『壹』 機械合金化特點是什麼
(1)工藝條件簡單,成本低;
(2)操作程序連續可調,且產品晶粒細小;
(3)能涵蓋熔煉合金化法所形成的合金範圍,且對那些不能或很難通過熔煉合金化的系統實現合金化,並能獲得常規方法難以獲得的非晶合金、金屬間化合物、超飽和固溶體等材料;
(4)MA法在制備非晶或其它亞穩態材料(如:准 晶相、納米晶材料、無序金屬間化合物等)方面極具特色;
(5)可在室溫下實現合金化
『貳』 高溫合金都有哪些用途
高溫合金分類:
一、變形高溫合金
變形高溫合金是指可以進行熱、冷變形加工,工作溫度范圍-253~1320℃,具有良好的力學性能和綜合的強、韌性指標,具有較高的抗氧化、抗腐蝕性能的一類合金。按其熱處理工藝可分為固溶強化型合金和時效強化型合金。
固溶強化型合金:使用溫度范圍為900~1300℃,最高抗氧化溫度達1320℃。例如GH128合金,室溫拉伸強度為850MPa、屈服強度為350MPa;1000℃拉伸強度為140MPa、延伸率為85%,1000℃、30MPa應力的持久壽命為200小時、延伸率40%。固溶合金一般用於製作航空、航天發動機燃燒室、機匣等部件。
時效強化型合金
使用溫度為-253~950℃,一般用於製作航空、航天發動機的渦輪盤與葉片等結構件。製作渦輪盤的合金工作溫度為-253~700℃,要求具有良好的高低溫強度和抗疲勞性能。 例如:GH4169合金,在650℃的最高屈服強度達1000MPa;製作葉片的合金溫度可達950℃,例如:GH220合金,950℃的拉伸強度為490MPa,940℃、200MPa的持久壽命大於40小時。
變形高溫合金主要為航天、航空、核能、石油民用工業提供結構鍛件、餅材、環件、棒材、板材、管材、帶材和絲材。
二、鑄造高溫合金
鑄造高溫合金是指可以或只能用鑄造方法成型零件的一類高溫合金。其主要特點是:
1. 具有更寬的成分范圍 由於可不必兼顧其變形加工性能,合金的設計可以集中考慮優化其使用性能。如對於鎳基高溫合金,可通過調整成分使γ』含量達60%或更高,從而在高達合金熔點85%的溫度下,合金仍能保持優良性能。
2. 具有更廣闊的應用領域 由於鑄造方法具有的特殊優點,可根據慶派叢零件的使用需要,設計、製造出近終形或無餘量的具有任意復雜結構和形狀的高溫合金鑄件。
根據鑄造合金的使用溫度,可以分為以下三類:
第一類:在-253~650℃使用的等軸晶鑄造高溫合金 這類合金在很大的范圍溫度內具有良好的綜合性能,特別是在低溫下能保持強度和塑性均不下降。如在航空、航天發動機上用量較大的K4169合金,其650℃拉伸強度為1000MPa、屈服強度850MPa、拉伸塑性15%;650℃,620MPa應力下的持久壽命為200小時。已用於製作航空發動機中的擴壓器機匣及航天發動機中各種泵用復雜結構件等。
2. 第二類:在650~950 ℃使用的等軸晶鑄造高溫合金 這類合金在高溫下有較高的力學性能及抗熱腐蝕性能。羨搜例如K419合金,950℃時,拉伸強度大於700MPa、拉伸塑性大於6%;950℃,200小時的持久強度極限大於230MPa。這類合金適於用航空發動機渦輪葉片、導向葉片及整鑄渦輪。
第三類: 在950~1100℃使用的定向凝固柱晶和單晶高溫合金 這類合金在此溫度范圍內具有優良的綜合性能和抗氧化、抗熱腐蝕性能。例如DD402單晶合金,1100℃、130MPa的應力下持久壽命大於100小時。這是國內使用溫度最高的渦輪葉片材料,適用於製作新型高性能發動機的一級渦輪葉片。
隨著精密鑄造工藝技術的不斷提高,新的特殊工藝也不斷出現。細晶鑄造技術、定向凝固技術、復雜薄壁結構件的CA技術等都鑄造高溫合金水平大大提高,應用范圍不斷提高。
三、粉末冶金高溫合金
採用霧化高溫合金粉末,經熱等靜壓成型或熱等靜壓後再經鍛造成型的生產工藝製造出高溫合金粉末的產品。採用粉末冶金工藝,由於粉末顆粒細小,冷卻速度快,從而成分均勻,無宏觀偏析,而且晶粒細小,熱加工性能好,金屬利用率高,成本低,尤其是合金的屈服強度和疲勞性能有較大的提高。
FGH95粉末冶金高溫合金,650℃拉伸強度1500MPa;1034MPa應力下持久壽命大於50小時,是當前在650℃工作條件下強度水平最高的一種盤件粉末冶金高溫合金。粉末冶金高溫合金可以滿足應力水平較高的發動機的使用要求,是高推重比發動機渦輪盤、壓氣機盤和渦輪擋板等高溫部件的選擇材料。
四、氧化物彌散強化(ODS)合金
是採用獨特的機械合金化(MA)工藝,超細的(小於50nm)在高溫下具有超穩定的氧化物彌散強化相均勻地分散於合金基體中,而形成的一種特殊的高溫合金。其合金強譽櫻度在接近合金本身熔點的條件下仍可維持,具有優良的高溫蠕變性能、優越的高溫抗氧化性能、抗碳、硫腐蝕性能。
目前已實現商業化生產的主要有三種ODS合金:
MA956合金 在氧化氣氛下使用溫度可達1350℃,居高溫合金抗氧化、抗碳、硫腐蝕之首位。可用於航空發動機燃燒室內襯。
MA754合金 在氧化氣氛下使用溫度可達1250℃並保持相當高的高溫強度、耐中鹼玻璃腐蝕。現已用於製作航空發動機導向器環和導向葉片。
MA6000合金 在1100℃拉伸強度為222MPa、屈服強度為192MPa;1100℃,1000小時持久強度為127MPa,居高溫合金之首位,可用於航空發動機葉片。
