⑴ 物理 齒輪轉動的原理知道
齒輪傳動
特點
齒輪傳動是利用兩齒輪的輪齒相互嚙合傳遞動力和運動的機械傳動。按齒輪軸線的相對位置分平行軸圓柱齒輪傳動、相交軸圓錐齒輪傳動和交錯軸螺旋齒輪傳動。具有結構緊湊、效率高、壽命長等特點。
齒輪傳動是指用主、從動輪輪齒直接、傳遞運動和動力的裝置。
在所有的機械傳動中,齒輪傳動應用最廣,可用來傳遞任意兩軸之間的運動和動力。
齒輪傳動的特點是:齒輪傳動平穩,傳動比精確,工作可靠、效率高、壽命長,使用的功率、速度和尺寸范圍大。例如傳遞功率可以從很小至幾十萬千瓦;速度最高可達300m/s;齒輪直徑可以從幾毫米至二十多米。但是製造齒輪需要有專門的設備,嚙合傳動會產生雜訊。
[編輯本段]類型
(1)根據兩軸的相對位置和輪齒的方向,可分為以下類型:
<1>圓柱齒輪傳動;
<2>錐齒輪傳動;
<3>交錯軸斜齒輪傳動。
(2)根據齒輪的工作條件,可分為:
<1>開式齒輪傳動式齒輪傳動,齒輪暴露在外,不能保證良好的潤滑。
<2>半開式齒輪傳動,齒輪浸入油池,有護罩,但不封閉。
<3>閉式齒輪傳動,齒輪、軸和軸承等都裝在封閉箱體內,潤滑條件良好,灰沙不易進入,安裝精確,
齒輪傳動有良好的工作條件,是應用最廣泛的齒輪傳動。
[編輯本段]設計准則
針對齒輪五種失效形式,應分別確立相應的設計准則。但是對於齒面磨損、塑性變形等,由於尚未建立起廣為工程實際使用而且行之有效的計算方法及設計數據,所以目前設計齒輪傳動時,通常只按保證齒根彎曲疲勞強度及保證齒面接觸疲勞強度兩准則進行計算。對於高速大功率的齒輪傳動(如航空發動機主傳動、汽輪發電機組傳動等),還要按保證齒面抗膠合能力的准則進行計算(參閱GB6413-1986)。至於抵抗其它失效能力,目前雖然一般不進行計算,但應採取的措施,以增強輪齒抵抗這些失效的能力。
1、閉式齒輪傳動
由實踐得知,在閉式齒輪傳動中,通常以保證齒面接觸疲勞強度為主。但對於齒面硬度很高、齒芯強度又低的齒輪(如用20、20Cr鋼經滲碳後淬火的齒輪)或材質較脆的齒輪,通常則以保證齒根彎曲疲勞強度為主。如果兩齒輪均為硬齒面且齒面硬度一樣高時,則視具體情況而定。
功率較大的傳動,例如輸入功率超過75kW的閉式齒輪傳動,發熱量大,易於導致潤滑不良及輪齒膠合損傷等,為了控制溫升,還應作散熱能力計算。
2、開式齒輪傳動
開式(半開式)齒輪傳動,按理應根據保證齒面抗磨損及齒根抗折斷能力兩准則進行計算,但如前所述,對齒面抗磨損能力的計算方法迄今尚不夠完善,故對開式(半開式)齒輪傳動,目前僅以保證齒根彎曲疲勞強度作為設計准則。為了延長開式(半開式)齒輪傳動的壽命,可視具體需要而將所求得的模數適當增大。
前已述之,對於齒輪的輪圈、輪輻、輪轂等部位的尺寸,通常僅作結構設計,不進行強度計算。
[編輯本段]齒輪傳動類型
1.圓柱齒輪傳動
