A. 計算機硬體有幾個基本組成部分,每個部件的功能是什麼
計算機是由硬體系統(hardware system)主要由6個硬體基本部分組成,分別為電源、內存、CPU、硬碟、主板、顯示器。
傳統電腦系統的硬體單元一般可分為輸入單元、輸出單元、算術邏輯單元、控制單元及記憶單元,其中算術邏輯單元和控制單元合稱中央處理單元(Center Processing Unit,CPU)。
硬體系統
電源
電源是電腦中不可缺少的供電設備,它的作用是將220V交流電轉換為電腦中使用的5V、12V、3.3V直流電,其性能的好壞,直接影響到其他設備工作的穩定性,進而會影響整機的穩定性。手提電腦在自帶鋰電池情況下,為手提電腦提供有效電源。
主板
主板是電腦中各個部件工作的一個平台,它把電腦的各個部件緊密連接在一起,各個部件通過主板進行數據傳輸。也就是說,電腦中重要的「交通樞紐」都在主板上,它工作的穩定性影響著整機工作的穩定性。
CPU
CPU即中央處理器,是一台計算機的運算核心和控制核心。其功能主要是解釋計算機指令以及處理計算機軟體中的數據。CPU由運算器、控制器、寄存器、高速緩存及實現它們之間聯系的數據、控制及狀態的匯流排構成。作為整個系統的核心,CPU也是整個系統最高的執行單元,因此CPU已成為決定電腦性能的核心部件,很多用戶都以它為標准來判斷電腦的檔次。
內存
內存又叫內部存儲器或者是隨機存儲器(RAM),分為DDR內存和SDRAM內存,(但是SDRAM由於容量低,存儲速度慢,穩定性差,已經被DDR淘汰了)內存屬於電子式存儲設備,它由電路板和晶元組成,特點是體積小,速度快,有電可存,無電清空,即電腦在開機狀態時內存中可存儲數據,關機後將自動清空其中的所有數據。 內存有DDR、DDR II、DDR III三大類,容量1-64GB。
硬碟
硬碟屬於外部存儲器,機械硬碟由金屬磁片製成,而磁片有記憶功能,所以儲到磁片上的數據,不論在開機,還是關機,都不會丟失。硬碟容量很大,已達TB級,尺寸有3.5、2.5、1.8、1.0英寸等,介面有IDE、SATA、SCSI等,SATA最普遍。移動硬碟是以硬碟為存儲介質,強調便攜性的存儲產品。市場上絕大多數的移動硬碟都是以標准硬碟為基礎的,而只有很少部分的是以微型硬碟(1.8英寸硬碟等)為基礎,但價格因素決定著主流移動硬碟還是以標准筆記本硬碟為基礎。因為採用硬碟為存儲介質,因此移動硬碟在數據的讀寫模式與標准IDE硬碟是相同的。移動硬碟多採用USB、IEEE1394等傳輸速度較快的介面,可以較高的速度與系統進行數據傳輸。固態硬碟用固態電子存儲晶元陣列而製成的硬碟,由控制單元和存儲單元(FLASH晶元)組成。固態硬碟在產品外形和尺寸上也完全與普通硬碟一致但是固態硬碟比機械硬碟速度更快。
顯示器
英文名為「monitor」,顯示器有大有小,有薄有厚,品種多樣,其作用是把電腦處理完的結果顯示出來。它是一個輸出設備,是電腦必不可缺少的部件之一。分為CRT、LCD、LED三大類,介面有VGA、DVI兩類。
B. 機械硬碟這兩種結構有什麼區別 優缺點 家用哪個好
這是一個結構哦,圖1是硬碟拆開後裡面碟片的結構圖哦,圖2就是硬碟底部的內照片。
機械硬碟現在主體可以容分為兩家希捷和西部數據,其他有日立和三星,均分別被前兩家收購。兩者技術差不多,希捷技術稍領先西數,但是機械硬碟受制於轉速和碟片存儲密度制約,在讀寫速度上已經達到瓶頸。如果想要提升讀寫速度可以選擇固態硬碟SSD。