五、金屬間化合物高溫材料
金屬間化合物高溫材料是近期研究開發的一類有重要應用前景的、輕比重高溫材料。十幾年來,對金屬間化合物的基礎性研究、合金設計、工藝流程的開發以及應用研究已經成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制備加工技術、韌化和強化、力學性能以及應用研究方面取得了令人矚目的成就。
Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高溫高強度、高鋼以及優異的抗氧化、抗蠕變等優點,可以使結構件減重35~50%。 Ni3Al基合金,MX-246具有很好的耐腐蝕、耐磨損和耐氣蝕性能,展示出極好的應用前景。Fe3Al基合金具有良好的抗氧化耐磨蝕性能,在中溫(小於600℃)有較高強度,成本低,是一種可以部分取代不銹鋼的新材料。
『叄』 鉬銅合金是用來干什麼的
鉬銅材料
鉬銅是鉬和銅的復合材料,其性能與鎢銅相似,同樣具有可調的熱膨脹系數和熱導率。但鉬銅的密度比鎢銅小很多,因而更適合於航天航空等領孝野域。
產品特色:
☆ 未加Fe、Co等燒結活化元素,得以保持高的宏輪導熱性能
☆ 優異的巧絕喊氣密性
☆ 較小的密度,更適合於飛行電子設備
☆ 鉬含量不超過75%時,可提供軋制板材,便於沖制零件
☆ 提供半成品或表面鍍Ni/Au的成品

『肆』 鍶在鎂合金中添加的操作工藝
題主是否想詢問「鍶在鎂合金中添加的操作工藝流程」真空熔煉法,氣相滲透法滾滾,機械合金化法。
1、真空熔煉法:將鍶和鎂合金放入真空熔煉爐中,在高溫下進行熔煉,使鍶與鎂合金充分混合。
2、氣相滲透法:將鍶和鎂合金放入高溫爐中,通過氣相滲透的方式將鍶滲透到鎂合金中。
3、機械合金化法:將鍶和鎂合金放進球磨機中,通過高速旋轉的球磨機使斗備鍶與鎂合金發生機械合空備毀金化反應,從而實現鍶的添加。
『伍』 什麼是合金材料
是由兩種或兩種以上的金屬與金屬或非金屬經一定方法所合成的具有金屬特性的物質。一般通過熔合成均勻液體和凝固而得。根據組成元素的數目,可分為二元合金、三元合金和多元合金。
人類生產合金是從製作青銅器開始,世界上最早生產合金的是古巴比倫人,6000年前古巴比倫人已開始提煉青銅(紅銅與錫的合金)。中國也是世界上最早研究和生產合金的國家之一。

製作合成
常將兩種或兩種以上的金屬元素或以金屬為基添加其他非金屬元素通過合金化工藝(熔煉、機械合金化、燒結、氣相沉積等等)而形成的具有金屬特性的金屬材料叫做合金。但合金可能只含有一種金屬元素,如鋼。(鋼,是對含碳量質量百分比介於0.02%至2.00%之間的鐵合金的統稱)
這里我們需要注意,合金不是一般概念上的混合物,甚至可以是純凈物,如單一相的金屬互化物合金,所添加合金元素可以形成固溶體、化合物,並產生吸熱或放熱反應,從而改變金屬基體的性質。
『陸』 什麼是機械合金化
機械合金化
用高能研磨機或球磨機實現固態合金化的過程。
機械合金化基本原理
機械合金化是一個通過高能球磨使粉末經受反復的變形、冷焊、破碎,從而達到元素間原子水平合金化的復雜物理化學過程。在球磨初期,反復地擠壓變形,經過破碎、焊合、再擠壓,形成層狀的復合顆粒。復合顆粒在球磨機械力的不斷作用下,產生新生原子面,層狀結構不斷細化。在機械合金化過程中,層狀結構的形成標志著元素間合金化的開始,層片間距的減小縮短了固態原子間的擴散路徑,使元素間合金化過程加速。球磨過程中,粉末越硬,回復過程越難進行,球磨所能達到的晶粒度越小。並且,材料硬度越高,位錯滑移難以進行,晶格中的位錯密度越大,這些又為合金化的進行提供了快擴散通道,使合金化過程進一步加快。
球磨過程中,大量的碰撞現象發生在球-粉末球之間,被捕獲的粉末在碰撞作用下發生嚴重的塑性變形,使粉末受到兩個碰撞球的「微型」鍛造作用。球磨產生的高密度缺陷和納米界面大大促進了SHS反應的進行,且起了主導作用。反應完成後,繼續機械球磨,強制反復進行粉末的冷焊-斷裂-冷焊過程,細化粉末,得到納米晶。
機械合金化的主要特點
機械合金化(MA)技術是制備新型高性能材料的重要途徑之一。採用MA工藝制備的材料具有均勻細小的顯微組織和彌散的強化相,力學性能往往優於傳統工藝制備的同類材料。採用液氮作為冷卻劑的低溫MA技術制備的Al3Ti/Al合金與傳統鋁合金或鈦合金相比,在高溫強度和密度方面(尤其在350℃左右)具有特別的優勢。可望成為部分取代傳統鈦合金的新型航空材料,達到減重或提高發動機推重比的目的。
機械合金化是一種合成細晶合金粉末材料的有效方法。TiAl基合金採用快冷方法無法獲得非晶,而採用機械合金化則可以形成非晶。利用機械合金化製得的非晶態TiAl基合金粉末,在其玻璃點溫度以上壓實時,粉末的流動性非常好,可以得到形狀復雜、緻密度近理想狀態的合金試件。機械合金化工藝採用的原料既可是單質元素粉末,也可是預合金粉。Ti、Al單質混合粉經機械合金化,很容易使Ti、Al組元尺寸細化、形成一種顆粒細小的Ti/Al復合粉;進一步延長球磨時間,則發生合金化或形成非晶。TiAl預合金粉經機械合金化,其晶粒尺寸能顯著細化。兩種經機械合金化方法處理的粉末,其燒結行為有些差異,但均可燒結成緻密度大於96%的TiAl基合金材料。