用於平行軸間的傳動,一般傳動比單級可到8,最大20,兩級可到45,最大60,三級可到200,最大300。傳遞功率可到10萬千瓦,轉速可到10萬轉/分,圓周速度可到300米/秒。單級效率為0.96~0.99。直齒輪傳動適用於中、低速傳動。斜齒輪傳動運轉平穩,適用於中、高速傳動。人字齒輪傳動適用於傳遞大功率和大轉矩的傳動。圓柱齒輪傳動的嚙合形式有3種:外嚙合齒輪傳動,由兩個外齒輪相嚙合,兩輪的轉向相反;內嚙合齒輪傳動,由一個內齒輪和一個小的外齒輪相嚙合,兩輪的轉向相同;齒輪齒條傳動,可將齒輪的轉動變為齒條的直線移動,或者相反。
2.錐齒輪傳動
用於相交軸間的傳動。單級傳動比可到6,最大到8,傳動效率一般為0.94~0.98。直齒錐齒輪傳動傳遞功率可到370千瓦,圓周速度5米/秒。斜齒錐齒輪傳動運轉平穩,齒輪承載能力較高,但製造較難,應用較少。曲線齒錐齒輪傳動運轉平穩,傳遞功率可到3700千瓦,圓周速度可到40米/秒以上。
3.雙曲面齒輪傳動
用於交錯軸間的傳動。單級傳動比可到10,最大到100,傳遞功率可到750千瓦,傳動效率一般為0.9~0.98,圓周速度可到30米/秒。由於有軸線偏置距,可以避免小齒輪懸臂安裝。廣泛應用於汽車和拖拉機的傳動中。
4.螺旋齒輪傳動
用於交錯間的傳動,傳動比可到5,承載能力較低,磨損嚴重,應用很少。
5.蝸桿傳動
交錯軸傳動的主要形式,軸線交錯角一般為90°。蝸桿傳動可獲得很大的傳動比,通常單級為8~80,用於傳遞運動時可達1500;傳遞功率可達4500千瓦;蝸桿的轉速可到3萬轉/分;圓周速度可到70米/秒。蝸桿傳動工作平穩,傳動比准確,可以自鎖,但自鎖時傳動效率低於0.5。蝸桿傳動齒面間滑動較大,發熱量較多,傳動效率低,通常為0.45~0.97。
6.圓弧齒輪傳動
用凸凹圓弧做齒廓的齒輪傳動。空載時兩齒廓是點接觸,嚙合過程中接觸點沿軸線方向移動,靠縱向重合度大於1來獲得連續傳動。特點是接觸強度和承載能力高,易於形成油膜,無根切現象,齒面磨損較均勻,跑合性能好;但對中心距、切齒深和螺旋角的誤差敏感性很大,故對製造和安裝精度要求高。
7.擺線齒輪傳動
用擺線作齒廓的齒輪傳動。這種傳動齒面間接觸應力較小,耐磨性好,無根切現象,但製造精度要求高,對中心距誤差十分敏感。僅用於鍾表及儀表中。
8.行星齒輪傳動 具有動軸線的齒輪傳動。行星齒輪傳動類型很多,不同類型的性能相差很大,根據工作條件合理地選擇類型是非常重要的。常用的是由太陽輪、行星輪、內齒輪和行星架組成的普通行星傳動,少齒差行星齒輪傳動,擺線針輪傳動和諧波傳動等。行星齒輪傳動一般是由平行軸齒輪組合而成,具有尺寸小、重量輕的特點,輸入軸和輸出軸可在同一直線上。其應用愈來愈廣泛。
⑵ 齒輪傳動原理是什麼
每一部汽車上都有行星齒輪,少了它們,汽車就不能自由行走。汽車上的行星齒輪主要用在兩個地方,一是驅動橋減速器、二是自動變速器。很多網友都想知道,行星齒輪有什麼功能,為什麼汽車少不了它。
我們熟知的齒輪絕大部分都是轉動軸線固定的齒輪。例如機械式鍾表,上面所有的齒輪盡管都在做轉動,但是它們的轉動中心(與圓心位置重合)往往通過軸承安裝在機殼上,因此,它們的轉動軸都是相對機殼固定的,因而也被稱為"定軸齒輪"。有定必有動,對應地,有一類不那麼為人熟知的稱為"行星齒輪"的齒輪,它們的轉動軸線是不固定的,而是安裝在一個可以轉動的支架(藍色)上(圖1中黑色部分是殼體,黃色表示軸承)。行星齒輪(綠色)除了能象定軸齒輪那樣圍繞著自己的轉動軸(B-B)轉動之外,它們的轉動軸還隨著藍色的支架(稱為行星架)繞其它齒輪的軸線(A-A)轉動。繞自己軸線的轉動稱為"自轉",繞其它齒輪軸線的轉動稱為"公轉",就象太陽系中的行星那樣,因此得名。
