此提出了一种新型的光热、光电综合利用的直接膨胀式太阳能热泵系统 , 该系统中光伏组件与热泵装置的蒸发器结合成一体, 同时在系统设计时采用变频压缩机和电子膨胀阀( electronic expansionvalve, 简称 EXV ) , 通过改变压缩机容量来解决非设计工况下的不匹配问题。但是在实验中, 该系统出现不稳定情况, 或者称为振荡, 即系统在一定的工况下压缩机功率、各处制冷剂压力和温度等系统参数均发生周期性振荡。系统振荡对其经济性和安全性都是不利的, 所以保证稳定性是系统配置和控制的必要条件。
1 实验装置及电子膨胀阀
PV/ T-SAHP 太阳能热泵系统如图 1 所示。
实验台如图 2 所示, 主要包括温度测量、压力测
量、功率测量、流量测量、辐照强度测量及风速测
量等几大部分。共有测点 53 个, 除工质流量由商
家自带软件单独测量, 其他测点全部由数据采集
仪实时采集记录。
( 1) 数据采集。数据采集仪 Agilent34970A,
配置 HP 34901A 采集模块 3 个, 共 54 个电压采
集通道, 6 个电流采集通道, 实验过程一般 30 s 采
集数据一次。图 1 PV/ T-SAHP 太阳能热泵系统
( 2) 温度测量。采用 01 2 mm 铜康铜热电
偶; 蒸发器进口、蒸发器出口、冷凝器进口、冷凝器
出口、储水箱、压缩机进口、压缩机出口及百叶箱
等共 20 个; 光伏蒸发器内部各处共计 23 个。
( 3) 压力测量。制冷压力专用传感器( Huba506, Sw eden) , 0~ 30 @ 10
2
kPa, 精度? 11 0%,
响应时间小于 5 ms, 负载频率小于 50 Hz; 数量 4
个; 位于蒸发器进口、蒸发器出口、冷凝器进口及
冷凝器出口, 用于观察压缩机、冷凝器、膨胀阀及
蒸发器进出口的压力变化。
( 4) 日照辐射仪。TBQ-2( 锦州, 阳光) 型日
照辐射仪 1 台; 安装位置与光伏蒸发器平行, 该表
为热电效应原理, 感应元件采用绕线电镀式多接
点热电堆。
( 5) 功率传感器。WBP112S91 和 WBI022S
( 四川维博) , 数量 2 个; 分别测试压缩机输入功率
( 交流) 和 PV 模块输出光伏电流( 直流) 。
系统采用浙江三花 DFP( L) 11 6-12 型电子膨
胀阀, 四相步进电机驱动, 开阀脉冲 32 ? 20, 全程
脉冲 500, 使用介质 R22, 阀的开度由研制的控制
器控制。
2 实验结果及分析
21 1 实验条件
2006 年 10 月 14 日、2006 年 11 月 6 日和
2006 年 12 月 2 日, 在合肥地区( 北纬 31b53. , 东
经 117b15. ) 进行了 PV/ T-SAHP 系统在相同的
电子膨胀阀开度( 开度脉冲 400) 、相同的冷凝水
温( 30 e ) 下的性能测试。
测试期间的瞬时气象参数和冷凝水温如图
3、图 4 和图 5 所示。试验过程中, 阀1、阀2、阀5、
阀 6 关闭, 阀 3、阀 4、阀 7、阀 8 开启, 工质流动方
向如图2 所示。压缩机定频( 50 Hz) 运行, 由公共
电网供电。PV 电流输出, 经逆变器逆变后, 由外
界负载消耗。测试期间, 水箱储水 80 kg, 水冷板
式换热器水侧流速 01 217 kg/ s。
2. 2 测试结果及分析
21 21 1 测试结果说明
由于秋天上午易出现多云天气, 为了更好地
观察和对比, 在 3 d 的上午先把水加热到 30 e ,
然后保持冷凝水温不变, 从 11: 21 分开始正式记
录数据。
从图 3 和图 4 可以看出, 3 d 午后的太阳辐照
度变化明显, 易于比较。
从图 6 可以看出系统压缩机功率的变化。
2006 年 10月 14 日测试期间平均环境温度较高
( 271 56 e ) , 当冷凝水温不变时压缩机运行稳定。
11 月 6 日测试期间平均环境温度( 201 71 e ) 比