機械合金化方法制備TiAl基合金粉末的最大特點是易於獲得納米晶組織。如:預合金粉Ti-47.5%Al-3.45%Cr經機械球磨後,晶粒可細化至40~50nm,再經熱壓和1200℃熱處理25h,晶粒尺寸也只長大至1μm。Hiroshi等通過機械球磨製得了Ti-51Al非晶,發現在同一保溫時間下,隨熱壓溫度的增加γ晶粒尺寸增加,但經1300℃保溫5h,其尺寸仍能保證在50nm以下,且當直徑為15nm時,材料硬度達到最高10GPa。Huang等利用機械合金化方法分別製得伴有少量Ti(Al)固溶的TiAl復合組織和顆粒細小的非晶粉,再通過反應熱等靜壓分別獲得了等軸γ-TiAl+α2 Ti3Al相和近單相γ-TiAl,並且發現球磨粉末中高含量Nb、Cr等合金元素和間隙元素會導致α/(α+β)轉變溫度升高。
但是,機械合金化制備的TiAl基合金粉末的固結緻密與成形較為困難,因此關於機械合金化制備TiAl基合金塊體材料及其力學性能方面的研究報道,目前仍為鮮見。
影響機械合金化的主要因素
機械合金化是一個復雜的過程,因此要獲得理想的相和微觀結構,就需要優化設計一系列的影響參數。下面列舉一些對機械合金化結果有重大影響的參數。
(1)研磨裝置
研磨類型生產機械合金化粉末的研磨裝置是多種多樣的,如:行星磨、振動磨、攪拌磨等。它們的研磨能量、研磨效率、物料的污染程度以及研磨介質與研磨容器內壁的力的作用各不相同,故對研磨結果起著至關重要的影響。研磨容器的材料及形狀對研磨結果有重要影響。在過程中,研磨介質對研磨容器內壁的撞擊和摩擦作用會使研磨容器內壁的部分材料脫落而進入研磨物料中造成污染。常用的研磨容器的材料通常為淬火鋼、工具鋼、不銹鋼、P>K>5或P>內襯淬火鋼等。有時為了特殊的目的而選用特殊的材料,例如:研磨物料中含有銅或鈦時,為了減少污染而選用銅或鈦研磨容器。
此外,研磨容器的形狀也很重要,特別是內壁的形狀設計,例如,異形腔 ,就是在磨腔內安裝固定滑板和凸塊,使得磨腔斷面由圓形變為異形,從而提高了介質的的滑動速度並產生了向心加速度,增強了介質間的摩擦作用,而有利於合金化進程。
(2)研磨速度
研磨機的轉速越高,就會有越多的能量傳遞給研磨物料。但是,並不是轉速越高越好。這是因為,一方面研磨機轉速提高的同時,研磨介質的轉速也會提高,當高到一定程度時研磨介質就緊貼於研磨容器內壁,而不能對研磨物料產生任何沖擊作用,從而不利於塑性變形和合金化進程。另一方面,轉速過高會使研磨系統溫升過快,溫度過高,有時這是不利的,例如較高的溫度可能會導致在過程中需要形成的過飽和固溶體、非晶相或其它亞穩態相的分解。
(3)研磨時間
研磨時間是影響結果的最重要因素之一。在一定的條件下,隨著研磨的進程,合金化程度會越來越高,顆粒尺寸會逐漸減小並最終形成一個穩定的平衡態,即顆粒的冷焊和破碎達到一動態平衡,此時顆粒尺寸不再發生變化。但另一方面,研磨時間越長造成的污染也就越嚴重。因此,最佳研磨時間要根據所需的結果,通過試驗綜合確定。圖1-2為球磨過程中TiAl粉末的顯微硬度隨球磨時間的變化。圖1-3為TiAl粉末經過不同時間球磨後的背散射掃描電鏡照片,從圖上可明顯地看出球磨時間對組織的影響。
(4)研磨介質
選擇研磨介質時不僅要象研磨容器那樣考慮其材料和形狀如球狀、棒狀等,還要考慮其密度以及尺寸的大小和分布等,球磨介質要有適當的密度和尺寸以便對研磨物料產生足夠的沖擊,這些對最終產物都有著直接的影響,例如研磨Ti-Al混合粉末時,若採用直徑為15mm的磨球,最終可得到固溶體,而若採用直徑為25的磨球,在同樣的條件下即使研磨更長的時間也得不到Ti-Al 固溶體[20]。
(5)球料比
球料比指的是研磨介質與研磨物料的重量比,通常研磨介質是球狀的,故稱球料比。試驗研究用的球料比在1:1~200:1范圍內,大多數情況下為15:1左右。當做小量生產或試驗時,這一比例可高達50:1甚至100:1。
(6)充填率
研磨介質充填率指的是研磨介質的總體積占研磨容器的容積的百分率 ,研磨物料的充填率指的是研磨物料的鬆散容積占研磨介質之間空隙的百分率。若充填率過小,則會使生產率低下;若過高,則沒有足夠的空間使研磨介質和物料充分運動,以至於產生的沖擊較小,而不利於合金化進程。一般來說,振動磨中研磨介質充填率在60%-80%之間 ,物料充填率在100%-130%之間。
(7)氣體環境
機械合金化是一個復雜的固相反應過程,球磨氛圍、球磨強度、球磨時間等任意一個參數的變化都會影響合金化的過程甚至最終產物。在機械合金化過程中,由於球與球、球與罐之間的撞擊,機械能轉換成熱能,使得球磨罐內的溫度升得很高。同時,合金化過程中往往發生粒子的細化,並引入缺陷,自由能升高,很容易與球磨氛圍中的氧等發生反應,因此一般機械合金化過程中均以惰性氣體,如氬氣等為保護氣體。球磨氣氛不同,會對合金化的反應方式、最終產物以及性質等造成顯著影。研磨的氣體環境是產生污染的一個重要因素,因此,一般在真空或惰性氣體保護下進行。但有時為了特殊的目的,也需要在特殊的氣體環境下研磨,例如當需要有相應的氮化物或氫化物生成時,可能會在氮氣或氫氣環境下進行研磨。
(8)過程式控制制劑
在MA過程中粉末存在著嚴重的團聚、結塊和粘壁現象大大阻礙了MA的進程。為此,常在過程中添加過程式控制制劑,如硬脂酸、固體石蠟、液體酒精和四氯化碳等,以降低粉末的團聚、粘球、粘壁以及研磨介質與研磨容器內壁的磨損,可以較好地控制粉末的成分和提高出粉率。