請採納哦
C. 硬碟的結構
硬碟的結構: 硬碟的結構和軟盤差不多,是由磁軌 (Tracks)、扇區(Sectors)、柱面 (Cylinders)和磁頭(Heads)組成的。
拿一個碟片來講,它和軟盤類似,上面被分成若干個同心圓磁軌,每個磁軌被分成若干個扇區,每扇區通常是512位元組。
硬碟的磁軌數一般介於300-3000之間,每磁軌的扇區數通常是63,而早期的硬碟只有17個。
和軟盤不同的是,硬碟由很多個磁片疊在一起,柱面指的就是多個磁片上具有相同編號的磁軌,它的數目和磁軌是相同的。
硬碟的容量如下計算: 硬碟容量=柱面數×扇區數×每扇區位元組數×磁頭數 標准IDE介面最多支持1024個柱面,63個扇區,16個磁頭,這個最大容量為1024×63×16×512= 528,482,304位元組,即528M;
增強型IDE最多可支持256個邏輯磁頭,容量最大可達到8.4GB。前面我們提到過簇的概念,它是文件存儲的最小單位,軟盤的簇只有一個扇區。在硬碟上,簇的大小和分區大小有關:比如,當分區容量介於64M和128M之間時,每個簇有4個扇區;介於128M和256M之間時,每簇有8個扇區;而當分區容量大於1024M時,每簇的扇區數目將超過64,容量達到32KB以上。在此時一個1位元組的文件在硬碟上也會佔用32KB的空間。所以,你要根據具體情況來進行合理分區,以免浪費很多的硬碟空間。如果您使用的Windows 95 OSR2或者Windows 98的話,可以利用它們提供的FAT32分區,使硬碟的每一個簇小到4K。
D. 硬碟的內部結構由哪幾大部分組成
外部結構方面,各種硬碟之間有著一定的區別,但是其內部結構還是完全相同的,畢竟硬碟的本質工作方式不會改變。硬碟內部核心部分包括盤體、主軸電機、讀寫磁頭、尋道電機等主要部件。不過需要提醒的是,千萬不要隨意打開硬碟的外殼,這將100%地使整個硬碟報廢,因為硬碟的內部盤面不能沾染上一滴灰塵,否則立即報廢。一般硬碟內部結構維修甚至需要在要求極為嚴格的無塵實驗室中進行。
盤體從物理的角度分為磁面(Side)、磁軌(Track)、柱面(Cylinder)與扇區(Sector)等4個結構。磁面也就是組成盤體各碟片的上下兩個盤面,第一個碟片的第一面為0磁面,下一個為1磁面;第二個碟片的第一面為2磁面,以此類推……。磁軌也就是在格式化磁碟時碟片上被劃分出來的許多同心圓。最外層的磁軌為0道,並向著磁面中心增長。事實上,硬碟的盤體結構與大家熟悉的軟盤非常類似。只不過其碟片是由多個重迭在一起並由墊圈隔開的碟片組成,而且碟片採用金屬圓片(IBM曾經採用玻璃作為材料),表面極為平整光滑,並塗有磁性物質。
讀寫磁頭組件由讀寫磁頭、傳動手臂、傳動軸三部分組成。在具體工作時,磁頭通過傳動手臂和傳動軸以固定半徑掃描碟片,以此來讀寫數據。磁頭是集成工藝製成的多個磁頭的組合,採用非接觸式結構。硬碟加電後,讀寫磁頭在高速旋轉的磁碟表面飛行,飛高間隙只有0.1~0.3μm,可以獲得極高的數據傳輸率。新型MR(Magnetoresistive heads) 磁阻磁頭採用讀寫分離的磁頭結構,寫操作時使用傳統的磁感應磁頭,讀操作則採用MR磁頭。