第 7 期 王海涛, 等: 太阳能热泵系统的稳定性 100910 月 14 日的平均环境温度降低了 61 85 e , 太阳
辐照度和 10 月 14 日相比变化不大, 但压缩机的
功率在测试期间出现了振荡现象。
12 月 2 日平均环境温度( 81 85 e ) 较前 2 次
更低, 而此时压缩机的功率振荡更加剧烈。
如图 7 所示, 说明了系统在不同的太阳辐照
度和环境温度时系统光电效率 Gel 的变化。光电
效率随着环境温度的降低而升高, 环境温度较低
时( 2006 年 12 月 2 日, 测试期间平均环境温度
71 4 e ) , 最高光电效率达到 131 4% 。
与普通光伏模块( 12%) 相比, 光电转换效率
明显提高, 波动很小。
这主要得益于工质蒸发对光伏模块的冷却作
用, 使得 PV/ T-SAHP 系统的光伏电池在高辐照
条件下也能维持在较低的工作温度, 从而保证较
高的光电转换效率。图中 OPS 为蒸发器的工作
过热度。
图 7 测试期间光电效率变化
21 2. 2 测试结果分析
当蒸发器的几何尺寸和热工参数确定后, 在
运行中存在一条最小稳定信号线( M inimum Stable Signal 线, 简称 M SS 线)
[ 8] 。M SS 线以左, 蒸
发器属于不稳定区; M SS 线以右为稳定工作区;
在 MSS 线上则是临界值。图 8 表示了蒸发器
MSS 线与不同静态过热度时的膨胀阀特性线, 当
蒸发器负荷为 Q 时, 制冷系统工作于 A 点时处于
临界稳定状态, 理论上讲为最佳稳定工作点。如
果调小膨胀阀静态过热度, 使工作点处在不稳定
区中, 系统将产生振荡。
图 8 膨胀阀与蒸发器的匹配关系
由 MSS 线理论很容易解释上述现象, 当环境
温度很高时( 2006 年 10 月 14 日) , 集热/ 蒸发器
出口制冷剂过热度很大, 此时系统工作在 MSS 线
的右侧, 处于稳定工作区。当环境温度很低时
( 2006年 12 月 2 日) , 集热/ 蒸发器出口制冷剂过
热度很小, 此时系统工作在 MSS 线的左侧, 处于
不稳定工作区, 压缩机出现剧烈振荡。
PV/ T-SAHP 系统产生振荡, 对系统运行经
济性与安全性均很不利, 由于对系统的稳定性缺
少理论与定量研究, 为确保运行稳定性, 往往片面
地增加蒸发器的运行过热度, 这就降低了蒸发器
的利用率, 因为过热区制冷剂的放热系数还不到
两相区最大放热系数的 1/ 5
[ 8]
。适当减小蒸发器
的运行过热度, 可获得一定的节能效益, 但又不能
1010 合肥工业大学学报( 自然科学版) 第 31 卷盲目地减少过热度, 追求运行经济性而导致系统
产生振荡。只有对蒸发器和膨胀阀本身的动态特
性做出定量分析, 并找出系统的临界稳定区( MSS
线) 与条件, 找出影响系统稳定性的各种因素, 给
出其定量关系, 才能在保证系统稳定性前提下, 最
大限度地利用蒸发器的有效传热面积, 获得最高
的经济性。3 本系统需要解决的问题
PV/ T-SAHP 系统中配置变频压缩机和电子
膨胀阀的关键问题, 是以保证系统稳定性和变容
量范围内系统最佳运行工况为目标, 确定合理的
控制方案和控制算法。在该系统的研究开发过程
中, 还有许多理论问题和实际应用问题要解决。
31 1 系统静态和动态特性
深入了解控制对象的特性是寻求合理的控制
方案和控制算法的基础。对系统中各部件的静态
和动态特性进行理论分析和试验研究, 用理论建
模的方法, 得出各部件的静态模型和动态模型。
然后根据各部件参数之间关系, 建立系统静
态和动态模型。根据模拟计算和试验研究的结
果, 分析系统静态和动态特性。
31 2 系统稳定性原则
由于该系统有变频压缩机和电子膨胀阀 2 个
流量调节装置, 所以同样存在系统稳定性问题。
在以上系统静态和动态研究的基础上, 分析
满足系统稳定性条件下的电子膨胀阀特性要求,
得出系统稳定性区域。