(9)研磨溫度
無論MA的最終產物是固溶體、金屬間化合物、納米晶、還是非晶相都涉及到擴散問題,而擴散又受到研磨溫度的影響,故溫度也是MA的一個重要影響因素,例如 Ni-50%Zr粉末系統在振動球磨時當在液氮冷卻下研磨15h沒發現非晶相的形成;而在200oC下研磨則發現粉末物料完全非晶化;室溫下研磨時,則實現部分非晶化。
上述各因素並不是相互獨立的,例如最佳研磨時間依賴於研磨類型、介質尺寸、研磨溫度以及球料比等。
機械合金化合成高熔點合金或金屬間化合物時具有如下優點:避開普通冶金方法的高溫熔化、凝固過程,在室溫下實現合金化,得到均勻的具有精細結構的合金,且產量較高,因而已成為生產常規手段難以制備的合金及新材料的好方法。
『柒』 合金化是什麼
合金化可以這樣定義:往母材金屬中添加合金元素,通過一系列的冶金措施使這些猜敏合金元素與母材金屬一起產生一系列積極的效應的統稱。宏觀地理解就是「添加合金元素」、「冶金處理」等一系列操作過程的統稱。微觀地理解就是合金元素與母材金屬發生的有益物肆吵理裂兆侍化學變化過程。
『捌』 機械合金化的機理
合金貧化簡單說就是基體固溶體中的合金元素消失或者部分消失了,對材料的組織性能產生了影響。
復雜點說就是基體固溶體中溶劑合金元素和c,n,b,o發生反應生成了化合物,並且大部分是集結到了晶界或者相界之上,導致材料基體的性能發生了巨大變化。值得說明的是:與合金貧化相反的熱處理方法一般是固溶處理過程,讓本來在鋼種存在的合金化合物在固溶溫度下重新溶入到基體固溶體中畢褲或,並且在保溫一定時間後以較快的冷卻速度冷卻到室溫,讓材料在中高溫狀態停留時間盡量的短些,合金碳化物來不及析出,達到人們希望的性能要求手伍!
不銹鋼中的合金貧化一般是指在400到850度的溫度區間停留時間太長的話,就會引起合金化合物的析出,聚集,甚至粗化,因為晶界或者相界的原子排列相對晶內紊亂的多,所以形成了較多的合金化合物,引發了不銹鋼材料基體固溶體中的
合金元素缺失,也就是所謂的合金貧化。合金貧化會對fe基體純帶的電極電位產生不良影響,通常在使用中會發生晶間腐蝕的。
照片我沒有,通常的照片在一些文獻資料中會有,相信你能找到的。
說的是我的通俗理解,不成系統,也不很嚴謹,拋磚引玉而已。謝謝
查看原帖>>
『玖』 無鉛環保黃銅棒性能和特點有哪些以及應用領域。
新型金屬注射成形催化脫脂型粘結劑的催化快速分解研究
脫脂是金屬注射成形(MIM)工藝中最困難和最重要的因素,費時最多、最難控制。脫脂工藝對於保證產品質量極為重要,在脫脂過程中成形坯極易出現宏觀和微觀缺陷,至今粘結劑的脫脂仍是一個阻礙MIM發展的重要問題。Meta-mold法是德國BASF公司90年代初開發出來的一種催化脫脂方法,它綜合了熱脫脂和溶劑脫脂的優點,快速而不易產生缺陷和變形,是目前最先進的脫脂方法。筆者利用聚合物共混改性技術開發了一種能催化脫脂的新型粘結劑體系,本文研究了該粘結劑體系以HNO3為催化劑進行催化脫脂以及各種因素對催化脫脂效果的影響。
AXag0002 金屬零件激光快速成型技術研究
詳細介紹了金屬零件激光快速成型的原理,技術特點、系統組成及國外最新研究成果。我們建成了金屬零件激光快速成型的專用系統,研究了663錫青銅及316L不銹鋼的激光快速成型工藝及零件的組織性能,成功制備出具有一定復雜外形的零件,所制零件組織緻密,力學性能與鑄造及鍛造退火態相當,顯示出廣闊的發展前景。
AXag0003 新型生物醫用金屬材料的研究和進展
目前用於臨床的生物醫用材料主要包括生物醫用金屬材料、生物醫用有機材料(主要指有機高分子材料)、生物醫用無機非金屬材料(主要指生物陶瓷、生物玻璃和碳素材料)以及生物醫用復合材料等。
與生物陶瓷及生物高分子材料相比,生物醫用金屬材料,如不銹鋼、鈷基合金、鈦和鈦合金以及貴金屬等具有高的強度、良好的韌性及抗彎曲疲勞強度、優異的加工性能等許多其它醫用材料不可替代的優良性能。生物醫用金屬材料在應用中面臨的主要問題,是由於生理環境的腐蝕而造成的金屬離子向周圍組織擴散以及植入材料自身性質的退變,前者可能導致毒副作用,後者可能導致植入失效。因此研究和開發性能更優、生物相容性更好的新型生物醫用金屬材料依然是材料工作者和醫務工作者共同關心的課題。
AXag0004 電磁場作用下的金屬凝固與成形
綜述了電磁場在金屬凝固成形過程中的主要應用及其基本原理,指出了應用計算數值模擬方法求解材料電磁加工問題重要性及其今後的發展方向。
對金屬的凝固成形過程進行控制是獲得高性能優質鑄件的關鍵。對凝固過程進行控制,一方面是要獲得晶粒細小、組織緻密、性能優良的產品;另一方面是綜合利用各種手段開發新的凝固成形工藝,改進金屬的熔煉、凝固、成形過程,以滿足不同情況下的特殊要求。
AXag0005 自蔓延離子法研究
在分析離心法、自蔓延高溫合成技術的發展和優缺點的基礎上,對自蔓延離心法在鑄管業中的發展和應用進行了分析和論述。