也如太陽系一樣,成為行星齒輪公轉中心的那些軸線固定的齒輪被稱為"太陽輪",如圖2中紅色的齒輪。 在一個行星齒輪上、或者在兩個互相固連的行星齒輪上通常有兩個嚙合點,分別與兩個太陽輪發生關系。如右圖中,灰色的內齒輪軸線與紅色的外齒輪軸線重合,也是太陽輪。
軸線固定的齒輪傳動原理很簡單,在一對互相嚙合的齒輪中,有一個齒輪作為主動輪,動力從它那裡傳入,另一個齒輪作為從動輪,動力從它往外輸出。也有的齒輪僅作為中轉站,一邊與主動輪嚙合,另一邊與從動輪嚙合,動力從它那裡通過。
在包含行星齒輪的齒輪系統中,情形就不同了。由於存在行星架,也就是說,可以有三條轉動軸允許動力輸入/輸出,還可以用離合器或制動器之類的手段,在需要的時候限制其中一條軸的轉動,剩下兩條軸進行傳動,這樣一來,互相嚙合的齒輪之間的關系就可以有多種組合:
動力從其中一個太陽輪輸入,從另外一個太陽輪輸出,行星架通過剎車機構剎死;
動力從其中一個太陽輪輸入,從行星架輸出,另外一個太陽輪剎死;
動力從行星架輸入,從其中一個太陽輪輸出,另外一個太陽輪剎死;
兩股動力分別從兩個太陽輪輸入,合成後從行星架輸出;
兩股動力分別從行星架和其中一個太陽輪輸入,合成後從另外一個太陽輪輸出;
動力從其中一個太陽輪輸入,從另外一個太陽輪和行星架分兩路輸出;
動力從行星架輸入,分兩路從兩個太陽輪輸出;
我們知道,汽車發動機只有一個,而車輪有四個。發動機的轉速扭矩等特性與路面行駛需求大相徑庭。要把發動機的功率適當地分配到驅動輪,可以利用行星齒輪的上述特性。如自動變速器,也是利用行星齒輪的這些特性,通過離合器和制動器改變各個構件的相對運動關系而獲得不同的傳動比
⑶ 機械表的齒輪運動原理
機械鍾表實現准確的勻速運動,依靠的是裡面裝置的「擒縱機構」。
機械表工作回的動力是由表內的主答發條提供的,它安裝在發條盒裡。這個盒裡還裝著第一齒輪,它負責推動中央齒桿和中央齒輪:中央齒桿和齒輪再推動第三齒桿和齒輪;第三齒桿和齒輪繼而推動第四齒桿和齒輪;第四齒輪則推動擒縱齒輪。這些齒輪的轉動速度則由擒縱裝置來控制。擒縱裝置是機械表裡最復雜的部分,主要由平衡齒輪、平衡彈簧、杠桿和擒縱齒輪構成。它將主發條產生的力量傳到平衡齒輪上,使平衡齒輪來回擺動。當平衡齒輪來回擺動時,會帶動杠桿隨著來回擺動,這樣,棘爪上的小突起就會與擒縱齒輪上的齒依序咬合、松脫。機械表工作時發出的滴答聲就是由這里的活動發出的。平衡齒輪擺動的速度和規律決定著機械表能否精確計時。
大的擺鍾,就是依靠「鍾擺」的等時擺動(相當於單擺),小的手錶,游絲的長度也是相當於單擺的「擺長」來控制擺動的周期,鍾表的時間快慢調整,就是調這兩個地方。
⑷ 什麼是機械表
機械表是一種完全由機械原理驅動的時鍾裝置,通過主發條驅動,依靠一套齒輪轉動來帶動表針,無需任何電池或電子部件。具體來說: