❶ 機械系統主要包括
機械傳動系統包括離合器、變速器、萬向傳動裝置、驅動橋以及分動器。
機械傳動系統:是機床組成的重要部分,主要是由滾珠絲杠進行傳動的,滾珠絲杠
在傳動過程中絲杠和運動軸是一體的,在日本MAZAK也有
機床是用電機作為傳動的。
機械傳動的作用:機械傳動的作用是傳遞運動和力,常用機械傳動系統的的類型有齒輪傳動、蝸輪蝸桿傳動、帶傳動、鏈傳動、輪系等。
齒輪傳動:齒輪傳動是依靠主動齒輪依次撥動從動齒輪來實現的,其基本要求之一是其瞬時角速度之比必須保持不變。齒輪傳動的分類:齒輪傳動的類型較多,按照兩齒輪傳動時的相對運動為平面運動或空間運動,可將其分為平面齒輪傳動和空間齒輪傳動兩大類。直齒圓柱齒輪輪齒的初始接觸處是跨過整個齒面而伸展開來的線。斜齒輪輪齒的初始接觸是一點,當齒進入更多的嚙合時,它就變成線。在直齒圓柱齒輪中,接觸是平行於回轉軸線的。在斜齒輪中,該線是跨過齒面的對角線。它是齒輪逐漸進行嚙合並平穩的從一個齒到另一個齒傳遞運動,那樣就使斜齒輪具有高速重載下平穩傳遞運動的能力。斜齒輪使軸的軸承承受徑向和軸向力。當軸向力變的大了或由於別的原因而產生某些影響時,那就可以使人字齒輪。雙斜齒輪(人字齒輪)是與反向的並排地裝在同一軸上的兩個斜齒輪等效。他們產生相反的軸向推力作用,這樣就消除了軸向推力。當兩個或者跟多個單向斜齒輪在同一軸上時,齒輪的齒向應作選擇,以便產生最小的軸向推力。
蝸輪蝸桿傳動:蝸輪蝸桿傳動是用於傳遞空間互相垂直而不相交的兩軸間的運動和動力。渦輪與交錯軸斜齒輪相似。小齒輪即蝸桿具有較小的齒數,通常是一到四齒,由於他們完全纏繞在節圓柱上,因此它們被稱為螺紋齒。與其相配的齒輪叫做渦輪,渦輪不是真正的齒輪。蝸桿和渦輪通常是用於向垂直相交軸之間的傳動提供大的角速度減速比。渦輪不是斜齒輪,因此其齒頂面做成中凹形狀以適配蝸桿曲率,目的是要形成先接觸而不是點接觸。然而蝸桿渦輪傳動機構中存在齒間有較大滑移速度的缺點,正像交錯軸斜齒輪那樣。
帶傳動:帶傳動是通過中間撓性件(帶)傳遞運動和動力。帶傳動主要用於兩軸平行而且回轉方向相同的場合,這種傳動稱為開口傳動。
鏈傳動:鏈傳動是由裝在平行軸上的主、從動鏈輪和繞在鏈輪上的環形鏈條所組成,以鏈條作中間撓性件,靠鏈條與鏈輪輪齒的嚙合來傳遞運動和動力。鏈傳動與帶傳動相比的主要特點:沒有彈性滑動和打滑,能保持准確的傳動比;需要張緊力較小,作用在軸上的壓力也較小;結構緊湊;能在溫度較高、有油污等惡劣環境條件下工作。鏈傳動與齒輪傳動相比,其主要特點:製造和安裝精度要求較低;中心距較大時,其傳動結構簡單;瞬時鏈速和瞬時傳動比不是常數,傳動平穩性較差。
❷ 驅動系統主要由什麼組成
驅動系統主要由中央控制單元、驅動控制器、驅動電機、機械傳動裝置組成。
❸ 一般機器主要哪 四個基本部分組成
一、機器人本體機械部分
機器人的機械結構系統由機身、手臂、末端操作器三大件組成。每一大件都有若干自由度,構成一個多自由度的機械繫統。機器人按機械結構劃分可分為直角坐標型機器人、圓柱坐標型機器人、極坐標型機器人、關節型機器人、SCARA型機器人以及移動型機器人。
機器人本體
二、機器人本體感測部分
它由內部感測器模塊和外部感測器模塊組成,獲取內部和外部環境中有用的信息。智能感測器的使用提高了機器人的機動性、適應性和智能化水平。人類的感受系統對感知外部世界信息是極其巧妙的,然而對於一些特殊的信息,感測器比人類的感受系統更有效。
三、機器人本體控制與驅動部分
控制系統的任務是根據機器人的作業指令以及從感測器反饋回來的信號,支配機器人的執行機構去完成規定的運動和功能。 根據控制原理可分為程序控制系統、適應性控制系統和人工智慧控制系統。根據控制運動的形式可分為點位控制和連續軌跡控制。
驅動系統是向機械結構系統提供動力的裝置。採用的動力源不同,驅動系統的傳動方式也不同。驅動系統的傳動方式主要有四種:液壓式、氣壓式、電氣式和機械式。電力驅動是目前使用最多的一種驅動方式,其特點是電源取用方便,響應快,驅動力大,信號檢測、傳遞、處理方便,並可以採用多種靈活的控制方式,驅動電機一般採用步進電機或伺服電機。
其實這種機器人之所以能夠實現這么流暢的動作,不僅僅是微型計算機的控制技術,也是與伺服電動機的飛速發展息息相關的。