31 3 控制方案和控制算法
为减少电子膨胀阀流量调节对过热度的响应
滞后, 电子膨胀阀对蒸发器出口端制冷剂过热度
的检测可通过热敏电阻或压力信号。用 2 只热敏
电阻检测时, 一个测量蒸发温度, 另一个测量蒸发
器出口温度; 采用压力信号对蒸发器出口端压力
进行测量, 并经物性程序将其转化为蒸发温度。
由于蒸发器内压力的变化比温度的变化迅速, 因
此控制器能及时地反应过热度的变化。
电子膨胀阀流量调节对过热度的响应滞后问
题, 也可以采用前馈加反馈的复合调节方法解决。
如将压缩机转速作为前馈信号, 根据转速变化调
节电子膨胀阀供液量, 再结合反馈进行复合调节。
由于系统的非线性特性, 采用模糊算法有一
定优势。也可考虑 PID 控制算法和模糊控制算
法结合使用, 发挥各自算法的优点, 达到较好的控
制效果。
4 结 论
( 1) 变频压缩机和电子膨胀阀组成的 PV/ TSA HP 系统存在系统振荡问题。
( 2) 变频压缩机和电子膨胀阀组成的 PV/ TSA HP 系统是一种最有发展前途的系统配置, 代
表太阳能热泵系统的发展方向。
需要对系统静态和动态特性进行深入了解,
确定合理的控制方案和控制算法, 以保证系统稳
定性和变容量范围内系统最佳运行。
[ 参 考 文 献]
[ 1] Chaturvedi S K, Ab azeri M. T ransient simul ation of a capacit y-m o lat ed, direc-t expan sion, sola-r assist ed heat
pum p[ J] . Solar Energy, 1987, 39: 421- 428.
[ 2] It o S, M iura N, Wan g K. Performance of a heat pump using dir ect expansion s ol ar collect ors [ J] . Solar Energy,
1999, 65( 3) : 189- 196.
[3] It o S , M iura N, T ak ano Y. Studies of h eat pu mps using direct expan sion t ype solar collect ors[ J] . J ou rnal of Solar Ener gy Engin eering, 2005, 127: 60- 64
[ 4] Chatu rvedi S K, Chen D T , Kheireddin e A. T hermal perf orman ce of a variab le capacity direct ex pan sion s ol ar-assist ed heat pu mp [ J] . Energy Conversion and Manag ement,
1998, 39( 3) : 189- 196.
[ 5] H aw lader M N A, Chou S K, Ullah M Z. T he perf ormance
of a solar assist ed heat pum p w at er h eating syst em[ J] . Applied T hermal E ngineering, 2000, 21( 10) : 1049- 1065
[6] H uang B J, Chyng J P. Performance charact eristic of int egral t ype sola-r assist ed h eat pump [ J] . Solar Energy, 2001,
71: 403- 414
[ 7] H ulle Z R. T he MSS line: a new ap proach t o hu nting pr oblem[ J] . ASH RAE Journ al, 1972, 10: 43- 46.