離心鑄造法具有設備簡單,生產效率高,可指生產,能制備高緻密度、高穩定性材料等特點。多年來一直為人們所採用,在生產過程中,由於合金元素密度不同,鑄件易產生偏析現象,力學性能因此發生明顯變化。洛和三雄研究含 1.5%Cu的鑄鋼發現,離心力使Cu偏 析增加0.15%,力學性能比普通鑄造提高15%。鈴木章等也發現,離心鑄造的鋁青銅組織中銅產生1%偏析的同時,力學性能也發生明顯變化。竹內宏昌等進下研究含4.5%Cu的鋁合金離民鑄造組織,發現沿鑄件內外徑方向產生宏觀偏析,且力學性能與普通鑄件相比有了明顯變化。顯然,單一的離心鑄造管很難滿足冶金、化工和礦山的各種需要。
隨著自蔓延高溫合成技術(Self-propagating High-tem-perature Synthesis,簡稱SHS,美、日又稱燃燒合成,Com-bustion Synthesis,簡稱CS)的出現,在離心法的基礎上,逐步發展成SHS-離心法,或稱鋁熱-離心法鑄造工藝。自蔓延離心法是制備復合的一種新方法,與傳統的軋制復合、燒結復合、爆炸復合相比,具有簡單、節能的特點;成本僅為傳統方法的1/3。SHS---離心法根據需要可進行陶瓷---鋼管、不銹鋼---鋼管、陶瓷----陶瓷管的復合,其中前兩個已產業化或接近產業化。本文對SHS-離心法的發展、研究現狀及應用進行扼要介紹與論述。
AXag0006 電磁技術在冶金中的應用
回顧了電磁冶金的發展,論述了電磁在冶金中的應用原理,著重說明了電磁在熔煉、鑄造、制動和凈化方面的應用,並對電磁冶金的前景作了展望。
AXag0007 韌性雙相材料研究進展
韌性雙相合金問題是近年來人們感興趣的問題之一。回顧了有關韌性雙相合金研究的情況,包括韌性雙相合金的力學行為、細觀力學模型及復相材料的組織設計,並對各種觀點進行了初步的評述。
AXag0008 MoSi2材料摩擦損特性的研究與發展
金屬間化合物二硅化鉬(MoSi2)兼具金屬和陶瓷材料的雙重特性,成為開發和研究的重點。從耐磨性角度出發,重點評述了MoSi2基復合材料以及MoSi2增強陶瓷材料的摩擦磨損性的研究現狀,並展望了MoSi2材料作為耐磨材料的前景。
AXag0009 噴射成形技術產品的研究現狀
噴射成形是一種快速凝固近終成形材料制坯技術,利用該技術制備的材料具有優異的性能,噴射成形技術產品在特定的領域中正在逐步取代一些傳統材料,簡要闡述了噴射成形技術和產品的研究發展現狀。
AXag0010 新型金屬材料及其加工技術的研究進展
論述了當前金屬材料及其加工工藝的最新研究和應用進展。指出了目前需要進一步開展新型材料的基礎研究和應用研究,不斷完善其制備工藝,開發產品,使新型材料的性能得到充分、廣泛的發揮和應用。
金屬材料具有優越的性能價格比,且資源豐富,對國民經濟發展起著極大的推動作用,因而受到世界各國的普通重視,應用非常廣泛。同時,金屬材料及其制備技術的發展也為現有的高技術產業開發了市場,因此世界各國都把金屬材料的研究列入首要發展的對象。隨著科學技術突飛猛進的發展,材料科學家們不斷地研製開發了越來越多的新型金屬材料及其制備和成形工藝。如復合材料、功能材料,以及半固態合金鑄造技術和快速凝固技術,等等。本文主要討論近些年新型金屬材料研究應用的現狀及前景。
AXag0011 反向凝固連鑄薄帶技術及其若干基本問題探討
簡述了反向凝固薄帶連鑄技術的工藝原理,了反向判罪技術的特點、競爭力,介紹了其研究現狀,討論了反向凝固技術所涉及的若干基本問題。
近二十年來,鋼鐵工業最重要的進展之一是研究開發成功了更薄的鹿茸平材連鑄技術----近終形連鑄技術。最先在工業規模意義上獲得成功的近終形連鑄技術,是1989年6月美國Nucor Co.在其Crawforsville廠採用的CSP薄板坯連鑄技術。如今作為成熟的先進工藝,薄板坯連鑄技術已發展有CPS、ISP、FTSP、CONROLL等工藝形式。與薄板坯連鑄相比,採用薄帶連鑄技術可以生產出更接近於最終產品形狀的鋼帶,例如可以將鋼水直接澆鑄出1~10mm厚的鋼帶,不經熱軋或銷經熱軋(1~2個機架),即可進入冷軋機軋成冷軋帶鋼。與其它扁平材連鑄生產工藝技術相比,由於薄帶連鑄技術在投資、工藝流程的緊湊化、生產成本、高性能材料的開發以及環保等方面具有或可能具有更大的競爭潛力,所以幾乎世界各主要鋼鐵強國都在薄帶連鑄技術研究領域中投入巨資,現已開發出多種實驗室或半薄帶連鑄技術,如雙輥法、單輥法、輥帶法等。
80年代末德國的大學、研究機構和鋼鐵企業開始從事實驗室研究,聯合開發反向凝固連鑄薄帶技術,目的在於以一種比目前已有的近終形連鑄技術更短的流程、生產成本更低的工藝技術製造薄帶。反向凝固連鑄技術思想突破了傳統的連鑄和軋制模式,其原理簡單,可實現性高,可望成為連續生產薄帶的革命性工藝。
AXag0012 金屬在液固兩相流中的沖刷腐蝕
液固兩相流體的沖刷腐蝕行為較單相流體更為復雜、在相同液相介質的情況下,其沖刷腐蝕對材料的破壞程度更為嚴重。綜述了國內外對液固兩相流的沖刷腐蝕體系開展的研究,對沖刷腐蝕的過程有了進一步的認識,對沖刷腐蝕的影響規律和危害性進行了論述,從而為材料的選用提供了一定的參考依據。
AXag0013 金屬材料的開發及應用
簡要敘述了金屬材料發展方向及應用,主要介紹了微合金鋼、超高強度鋼、不銹鋼、空冷貝氏體鋼、非晶態體鋼、非晶態合金、粉末治金黃色材料及超塑性合金的開發及應用。
AXag0014 PVC金屬板貼塑技術及其應用
AXag0015 影響黃銅化學轉化膜質量的因素
採用鹼式碳酸銅-氨水溶液對黃銅製品進行化學氧化。介紹了氧化工藝參數,前、後處理工作,黃銅基體材質狀況等對黃銅化學轉化膜質量的影響。