磁頭驅動機構 對於硬碟而言,磁頭驅動機構就好比是一個指揮官,它控制磁頭的讀寫,直接為傳動手臂與傳動軸傳送指令。磁頭驅動機構主要由音圈電機、磁頭驅動小車和防震動機構組成。磁頭驅動機構對磁頭進行正確的驅動,在很短的時間內精確定位到系統指令指定的磁軌上,保證數據讀寫的可靠性。一般而言,磁頭機構的電機有步進電機、力矩電機和音圈電機三種,現在硬碟多採用音圈電機驅動。音圈是中間插有與磁頭相連的磁棒的的線圈,當電流通過線圈時,磁棒就會發生位移,進而驅動裝載磁頭的小車,並根據控制器在盤面上磁頭位置的信息編碼來得到磁頭移動的距離,達到准確定位的目的。
硬碟的主軸組件主要是電機軸承和馬達,我們可以籠統地認為軸承決定一款硬碟的噪音表現,而馬達決定性能。當然,這樣說並不完全,但是基本上表達了這兩項內容在硬碟中的重要地位。從滾珠軸承到油浸軸承再到液態軸承,硬碟軸承處於不斷的改良當中,目前液態軸承已經成為絕對的主流市場。由於採用液體作為軸承,所以金屬之間不直接摩擦,這樣一來除了延長了主軸點解的壽命、減少發熱之外,最重要一點是實現了硬碟雜訊控制的突破。不過需要指出的是,採用液態軸承對於性能並沒有任何好處,甚至反而會延長尋道時間。對於PC設備而言,似乎噪音與性能是一對永遠難以平衡的矛盾。
希望能解決您的問題。
E. 硬碟 基本結構是什麼
平時大家在論壇上對硬碟的認識和選購,大都是通過產品的外型、性能指標特徵和網站公布的性能評測報告等方面去了解,但是硬碟的內部結構究竟是怎麼樣的呢,所謂的磁頭、碟片、主軸電機又是長什麼樣子呢,硬碟的讀寫原理是什麼,估計就不是那麼多人清楚了。本文以一塊西數硬碟WD200BB為例向大家講解一下硬碟的內部結構,讓硬體初學者們能夠對硬碟有一個更深的認識。
硬碟的結構與組成
首先要說明的是,本文示例的用的西數WD200BB硬碟,是容量為20G的7200轉的3.5寸桌面級IDE硬碟。除此之外,硬碟還有許多種類,例如老式的普通IDE硬碟是5.25英寸,高度有半高型和全高型,還有體積小巧玲瓏的筆記本電腦,塊頭巨大的高端SCSI硬碟及非常特殊的微型硬碟等,不過,這些名目繁多的硬碟在結構與組成方面大同小異。
一般說來,無論哪種硬碟,都是由碟片、磁頭、碟片主軸、控制電機、磁頭控制器、數據轉換器、介面、緩存等幾個部份組成。所有的碟片都固定在一個旋轉軸上,這個軸即碟片主軸。而所有碟片之間是絕對平行的,在每個碟片的存儲面上都有一個磁頭,磁頭與碟片之間的距離比頭發絲的直徑還小。所有的磁頭連在一個磁頭控制器上,由磁頭控制器負責各個磁頭的運動。磁頭可沿碟片的半徑方向動作,而碟片以每分鍾數千轉到上萬轉的速度在高速旋轉,這樣磁頭就能對碟片上的指定位置進行數據的讀寫操作。由於硬碟是精密設備,塵埃是其大敵,所以必須完全密封。
在硬碟的正面都貼有硬碟的標簽,標簽上一般都標注著與硬碟相關的信息,例如產品型號、產地、出廠日期、產品序列號等,上圖所示的就是WD200BB 的產品標簽。在硬碟的一端有電源介面插座、主從設置跳線器和數據線介面插座,而硬碟的背面則是控制電路板。從下圖中可以清楚地看出各部件的位置。
介面部分 : 介麵包括電源介面插座和數據介面插座兩部份,其中電源插座就是與主機電源相連接,為硬碟正常工作提供電力保證。數據介面插座則是硬碟數據與主板控制晶元之間進行數據傳輸交換的通道,使用時是用一根數據電纜將其與主板IDE介面或與其它控制適配器的介面相連接,經常聽說的40針、80芯的介面電纜也就是指數據電纜,數據介面主要分成IDE介面、SATA介面和SCSI介面三大派系。