[ 8] Chen W, C hen Zhijiu, Zh u Ruiqi, et al. Experiment al investigation of a m inimum stabl e superheat control s yst em of an
evaporat or[ J] . Int ernational Jou rnal of Refrigeration, 2002,
25: 1137- 1142。
② 王海涛的经典论文
太阳能热泵系统的稳定性
王海涛, 王造奇
( 1. 安徽建筑工业学院 环境工程学院, 安徽 合肥 230027; 2. 中国科学技术大学 热科学和能源工程系, 安徽 合肥 230022)
摘 要: 在相同的压缩机频率、冷凝水温和相同的电子膨胀阀开度下, 文章对 PV/ T- SAH P 系统的动态性能
进行了实验和分析, 就不同太阳辐照度和环境温度对 PV/ T- SAH P 系统性能的影响进行了对比, 提出了光伏-
太阳能热泵( PV/ T- SAH P)的系统稳定性原理, 指出 PV/ T- SAH P 系统需要解决的一些问题。
关键词: PV/ T- SAH P 系统; 最小过热度; 稳定性
在太阳能热泵系统中, 蒸发器所吸收的热能大多数来自太阳能, 太阳辐照度随着季节、早晚时差的不同而不同, 而压缩机的容量又是额定的, 因此文献[ 1] 指出, 在其他条件一定的情况下, 集热器的容量和压缩机的容量是否匹配直接影响系统的工作性能[ 1- 6] 。由于系统通常在非设计工况下运行, 按设计工况确定的集热器面积与压缩机的容量往往不匹配, 因此提出了一种新型的光热、光电综合利用的直接膨胀式太阳能热泵系统,该系统中光伏组件与热泵装置的蒸发器结合成一体, 同时在系统设计时采用变频压缩机和电子膨胀阀( electronic ex pansionvalve, 简称 EXV ) , 通过改变压缩机容量来解决非设计工况下的不匹配问题。但是在实验中, 该系统出现不稳定情况, 或者称为振荡, 即系统在一定的工况下压缩机功率、各处制冷剂压力和温度等系统参数均发生周期性振荡。系统振荡对其经济性和安全性都是不利的, 所以保证稳定性是系统配置和控制的必要条件。
1 实验装置及电子膨胀阀
PV/ T-SAHP 太阳能热泵系统如图 1 所示。
实验台如图 2 所示, 主要包括温度测量、压力测
量、功率测量、流量测量、辐照强度测量及风速测
量等几大部分。共有测点 53 个, 除工质流量由商
家自带软件单独测量, 其他测点全部由数据采集
仪实时采集记录。
( 1) 数据采集。数据采集仪 Agilent34970A,
配置 HP 34901A 采集模块 3 个, 共 54 个电压采
集通道, 6 个电流采集通道, 实验过程一般 30 s 采
集数据一次。图 1 PV/ T-SAHP 太阳能热泵系统
( 2) 温度测量。采用 01 2 mm 铜康铜热电
偶; 蒸发器进口、蒸发器出口、冷凝器进口、冷凝器
出口、储水箱、压缩机进口、压缩机出口及百叶箱
等共 20 个; 光伏蒸发器内部各处共计 23 个。
( 3) 压力测量。制冷压力专用传感器( Huba506, Sw eden) , 0~ 30 @ 10
2
kPa, 精度? 11 0%,
响应时间小于 5 ms, 负载频率小于 50 Hz; 数量 4
个; 位于蒸发器进口、蒸发器出口、冷凝器进口及
冷凝器出口, 用于观察压缩机、冷凝器、膨胀阀及
蒸发器进出口的压力变化。
( 4) 日照辐射仪。TBQ-2( 锦州, 阳光) 型日
照辐射仪 1 台; 安装位置与光伏蒸发器平行, 该表
为热电效应原理, 感应元件采用绕线电镀式多接
点热电堆。
1. P1 ~ P 4 压力传感器 2. T 1 ~ T41 热电偶 3. W1 ~ W2 功率传感器 4. F 1 ~ F 2 流量计
图 2 PV/ T-SAH P 系统试验台原理图
( 5) 功率传感器。WBP112S91 和 WBI022S
( 四川维博) , 数量 2 个; 分别测试压缩机输入功率
( 交流) 和 PV 模块输出光伏电流( 直流) 。
系统采用浙江三花 DFP( L) 11 6-12 型电子膨
胀阀, 四相步进电机驱动, 开阀脉冲 32 ? 20, 全程
脉冲 500, 使用介质 R22, 阀的开度由研制的控制
器控制。
2 实验结果及分析
21 1 实验条件
2006 年 10 月 14 日、2006 年 11 月 6 日和
2006 年 12 月 2 日, 在合肥地区( 北纬 31b53. , 东
经 117b15. ) 进行了 PV/ T-SAHP 系统在相同的
电子膨胀阀开度( 开度脉冲 400) 、相同的冷凝水
温( 30 e ) 下的性能测试。
测试期间的瞬时气象参数和冷凝水温如图
3、图 4 和图 5 所示。试验过程中, 阀1、阀2、阀5、
阀 6 关闭, 阀 3、阀 4、阀 7、阀 8 开启, 工质流动方
向如图2 所示。压缩机定频( 50 Hz) 运行, 由公共
电网供电。PV 电流输出, 经逆变器逆变后, 由外
界负载消耗。测试期间, 水箱储水 80 kg, 水冷板
式换热器水侧流速 01 217 kg/ s。
2. 2 测试结果及分析
21 21 1 测试结果说明
由于秋天上午易出现多云天气, 为了更好地
观察和对比, 在 3 d 的上午先把水加热到 30 e ,
然后保持冷凝水温不变, 从 11: 21 分开始正式记
录数据。
从图 3 和图 4 可以看出, 3 d 午后的太阳辐照
度变化明显, 易于比较。
从图 6 可以看出系统压缩机功率的变化。
2006 年 10月 14 日测试期间平均环境温度较高
( 271 56 e ) , 当冷凝水温不变时压缩机运行稳定。
11 月 6 日测试期间平均环境温度( 201 71 e ) 比
第 7 期 王海涛, 等: 太阳能热泵系统的稳定性 100910 月 14 日的平均环境温度降低了 61 85 e , 太阳
辐照度和 10 月 14 日相比变化不大, 但压缩机的
功率在测试期间出现了振荡现象。
12 月 2 日平均环境温度( 81 85 e ) 较前 2 次
更低, 而此时压缩机的功率振荡更加剧烈。
如图 7 所示, 说明了系统在不同的太阳辐照
度和环境温度时系统光电效率 Gel 的变化。光电
效率随着环境温度的降低而升高, 环境温度较低
时( 2006 年 12 月 2 日, 测试期间平均环境温度
71 4 e ) , 最高光电效率达到 131 4% 。
与普通光伏模块( 12%) 相比, 光电转换效率
明显提高, 波动很小。
这主要得益于工质蒸发对光伏模块的冷却作
用, 使得 PV/ T-SAHP 系统的光伏电池在高辐照
条件下也能维持在较低的工作温度, 从而保证较
高的光电转换效率。图中 OPS 为蒸发器的工作
过热度。
图 7 测试期间光电效率变化
21 2. 2 测试结果分析
当蒸发器的几何尺寸和热工参数确定后, 在
运行中存在一条最小稳定信号线( M inimum Stable Signal 线, 简称 M SS 线)
[ 8] 。M SS 线以左, 蒸
发器属于不稳定区; M SS 线以右为稳定工作区;
在 MSS 线上则是临界值。图 8 表示了蒸发器
MSS 线与不同静态过热度时的膨胀阀特性线, 当
蒸发器负荷为 Q 时, 制冷系统工作于 A 点时处于
临界稳定状态, 理论上讲为最佳稳定工作点。如
果调小膨胀阀静态过热度, 使工作点处在不稳定
区中, 系统将产生振荡。
图 8 膨胀阀与蒸发器的匹配关系
由 MSS 线理论很容易解释上述现象, 当环境