機器人的伺服電機系統,設備在感知外界信息後會快速傳遞給控制器,然後控制器會發出控制信號驅動伺服電機系統快速進行姿勢調整。伺服電機系統在這里就是利用各種電機產生的力矩和力,直接或間接地驅動機器人本體來獲得機器人的各種運動。
❹ 3、簡介機器人系統的組成與結構,包括三大部分、六個子系統
機器人由三大模塊六個子系統組成。三大模塊分別是感測器模塊、控制模塊和驅動模塊。六個子系統是驅動系統、機械結構系統、感受系統、機器人——環境交換系統、 人機交換系統和控制系統。
驅動系統主要是指驅動機械繫統動作的驅動裝置。根據驅動源的不同,驅動系統可分為電氣、液壓和氣壓三種以及把它們結合起來應用的綜合系統。該部分的作用相當於人的肌肉。
控制系統的任務是根據機器人的作業指令程序及從感測器反饋回來的信號控制機器人的執行機構,使其完成規定的運動和功能。

(4)機械驅動系統是什麼東西擴展閱讀
機器人按照控制方式分類:
①操作型機器人:能自動控制,可重復編程,多功能,有幾個自由度,可固定或運動,用於相關自動化系統中。
②程式控制型機器人:按預先要求的順序及條件,依次控制機器人的機械動作。
③示教再現型機器人:通過引導或其他方式,先教會機器人動作,輸入工作程序,機器人則自動重復進行作業。
④數控型機器人:不必使機器人動作,通過數值、語言等對機器人進行示教,機器人根據示教後的信息進行作業。
⑤感覺控制型機器人:利用感測器獲取的信息控制機器人的動作。
⑥適應控制型機器人:機器人能適應環境的變化,控制其自身的行動。
⑦學習控制型機器人:機器人能「體會」工作的經驗,具有一定的學習功能,並將所「學」的經驗用於工作中。
⑧ 智能機器人:以人工智慧決定其行動的機器人。
❺ 機械電子產品基本的驅動方式是什麼
工業機器人的驅動系統,按動力源分為液壓,氣動和電動三大類。根據需要也可由這三種基本類型組合成復合式的驅動系統。這三類基本驅動系統的各有自己的特點。
液壓驅動系統:由於液壓技術是一種比較成熟的技術。它具有動力大、力(或力矩)與慣量比大、快速響應高、易於實現直接驅動等特點。適於在承載能力大,慣量大以及在防焊環境中工作的這些機器人中應用。但液壓系統需進行能量轉換(電能轉 換成液壓能),速度控制多數情況下採用節流調速,效率比電動驅動系統低。液壓系統的液體泄泥會對環境產生污染,工作雜訊也較高。因這些弱點,近年來,在負荷為100kz以下的機器人中往往被電動系統所取代。
氣動驅動系統:具有速度快、系統結構簡單,維修方便、價格低等特點。適於在中、小負荷的機器人中採用。但因難於實現伺服控制,多用於程序控制的機械人中,如在上、下料和沖壓機器人中應用較多。
電動驅動系統:由於低慣量,大轉矩交、直流伺服電機及其配套的伺服驅動器(交流變頻器、直流脈沖寬度調制器)的廣泛採用,這類驅動系統在機器人中被大量選用。這類系統不需能量轉換,使用方便,控制靈活。大多數電機後面需安裝精密的傳動機構。直流有刷電機不能直接用於要求防爆的環境中,成本也較上兩種驅動系統的高。但因這類驅動系統優點比較突出,因此在機器人中被廣泛的選用。
綜合上述四種驅動方式的優缺點,結合本設計之工業機械手的各項規格要求,應選用氣壓傳動作為本機械手的驅動系統。
氣動機器入採用壓縮空氣為動力源,一般從工廠的壓縮空氣站引到機器作業位置,也可單獨建立小型氣源系統。由於氣動機器人具有氣源使用方便, 不污染環境,動作靈活迅速、工作安全可靠、操作維修簡便以及適於在惡劣環境下工作等特點,因此它在沖壓加工、注塑及壓鑄等有毒或高溫條件下作業,機床上、下料,儀表及輕工行業中、小型零件的輸送和自動裝配等作業,食品包裝及輸送,電子產品輸送、自動插接,彈葯生產自動化等方面獲得廣泛應用。
氣動驅動系統在多數情況下是用於實現兩位式的或有限點位控制的中、小機器人中的。這類機器人多是圓柱坐標型和直接坐標型或二者的組合型結構;3—5個自由度,負荷在200N以內,速度300~1000mm/s,重復定位精度為±0.1~±0.5mm。控制裝置目前多數選用可編程式控制制器(PLC控制器)。在易燃、易爆的場合下可採用氣動邏輯元件組成控制裝置。
❻ 工業機器人驅動機構有幾種,試述每種機構的結構及原理
工業機器人驅動機構是工業機械手的重要組成部分,驅動機構主要有4種:液壓驅動、氣壓驅動、電氣驅動和機械驅動。其中以液壓驅動、氣壓驅動用得最多。