控制電路板 : 大多數的控制電路板都採用貼片式焊接,它包括主軸調速電路、磁頭驅動與伺服定位電路、讀寫電路、控制與介面電路等。在電路板上還有一塊ROM 晶元,裡面固化的程序可以進行硬碟的初始化,執行加電和啟動主軸電機,加電初始尋道、定位以及故障檢測等。在電路板上還安裝有容量不等的高速數據緩存晶元,在此塊硬碟內結合有2MB的高速緩存。
固定面板 : 就是硬碟正面的面板,它與底板結合成一個密封的整體,保證了硬碟碟片和機構的穩定運行。在面板上最顯眼的莫過於產品標簽,上面印著產品型號、產品序列號、產品、生產日期等信息,這在上面已提到了。除此,還有一個透氣孔,它的作用就是使硬碟內部氣壓與大氣氣壓保持一致。
硬碟的內部結構
硬碟內部結構由固定面板、控制電路板、磁頭、碟片、主軸、電機、介面及其它附件組成,其中磁頭碟片組件是構成硬碟的核心,它封裝在硬碟的凈化腔體內,包括有浮動磁頭組件、磁頭驅動機構、碟片、主軸驅動裝置及前置讀寫控制電路這幾個部份。將硬碟面板揭開後,內部結構即可一目瞭然。
磁頭碟片組件
磁頭組件 : 這個組件是硬碟中最精密的部位之一,它由讀寫磁頭、傳動手臂、傳動軸三部份組成。磁頭是硬碟技術中最重要和關鍵的一環,實際上是集成工藝製成的多個磁頭的組合,它採用了非接觸式頭、盤結構,加後電在高速旋轉的磁碟表面移動,與碟片之間的間隙只有0.1~0.3um,這樣可以獲得很好的數據傳輸率。現在轉速為7200RPM的硬碟飛高一般都低於0.3um,以利於讀取較大的高信噪比信號,提供數據傳輸率的可靠性。
至於硬碟的工作原理,它是利用特定的磁粒子的極性來記錄數據。磁頭在讀取數據時,將磁粒子的不同極性轉換成不同的電脈沖信號,再利用數據轉換器將這些原始信號變成電腦可以使用的數據,寫的操作正好與此相反。從下圖中我們也可以看出,西數WD200BB硬碟採用單碟雙磁頭設計,但該磁頭組件卻能支持四個磁頭,注意其中有兩個磁頭傳動手臂沒有安裝磁頭。
磁頭驅動機構 : 硬碟的尋道是靠移動磁頭,而移動磁頭則需要該機構驅動才能實現。磁頭驅動機構由電磁線圈電機、磁頭驅動小車、防震動裝置構成,高精度的輕型磁頭驅動機構能夠對磁頭進行正確的驅動和定位,並能在很短的時間內精確定位系統指令指定的磁軌。其中電磁線圈電機包含著一塊永久磁鐵,這是磁頭驅動機構對傳動手臂起作用的關鍵,磁鐵的吸引力足起吸住並吊起拆硬碟使用的螺絲刀。防震動裝置在老硬碟中沒有,它的作用是當硬碟受動強裂震動時,對磁頭及碟片起到一定的保護使用,以避免磁頭將碟片刮傷等情況的發生。這也是為什麼舊硬碟的防震能力比現在新硬秀盤差得多的緣故。
硬碟的內部結構(續)
磁碟碟片 : 碟片是硬碟存儲數據的載體,現在硬碟碟片大多採用鋁金屬薄膜材料,這種金屬薄膜較軟盤的不連續顆粒載體具有更高的存儲密度、高剩磁及高矯頑力等優點。從下圖中可以發現,硬碟碟片是完全平整的,簡直可以當鏡子使用。
主軸組件 : 主軸組件包括主軸部件如軸承和驅動電機等。隨著硬碟容量的擴大和速度的提高,主軸電機的速度也在不斷提升,於是有廠商開始採用精密機械工業的液態軸承電機技術,現在已經被所有主流硬碟廠商所普遍採用了,它有利於降低硬碟工作噪音。
前置控制電路 : 前置電路控制磁頭感應的信號、主軸電機調速、磁頭驅動和伺服定位等,由於磁頭讀取的信號微弱,將放大電路密封在腔體內可減少外來信號的干擾,提高操作指令的准確性。
硬碟的控制電路
硬碟的控制電路位於硬碟背面,將背面電路板的安裝螺絲擰下,翻開控制電路板即可見到控制電路。總得來說,硬碟控制電路可以分為如下幾個部份:主控制晶元、數據傳輸晶元、高速數據緩存晶元等。具體見下圖。