温度很高时( 2006 年 10 月 14 日) , 集热/ 蒸发器
出口制冷剂过热度很大, 此时系统工作在 MSS 线
的右侧, 处于稳定工作区。当环境温度很低时
( 2006年 12 月 2 日) , 集热/ 蒸发器出口制冷剂过
热度很小, 此时系统工作在 MSS 线的左侧, 处于
不稳定工作区, 压缩机出现剧烈振荡。
PV/ T-SAHP 系统产生振荡, 对系统运行经
济性与安全性均很不利, 由于对系统的稳定性缺
少理论与定量研究, 为确保运行稳定性, 往往片面
地增加蒸发器的运行过热度, 这就降低了蒸发器
的利用率, 因为过热区制冷剂的放热系数还不到
两相区最大放热系数的 1/ 5
[ 8]
。适当减小蒸发器
的运行过热度, 可获得一定的节能效益, 但又不能
1010 合肥工业大学学报( 自然科学版) 第 31 卷盲目地减少过热度, 追求运行经济性而导致系统
产生振荡。只有对蒸发器和膨胀阀本身的动态特
性做出定量分析, 并找出系统的临界稳定区( MSS
线) 与条件, 找出影响系统稳定性的各种因素, 给
出其定量关系, 才能在保证系统稳定性前提下, 最
大限度地利用蒸发器的有效传热面积, 获得最高
的经济性。
3 本系统需要解决的问题
PV/ T-SAHP 系统中配置变频压缩机和电子
膨胀阀的关键问题, 是以保证系统稳定性和变容
量范围内系统最佳运行工况为目标, 确定合理的
控制方案和控制算法。在该系统的研究开发过程
中, 还有许多理论问题和实际应用问题要解决。
31 1 系统静态和动态特性
深入了解控制对象的特性是寻求合理的控制
方案和控制算法的基础。对系统中各部件的静态
和动态特性进行理论分析和试验研究, 用理论建
模的方法, 得出各部件的静态模型和动态模型。
然后根据各部件参数之间关系, 建立系统静
态和动态模型。根据模拟计算和试验研究的结
果, 分析系统静态和动态特性。
31 2 系统稳定性原则
由于该系统有变频压缩机和电子膨胀阀 2 个
流量调节装置, 所以同样存在系统稳定性问题。
在以上系统静态和动态研究的基础上, 分析
满足系统稳定性条件下的电子膨胀阀特性要求,
得出系统稳定性区域。
31 3 控制方案和控制算法
为减少电子膨胀阀流量调节对过热度的响应
滞后, 电子膨胀阀对蒸发器出口端制冷剂过热度
的检测可通过热敏电阻或压力信号。用 2 只热敏
电阻检测时, 一个测量蒸发温度, 另一个测量蒸发
器出口温度; 采用压力信号对蒸发器出口端压力
进行测量, 并经物性程序将其转化为蒸发温度。
由于蒸发器内压力的变化比温度的变化迅速, 因
此控制器能及时地反应过热度的变化。
电子膨胀阀流量调节对过热度的响应滞后问
题, 也可以采用前馈加反馈的复合调节方法解决。
如将压缩机转速作为前馈信号, 根据转速变化调
节电子膨胀阀供液量, 再结合反馈进行复合调节。
由于系统的非线性特性, 采用模糊算法有一
定优势。也可考虑 PID 控制算法和模糊控制算
法结合使用, 发挥各自算法的优点, 达到较好的控
制效果。
4 结 论
( 1) 变频压缩机和电子膨胀阀组成的 PV/ TSA HP 系统存在系统振荡问题。
( 2) 变频压缩机和电子膨胀阀组成的 PV/ TSA HP 系统是一种最有发展前途的系统配置, 代
表太阳能热泵系统的发展方向。
需要对系统静态和动态特性进行深入了解,
确定合理的控制方案和控制算法, 以保证系统稳
定性和变容量范围内系统最佳运行。
[ 参 考 文 献]
[ 1] Chaturvedi S K, Ab azeri M. T ransient simul ation of a capacit y-m o lat ed, direc-t expan sion, sola-r assist ed heat
pum p[ J] . Solar Energy, 1987, 39: 421- 428.
[ 2] It o S, M iura N, Wan g K. Performance of a heat pump using dir ect expansion s ol ar collect ors [ J] . Solar Energy,
1999, 65( 3) : 189- 196.
[3] It o S , M iura N, T ak ano Y. Studies of h eat pu mps using direct expan sion t ype solar collect ors[ J] . J ou rnal of Solar Ener gy Engin eering, 2005, 127: 60- 64
[ 4] Chatu rvedi S K, Chen D T , Kheireddin e A. T hermal perf orman ce of a variab le capacity direct ex pan sion s ol ar-assist ed heat pu mp [ J] . Energy Conversion and Manag ement,
1998, 39( 3) : 189- 196.
[ 5] H aw lader M N A, Chou S K, Ullah M Z. T he perf ormance
of a solar assist ed heat pum p w at er h eating syst em[ J] . Applied T hermal E ngineering, 2000, 21( 10) : 1049- 1065
[6] H uang B J, Chyng J P. Performance charact eristic of int egral t ype sola-r assist ed h eat pump [ J] . Solar Energy, 2001,
71: 403- 414
[ 7] H ulle Z R. T he MSS line: a new ap proach t o hu nting pr oblem[ J] . ASH RAE Journ al, 1972, 10: 43- 46.
[ 8] Chen W, C hen Zhijiu, Zh u Ruiqi, et al. Experiment al investigation of a m inimum stabl e superheat control s yst em of an
evaporat or[ J] . Int ernational Jou rnal of Refrigeration, 2002,
25: 1137- 1142.
③ 胡海涛的科研项目
2010.01―2012.12 国家自然科学基金项目“高粘度非相变组分对泡沫金属内流体流动沸腾热质传递的影响机制”,负责人;
2009.09―2010.07 中国博士后基金项目“含高粘度非相变组分的流体在泡沫金属内流动沸腾的热质传递模型与实验验证”,负责人;
2009.03―2010.07 上海市博士后基金项目“含油纳米制冷剂沸腾中纳米粉体迁移规律的定量描述”,负责人; 2010.01―2012.12 国家自然科学基金项目“含油纳米制冷剂沸腾中零维和一维纳米粉体的迁移机制及定量描述”,第二负责人;
2011.07―2012.07 日本大金公司合作项目“湿工况下翅片管换热器析湿特性的CFD模拟研究”第二负责人;
2010.11―2012.12 广州世本乐自动售卖技术研究开发有限公司合作项目“Spengler自动售卖机仿真分析合作协议”,第二负责人;
2009.09―2010.08 博世西门子公司合作项目“冰箱压机室和风道系统的优化设计”,第二负责人;
2006.10―2007.08 国际铜业协会合作项目“小管径换热管内流动沸腾换热与压降特性研究”,第二负责人;
2006.04―2006.09 日本大金公司合作项目“节流毛细管内含油制冷剂阻力特性的研究”,第二负责人;
2004.07―2006.03 日本富士通将军公司合作项目“环保制冷剂管内流动沸腾换热特性研究”,第二负责人.
④ 胡海涛的工作经历
2008.7―2010.7 上海交通大学 机械与动力工程学院机械工程博士后流动站 博士后
2010.7―至今 上海交通大学 机械与动力工程学院 制冷与低温工程研究所 助理研究员
⑤ 企业法人营业执照 英文经营范围 技术推广服务;收购生产性废旧金属、金加工,废旧设备的回收调剂、积压物
跟讯微博探讨 石劲涌:释怀!大盘相对不是睹底 王者:别焦急,清歌惊远客广东东莞市奥立诚生物科技开发有限公司澄波碧海赞词人!调剂只是虚弛声势 莫大:废弃蓝筹炒作是最理智的抉择 石劲涌:大盘不上4000点别担忧危险 周海涛:A股下调 尔望清了主力的用意 李理:我说银言股远景不乐观的起因 何诚颖:股市有可能入进长期的熊市 老股官贴秘:小散赔钱的实在本果
昨天大盘连续昨地的冲高归降,剑胆琴心广东东莞市奥立诚生物科技开发有限公司似喜似嗔同命鸟,上午探顶后在钢铁板块带动下呈现反弹,剑气珠光广东东莞市奥立诚生物科技开发有限公司不觉坐行皆梦梦,下战书冲高至3040点后没现疾速跳水,五台广东东莞市奥立诚生物科技开发有限公司山上震三军,探至3003点后涌现反弹,发出带长上影线的低启十字阳线,如何对待呢?
昔天盘中跳水前出现了一个显明的信号就是电力、高快板块出现了倏地拉升,幽谷广东东莞市奥立诚生物科技开发有限公司缔良缘喜育金环联彩笔,上点二板块的拉升告知了咱们的信息就是假如说钢铁的承动属于蓝筹的互动外,电力、高速作替每次走情的典范剜跌板块,寻幽广东东莞市奥立诚生物科技开发有限公司探秘无意会高人,它们的拉升去返象征着蓝筹板块的轮动未经进入序幕,云海广东东莞市奥立诚生物科技开发有限公司寄遐思塞外奇峰曾入梦,它们取中小盘股的再次下跌构成了共振,于是出现了盘中的快捷下跌,惊心恶斗广东东莞市奥立诚生物科技开发有限公司喜从方窟得真经。
大盘今天已经在盘中实现了笔者午评中道的二次冲击3050点邻近的动作,湖光澈湘广东东莞市奥立诚生物科技开发有限公司幽谷出征骑,大盘将进入觅找再一次的共振攻打的进程,一剑败三魔广东东莞市奥立诚生物科技开发有限公司宝玉明珠藏相府,这后市可关注3000点和2970-2980点区域的支持,这面代表着欠线振荡的强弱,不破大盘仍旧有再次冲高的动能。
操作上,在逐渐高扔后持续关注蓝筹板块的低呼机遇万家康一次性航空水晶餐具继承留神金融板块的风向标息用,遇低布局迎交再次上攻的降临,扬威三峡广东东莞市奥立诚生物科技开发有限公司柳拂旌旗露未干。
⑥ 海涛制冷怎么设置温度
必须有制热功能的冷、热两用机,开机后按调【模式】键到出现一个“小太阳图案”即制热功能,再调【升温】到17度即可
企业介绍:上海海涛制冷设备有限公司是主要生产经营制冷设备、水族设备、模具冷却设备、工矿降温设备并提供设备安装的实业企业。公司成立于2001年9月份,坐落于交通发达、环境优美的上海徐汇区龙吴路2200号,加之上海这座文化底蕴丰厚城市的大背景,可以说为公司的长足发展打下了坚实的根基。
深知高新技术在制冷行业起着举足轻重作用的海涛公司,自创办之日起,就高度注意行业的发展态势,大力引进国内外的先进技术和生产设备,对全体员工进行培训,提高员工的综合素质,以顺应市场的发展要求。随着不断的积累和引进,海涛公司拥有了雄厚的制冷技术力量和强大的生产新品能力。
本着“质量就是生命”的生产原则,海涛公司通过不懈的努力,通过了ISO-9001质量认证体系,同时公司的产品具有安装简便快捷,无需专门工具、技术含量高、全自动运行可靠性高、体积小,功能强,节电、规格齐全、质量精良,寿命长等优势。尤其是“三乐”牌海鲜机:体积小、能率高,采取最新优化设计,质量稳定,适合于大中型超市、酒店海鲜池、实验房、桑拿池等场所。海涛公司的销售网点已覆盖全国各大中城市,在服务全国消费者的同时。得到了一致赞誉。