AXag0016 液態金屬雙頻電磁約束成形過程研究
利用高頻-超音頻和雙高頻的電磁場實現了液態金屬雙頻電磁約束成形的工藝過程,達到了固態試樣無接觸加熱熔化、初步約束成形和復雜無模殼電磁成形的目的。在雙頻電磁成形過程中發現:高頻-超音頻雙頻電磁成形控制不僅優於單頻電磁成形,而且比雙磁成形控制容易,2種頻率的電磁不同加熱熔化和電磁成形功能都能加以發揮,並可單獨加以調節。在試驗中利用高頻-超音頻雙頻電磁成形工藝過程成功獲得了扁橢圓截面和彎月截面復雜開頭的雙頻無模電磁盛開樣件。
AXag0017 人工模擬體液中pH值對離子注N人體醫用合金腐蝕行為的影響
採用電化學測試技術研究了在人工模擬體液中pH值變化對離子注N人體用SUS316L不銹鋼,Co-Cr合金,工業純Ti和Ti-6Al-4V合金腐蝕行為的影響。結果表明,隨著pH值的降低,試樣的腐蝕電位負移,SUS316L不銹鋼和Co-Cr合金的點蝕電位與縫隙腐蝕電位降低,使材料發生局部腐蝕的提高;工業純Ti和Ti-6Al-4V合金的腐蝕電流密度增大,提高離子釋放速度,加工對人體的潛在生理危害。
AXag0018 金屬功能材料"十五"市場需求
分析預測了十五期間某些金屬功能材料例如彩管材料、集成電路引線框架用Ni42Fe合金、稀土永磁、音頻和計算機硬碟驅動器用磁頭材料、非晶和納米晶軟磁材料以及貯氫合金等的市場需求。
AXag0019 噴射沉積及熔體霧化領域研究展望
首屆"噴射沉積及熔體霧化國際會議"(Spray Deposition and Melt Atomization)於2000年6月26~28日在德國布來梅大學成功舉行。這次會計旨在交流各國噴射沉積及熔體霧化領域最新的科研成果,側重點在基礎研究和應用基礎研究方面。這和英國Ospray(Neath,UK)公司每逢單年組織的噴射沉積成形材料研討會側重生產性應用研究有較大的區別。
AXag0020 熔體溫度處理細化金屬凝固組織的研究進展
隨著凝固技術和團簇物理學的發展,人們越來越關注熔體的結構對最終凝固組織的影響,發現液態結構變化對凝固以後材料的組織、性質和質量有著直接、重要的影響,對凝固過程的研究已逐步延伸到凝固開始前的液態金屬結構對凝固組織的作用上來。隨著人們對生態環境保護的日益重視,目前生產中一直沿用的化學法細化凝固組織工藝逐漸暴露出弊端,因此人們正在致力於尋求一種工藝更簡單、成本更低廉、對環境影響更小的細化金屬凝固組織的生產工藝。基於此,本文綜述了一種新型的凝固組織細化工藝---熔體溫度處理工藝的研究現狀和應用前景。
AXag0021 微波瓷用金水的研製
分析了微波瓷用金水研製的原理,研究了復合改劑、增黃劑及樹脂的作用,研製了能在750-850℃燒烤的微波金水。
AXag0022 Nd2Fe12P7單相合金的制備及晶體結構
採用機械合金化方法得到了Nd-Fe-P3元合金,然後用鹽酸(1:1)進行後處理,得到Nd2Fe12P7單相粉粒。其晶格參數為α=9.280A,c=3.705A。通過對晶體衍射譜強度的計算,給出了Nd2Fe12P7晶體中各原子的具體位置。
AXag0023 鉻酸鉛沉澱-亞鐵滴定法測定銅合金中鉛的研究
對鉻酸鉛淀劑-亞鐵滴定法測定銅合金中鉛的實驗方法進行了研究,從試驗條件上進行了改進,從而提高了實驗方法的准確度和穩定性。
AXag0024 無序hcp Tix Al(1-x)合金的單原子操縱設計
依據hcp TiAl系的特徵原子和特徵晶體序的結構參數和性質,應用計算機技術進行無序hcp TixAl(1-x)合金單原子操縱設計,求得它們的電子結構參數、物理性質和熱力學性質,並存入住處庫中,為復雜合金的設計、制備和應用提供基礎資料。
AXag0025 金屬材料激光立體成形技術
對激光立體成形技術的基本原理、發展狀況以及成形特性、凝固組織形成規律進行了系統深入的研究 ,發現要獲得理想的成形效果 ,就必須對單層塗覆厚度、單道塗覆寬度、搭接率等主要參數進行精確控制。在工藝研究的同時 ,對成形件微觀組織形成規律進行了研究 ,發現其內部組織主要由外延生長的細長枝晶構成 ,其枝晶一次間距在 10~30 μm之間。在進一步嚴格控制工藝條件的基礎上 ,獲得了具有定向乃至單晶組織的試樣。結合成形特性方面的研究結果 ,通過總結優化工藝 ,獲得了不同合金的激光立體成形件 ,成形件內部緻密 ,表面質量良好 ,無缺陷。
AXag0026 硼含量對Ti-50Al-xB合金中TiB2微觀形貌的影響
用XRD,SEM對原位自生法制備的Ti-50Al-xB(at%)合金的相組成的微觀組織進行了研究。結果表明:該合金主要由TiAl和TiB2兩相組成;TiB2主要以片狀、板片狀、細棒狀和塊狀形式存在;TiB2微觀形貌隨著合金中B含量的變化而發生顯著變化。
AXag0027 金屬注射成形技術的研究現狀
金屬注射成形(MIM)已成為國際粉末冶金領域發展迅速,最有前途的一種新型近凈成形技術。綜述了MIM技術的研究現狀,指出了MIM的發展趨勢。
AXag0028 微重力場下金屬材料制備的發展現狀
近年來微重力下制備金屬材料的研究越來越引起人們的重視。簡述了形成微重力的幾種實驗方法,綜述了微重力下制備金屬材料的發展現狀。
AXag0029 Nb-Si系金屬間化合物的研究進展