在硬碟控制電路中,主控制晶元負責硬碟數據讀寫指令等工作,WD200BB的主控制晶元為WD70C23-GP,這是一塊中國台灣產的晶元;而數據傳輸晶元則是將硬碟磁頭前置控制電路讀取出數據經過校正及變換後,經過數據介面傳輸到主機系統,至於高速數據緩存晶元是為了協調硬碟與主機在數據處理速度上的差異而設的,該款西數WD200BB的緩存容量大小為2MB。緩存對磁碟性能所帶來的作用是無須置疑的,在讀取零碎文件數據時,大緩存能帶來非常大的優勢,這也是為什麼在高端SCSI硬碟中早就有結合16MB甚至 32MB緩存的產品。
衡量硬碟性能的技術參數
通過以上的介紹,相信朋友們對硬碟的結構與組成有了大致的概念了。下面接著介紹常見的與硬碟性能指標有關的參數,以助朋友們了解那些參數各意味著什麼。
主軸轉速 : 硬碟的主軸轉速是決定硬碟內部數據傳輸率的決定因素之一,它在很大程度上決定了硬碟的速度,同時也是區別硬碟檔次的重要標志。從目前的情況來看,7200RPM的硬碟具有性價比高的優勢,是國內市場上的主流產品,而SCSI硬碟的主軸轉速已經達到10000rpm甚至15000rpm了,但由於價格原因讓普通用戶難以接受。
尋道時間 : 該指標是指硬碟磁頭移動到數據所在磁軌而所用的時間,單位為毫秒(ms)。平均尋道時間則為磁頭移動到正中間的磁軌需要的時間。注意它與平均訪問時間的差別。硬碟的平均尋道時間越小性能則越高,現在一般選用平均尋道時間在10ms以下的硬碟。
單碟容量 : 單碟容量是硬碟相當重要的參數之一,一定程度上決定著硬碟的檔次高低。硬碟是由多個存儲碟片組合而成的,而單碟容量就是一個存儲碟所能存儲的最大數據量。硬碟廠商在增加硬碟容量時,可以通過兩種手段:一個是增加存儲碟片的數量,但受到硬碟整體體積和生產成本的限制,碟片數量都受到限制,一般都在5片以內;而另一個辦法就是增加單碟容量。目前的IDE和SATA硬碟最多隻有四張碟片,靠增加碟片來擴充容量滿足不斷增長的存儲容量的需求是不可行的。只有提高每張碟片的容量才能從根本上解決這個問題。現在的大容量硬碟都採用的是新型GMR巨阻型磁頭,磁碟的記錄密度大大提高,硬碟的單碟容量也相應提高了。目前主流硬碟的單碟容量大都在80GB以上,而最新的希捷酷魚7200.9系列硬碟的最高單碟容量更是達到160GB,使硬碟總容量可以達到 500GB以上。
單碟容量的一個重要意義在於提升硬碟的數據傳輸速度,而且也有利於生產成本的控制。硬碟單碟容量的提高得益於數據記錄密度的提高,而記錄密度同數據傳輸率是成正比的,並且新一代GMR磁頭技術則確保了這個增長不會因為磁頭的靈敏度的限制而放慢速度。在下面的測試中,你將會發現單碟容量越高,它的數據傳輸率也將會越高,其中希捷酷魚7200.9系列硬碟就是一個明顯的例證。
潛伏期 : 該指標表示當磁頭移動到數據所在的磁軌後,等待所要的數據塊繼續轉動(半圈或多些、少些)到磁頭下的時間,其單位為毫秒(ms)。平均潛伏期就是碟片轉半圈的時間。
硬碟表面溫度 : 該指標表示硬碟工作時產生的溫度使硬碟密封殼溫度上升的情況。這項指標廠家並不提供,一般只能在各種媒體的測試數據中看到。硬碟工作時產生的溫度過高將影響薄膜式磁頭的數據讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更穩定的數據讀、寫性能。
道至道時間 : 該指標表示磁頭從一個磁軌轉移至另一磁軌的時間,單位為毫秒(ms)。
高速緩存 : 該指標指在硬碟內部的高速存儲器。目前硬碟的高速緩存一般為2MB~8MB,SCSI硬碟的更大。購買時最好選用緩存為8M以上的硬碟。
全程訪問時間 : 該指標指磁頭開始移動直到最後找到所需要的數據塊所用的全部時間,單位為毫秒(ms)。而平均訪問時間指磁頭找到指定數據的平均時間,單位為毫秒。通常是平均尋道時間和平均潛伏時間之和。現在不少硬碟廣告之中所說的平均訪問時間大部分都是用平均尋道時間所代替的。
最大內部數據傳輸率 : 該指標名稱也叫持續數據傳輸率(sustained transfer rate),單位為Mb/s。它是指磁頭至硬碟緩存間的最大數據傳輸率,一般取決於硬碟的碟片轉速和碟片線密度(指同一磁軌上的數據容量)。注意,在這項指標中常常使用Mb/s或Mbps為單位,這是兆位/秒的意思,如果需要轉換成MB/s(兆位元組/秒),就必須將Mbps數據除以8(一位元組8位數)。例如,某硬碟給出的最大內部數據傳輸率為683Mbps,如果按MB/s計算就只有85.37MB/s左右。
連續無故障時間(MTBF) : 該指標是指硬碟從開始運行到出現故障的最長時間,單位是小時。目前大部分硬碟的MTBF都在300000小時以上。不過,對於該項指標要客觀地看待,具體可參看BT下載是否傷硬碟的深度分析中對MTBF的詳細闡述和MTBF概念的誤導可以休矣!中不良廠商使用該參數對消費者的誤導。
外部數據傳輸率 : 該指標也稱為突發數據傳輸率,它是指從硬碟緩沖區讀取數據的速率。在廣告或硬碟特性表中常以數據介面速率代替,單位為MB/s。目前主流的硬碟已經全部採用SATA150介面技術,外部數據傳輸率可達150MB/s。
S.M.A.R.T : 該指標的英文全稱是Self-Monitoring Analysis&Reporting Technology,中文含義是自動監測分析報告技術。這項技術指標使得硬碟可以監測和分析自己的工作狀態和性能,並將其顯示出來。用戶可以隨時了解硬碟的運行狀況,遇到緊急情況時,可以採取適當措施,確保硬碟中的數據不受損失。採用這種技術以後,硬碟的可靠性得到了很大的提高。
F. 電腦硬碟有哪些組成部分
1.盤體
盤體從物理的角度分為磁面(Side)、磁軌(Track)、柱面(Cylinder)與扇區(Sector)等4個結構。磁面也就是組成盤體各碟片的上下兩個盤面,第一個碟片的第一面為0磁面,下一個為1磁面;第二個碟片的第一面為2磁面,以此類推……。磁軌也就是在格式化磁碟時碟片上被劃分出來的許多同心圓。最外層的磁軌為0道,並向著磁面中心增長。事實上,硬碟的盤體結構與大家熟悉的軟盤非常類似。只不過其碟片是由多個重疊在一起並由墊圈隔開的碟片組成,而且碟片採用金屬圓片(IBM曾經採用玻璃作為材料),表面極為平整光滑,並塗有磁性物質。
2.讀寫磁頭組件
讀寫磁頭組件由讀寫磁頭、傳動手臂、傳動軸三部分組成。在具體工作時,磁頭通過傳動手臂和傳動軸以固定半徑掃描碟片,以此來讀寫數據。磁頭是集成工藝製成的多個磁頭的組合,採用非接觸式結構。硬碟加電後,讀寫磁頭在高速旋轉的磁碟表面飛行,飛高間隙只有0.1~0.3μm,可以獲得極高的數據傳輸率。新型MR(Magnetoresistive heads) 磁阻磁頭採用讀寫分離的磁頭結構,寫操作時使用傳統的磁感應磁頭,讀操作則採用MR磁頭。
3.磁頭驅動機構
對於硬碟而言,磁頭驅動機構就好比是一個指揮官,它控制磁頭的讀寫,直接為傳動手臂與傳動軸傳送指令。磁頭驅動機構主要由音圈電機、磁頭驅動小車和防震動機構組成。磁頭驅動機構對磁頭進行正確的驅動,在很短的時間內精確定位到系統指令指定的磁軌上,保證數據讀寫的可靠性。一般而言,磁頭機構的電機有步進電機、力矩電機和音圈電機三種,現在硬碟多採用音圈電機驅動。音圈是中間插有與磁頭相連的磁棒的的線圈,當電流通過線圈時,磁棒就會發生位移,進而驅動裝載磁頭的小車,並根據控制器在盤面上磁頭位置的信息編碼來得到磁頭移動的距離,達到准確定位的目的。
4.主軸組件
硬碟的主軸組件主要是軸承和馬達,可以籠統地認為軸承決定一款硬碟的噪音表現,而馬達決定性能。當然,這樣說並不完全,但是基本上表達了這兩項內容在硬碟中的重要地位。從滾珠軸承到油浸軸承再到液態軸承,硬碟軸承處於不斷的改良當中,目前液態軸承已經成為絕對的主流市場。由於採用液體作為軸承,所以金屬之間不直接摩擦,這樣一來除了延長了主軸點解的壽命、減少發熱之外,最重要一點是實現了硬碟雜訊控制的突破。不過需要指出的是,採用液態軸承對於性能並沒有任何好處,甚至反而會延長尋道時間。對於PC設備而言,似乎噪音與性能是一對永遠難以平衡的矛盾。
G. 簡述硬碟的內部結構和組成部分
硬碟的內部結構包括磁頭、磁軌、扇區、柱面。
(1)磁頭
磁頭是硬碟技術中最重要和最關鍵的一環。MR磁頭最為廣泛應用,MR磁頭即磁阻磁頭,採用分離式的磁頭結構,可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。
(2)磁軌
磁軌無法用肉眼看到,僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放。
(3)扇區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。
(4)柱面
磁碟的柱面數與一個盤面上的磁軌數是相等的,由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。
(7)機械硬碟的主要構件有哪些擴展閱讀
使用注意事項
硬碟在工作的時候,千萬不要強行關掉電源。在硬碟工作的時候關掉電源,會導致硬碟的物理損壞,而且也會丟失數據。
另外,在硬碟中有高速運轉的部件,如果一旦強行關機的話高速運轉的碟片就會突然停止,而在關機後又馬上開機的話,就更有可能造成硬碟的損壞,所以,在關機後不要馬上再次打開電腦,至少在半分鍾以後再打開。
在硬碟工作的時候要盡量避免它的震盪,因為磁頭與磁片的距離非常近,如果遭到劇烈的震盪會導致磁頭敲打磁片,有可能磁頭會劃傷磁片,也可能會導致磁頭的徹底損壞,使整個硬碟無法使用。
在使用硬碟的過程當中,經常會在「磁碟空間管理」當中進行壓縮,把硬碟用此程序進行壓縮。這樣會導致壓縮卷文件不斷增大,所隊也隨之減慢,讀寫次數增多,就會引起硬碟的發熱量和穩定性產生影響,導致使用壽命的減少,所以,如果硬碟夠用的話就沒有必要使用這個程序。
H. 機械硬碟與固態硬碟的組成結構及其特點
機械硬碟主要由磁頭和磁碟組成,磁頭在磁碟表面低空飛行,讀取磁碟數據,因為這版種工作方式造成權磁碟在工作時本定性低,受震動時容易導致磁碟損傷,同時磁碟速度也比較慢,而固態硬碟是通過晶元直接在非易失性內存ROM里讀取,寫入數據,所以不怕震動,工作穩定性很高,速度也比機械硬碟要快得多
I. 機械硬碟的主要構件有哪些