介紹了Nb-Si系金屬間化合物及其復合材料的制備工藝 、力學性能和物理性能,綜述了Nb-Si系金屬間化合物作為高溫結構的最新研究進展和發展趨勢,作為輕質高溫結構材料的有力競爭者,Nb-Si系金屬間化合物及其復合材料,特別是具有低溫韌性和高溫強度優良均衡的Nb-Nb5Si3原位復合材料,有望在下一代航空航天發動機上(≥1600℃)應用。
AXag0030 新型合金磨球的組織與性能
針對磁性材料等行業砂磨機用研磨體存在的問題,開發了一種新型的鑄造合金磨球。研究了該合金磨球的組織與性能特點,並與軸承鋼球進行了對比。結果表明,鑄造合金磨球具有比軸承鋼球更有利的組織和性能,其硬度可以達到HRC63~67,且斷面硬度極差僅HRC0.5;抵抗沖擊疲勞破壞的軸承鋼球高10倍以上;耐磨性特別是在濕磨條件下的耐磨性比軸承球至少提高4倍以上。因此在砂磨機內使用具有明顯的優勢。
AXag0031 灰色GM(1,1)模型在金屬材料疲勞試驗數據預測中的應用
提出用灰色系統理論中的GM(1,1)模型對金屬材料的疲勞壽命試驗數據進行預測,目的是大幅度縮短試驗時間,節約試驗費用,快速獲得可靠性指標。實例計算結果說明,將灰色系統理論用於金屬材料的疲勞壽命試驗數據預測有較高的精度,為有效縮短金屬材料疲勞壽命試驗時間提供了一個值得探討的方法。
AXag0032 Al-Mn柱撐蒙脫石的制備和微結構變化研究
以遼寧某地的鈣基膨潤土為原料,首先對其鈉化改型得到適合制備柱撐蒙脫石的基質,然後採用取代法合成Al-Mn柱化劑、紅外光譜分析及煅燒試驗等手段研究了Al-Mn柱撐蒙脫石的微結構變化和熱穩定性。結果表明:n(Mn2+):n(Al3+)為0.5時,可得到層間距d(001)值為1.8987nm,300℃煅燒後其層間距穩定在1.7859nm,具有較好的熱穩定性;鈉基膨潤土經柱撐反應後,柱化劑進入了蒙脫石層間,同時蒙脫石骨架〔Si4O10〕n與層間柱化劑離子之間發生了成鏈反應,形成了Si-O-Al或Si-O-Mn鍵。
AXag0033 新型金屬材料及其加工技術的研究進展
論述了當前金屬材料及其加工工藝的最新研究和應用進展。指出了目前需要進一步開展新型材料的基礎研究和應用研究,不斷完善其制備工藝,開發產品,使新型材料的性能得到充分,廣泛的發揮和應用。
AXag0035 含Zr多組元摻雜石黑材料的性能研究
以天然石墨為原料,通過熱壓工藝,制備了含Zr多組元摻雜石墨材料。研究了摻雜元素對材料性能的影響。實驗結果表明:隨著Zr含量增加,基體石墨的強度、導電和導熱性成線性增加;但是過量的ZrO2會消耗基體炭原子,生成金屬Zr蒸汽逸出基體,形成孔隙和缺陷,導致材料的性能下降,因此應控制ZrO2的加入量。另外,採用SEM、XRD等分析手段研究了材料微觀結構,探討了微觀結構對其性能的影響。
AXag0036 貯氫合金機械合金化制備的研究進展
機械合金化技術 (MA)是一種制備材料的新興工藝 ,用它可以制備一般方法難以制備的和性能優越的貯氫合金。本文詳細概述了近幾年來機械合金化技術在貯氫合金制備上的應用狀況 ,並就今後機械合金化技術在貯氫合金制備上的應用研究提出了方向。
AXag0037 噴射成形技術產品的研究現狀
噴射成形是一種快速凝固近終成形材料制坯技術,利用該技術制備的材料具有優異的性能,噴射成形技術產品在特定的領域中正在逐步取代一些傳統材料,簡要闡述了噴射成形技術和產品的研究發展現狀。
AXag0038 快速成形技術中材料成形性的研究進展
簡要介紹了幾種典型的快速成型技術的基本原理,分析了快速成形技術中材料的研究和應用現狀,討論了快速成形中材料的快速成形性問題,並指出研究和開發快速成形材料和對新材料的快速成形性的研究是材料與製造工程科學的一個重要發展方向。
AXag0039 鑄造合金的微觀組織模擬研究進展
凝固過程的數值模擬正在由宏觀向微觀轉變。微觀模擬不僅可以得到材料的凝固組織,而且還能為宏觀模擬提供准確的潛熱釋放信息。針對目前微觀組織模擬的研究現狀,介紹了幾種主要的模擬研究方法,如確定性模擬方法、隨機性模擬方法和相場方法等,闡述了其主要特徵和模擬微觀組織時存在的優缺點。最後對微觀模擬中現存的問題及發展方向了分析。
AXag0040-01 金屬功能材料研究和開發的某些最新進展*
簡要介紹了金屬功能材料的發展概況,重點敘述了幾種主要功能材料的研究開發情況,如結合國外情況介紹了中國的精密合金和電工鋼、稀土永磁材料、非晶態合金、納米晶材料、儲氫材料和電池、超磁致伸縮材料等研發情況,對近期研究開發的新型金屬功能材料如磁性形狀記憶合金等進行了介紹。
AXag0041-02 等離子噴塗制備Fe-B系非晶合金塗層的工藝研究*
非晶合金(俗稱金屬玻璃)具有獨特而優異的性能,如高強度、高韌性、高硬度、極高抗腐蝕性能、軟磁特性等,是一類很有發展前途的新型金屬材料。但是,非晶合金在實際中仍還沒有得到大范圍應用,其性能優勢遠未能夠充分發揮出來,限制非晶合金應用的最主要因素是其產品形態,如薄帶、細絲、粉末等,厚度或直徑只有數十個微米,應用范圍是很有限的。開發熔體急冷制備新技術是當前非晶合金材料研究領域里的前沿性重要課題,採用現代先進熱噴塗技術,如等離子噴塗、超音速火焰噴塗等制備表面非晶塗層就是對非晶合金制備技術的新開拓。熱噴塗技術的顯著特點之一是:噴塗粒子具有很高的冷卻速度,單個熔融粒子的典型冷卻速度大於106K/s,只要噴塗合金成分適宜、工藝適當,就能夠形成非晶塗層。Fe-B系非晶合金往往具有優異的高硬、高強和高韌性能,將其應用於表面塗層領域則有可能成為一種優良的耐磨抗蝕材料。
一種Fe-B基非晶合金粉末(含Cr,Ni,Si等)被用於大氣等離子噴塗試驗,研究表明,採用本文設計的等離子噴塗工藝能夠制備出非晶合金塗層,塗層基本上由非晶相組成,在非晶塗層中分布著少量的淬態核結晶相,其尺寸在2~5μm。塗層由變形良好的帶狀粒子相互搭接堆積而成,球形噴塗粒子高度變形為扁平狀保證了粒子各區域的非晶化和非晶塗層的順利形成。塗層緻密高,孔隙率低,氧化物含量較少,但在塗層中的粒子邊界包含著少量的孔隙、微細的球形粒子等缺陷。塗層具有很高的硬度,顯微硬度在800~950GHv0.1范圍內。隨塗層厚度增大,塗層與基材的結合強度、塗層的抗開裂韌性均降低,採用200℃-4h保護氣氛熱處理可以有效提高塗層的硬度和抗開裂韌性,塗層仍保持非晶態結構。
AXag0042-02 離子束輔助沉積非晶合金薄膜的研究*
目前離子束輔助沉積技術廣泛用於各種超硬薄膜的制備,如類金剛石薄膜,但在二元合金系統中制備非晶和亞穩晶相方面鮮有報道。本文報道了作者所在的研究組最近幾年用離子束混合技術制備非晶合金薄膜的研究結果。實驗結果表明,離子束混合技術制備可用於多種二元合金系統非晶薄膜的制備,非晶合金薄膜的厚度不受實驗條件的限制。在具有正混和熱的二元合金系統里,已獲得獲得Cu-Ta和Cu-Nb非晶薄膜,在混和熱為負的二元合金系統里,已獲得 Fe-Zr、Fe-Nb、Fe-Tb、Co-Nb、Ni-Mo和Ni-Nb等非晶薄膜,採用多層膜離子束混合的方法在正混和熱的系統里所獲得的非晶成分范圍小於在負混和熱的系統非晶形成范圍。
AXag0043-02 放電等離子燒結技術及其在粉末新材料研究中應用*
介紹了放電等離子燒結(Saprk Plasma Sintering,簡稱SPS)技術的原理、發展與特點,並結合SPS新材料的研究進展,闡述高性能靶材、稀土磁性材料、超細或納米晶硬質材料和熱電轉換材料的合成制備、性能與應用。
AXag0044-02 金屬熱變形過程中的微觀組織預測*
對大型體積成型軟體DEFORM3D進行二次開發,將我所在90年代提出的一組熱剛粘塑性本構模型以用戶子程序的方式插入到DEFORM3D中。並針對FMV拔長工藝,進行數值模擬和實驗驗證的比較。
AXag0045-02 亞微米級Fe-Cr-Cu金屬纖維的研究*
從Cu-Fe-Cr原位復合材料中提取了金屬纖維,對其組織結構進行了研究。X射線衍射分析結果表明,金屬纖維為bcc結構的鐵素體。
AXag0046-01 氣相沉積Ni薄膜的微結構和力學性能*
氣相沉積純金屬薄膜在微電子、光學、防腐蝕、表面裝飾等領域已得到廣泛應用。但由於研究上的困難和缺乏應用需求,以往對純金屬薄膜的力學性能的研究關注不夠,應用中常以塊體材料的性能對其進行粗略的估計。近年來,微機械技術迅速崛起,成為高技術發展的重要方向之一。在微機械技術中,薄膜的刻蝕加工是核心工藝之一,純金屬薄膜由於其刻蝕工藝成熟,質量穩定,易於保證微機械零部件的加工精度而成為微機械技術的主要材料,因而需對其力學性質作較為全面系統的研究。
Ni薄膜具有優良的抗氧化性和綜合機械性能,並且具有鐵磁性,是微機械技術中的重要材料。本文研究了不同基片溫度下的Ni薄膜的微結構和力學性質。
AXag0047-01 鉑包鉬攪拌器國產化研究*
本文主要介紹了鉑包鉬攪拌器的結構、應用領域、製造難點、使用注意事項及發展前景。
AXag0048-02 金屬多胞材料反平面應變裂紋的穩態擴展*
金屬多胞材料(也稱為金屬泡沫材料)是一種新型的工程材料,它具有獨特的物理、力學、熱學、電學和聲學等性質,如密度小、傳熱性較好,能吸收能量、聲音等,因而可以廣泛應用於包裝、夾層板的製造、隔音材料、高溫氣體和流體的過濾、汽車的零部件等領域。特別地,金屬多胞材料具有可循環使用的特點。
為了更好地發揮金屬多胞材料的功能,了解其力學性能是必要的。本文應用奇異攝動法研究了DF模型下金屬多胞材料反平面應變裂紋的穩態擴展,並根據裂紋尖端的塑性變形與彈性變形必須相平衡的觀點給出了裂尖附近的最低階漸近解。
AXag0049-02 摻雜對金屬玻璃的形成能力與性能的影響*
塊體金屬玻璃的成功制備不僅使得金屬玻璃作為工程結構材料的應用成為可能,也為金屬玻璃的形成機理與玻璃化轉變這一重要物理問題研究提供了新的思考點。但是到目前為止所發現的塊體金屬玻璃形成體系僅ZrTiCuNiBe、PdNiCuP這兩個體系具有非常好的玻璃形成能力,其它合金體系的金屬玻璃制備仍然需要很苛刻的條件,比如要求原材料的純度高、高的煉真空度、氣氛中的氧含量低等。對於塊體金屬玻璃的制備,摻雜不僅可以改進×的物理和力學等性能,降低材料的生產成本,也是研究金屬玻璃形成的一種有效方法。本文所報道的工作從上述目的出發,採用合金元素添加等方法研究了Y對含Zr基塊體金屬玻璃的形成能力、力學性能的作用。
AXag0050-02 NdAlFeCo金屬玻璃的變形行為*
最近成功的制備出了Nd基多組元大塊金屬玻璃引起人們的廣泛的關注,一是它在室溫具有很高的矯頑力,二是用差示掃描熱分析表現出反常的熱穩定性,在加熱測試過程中該體系在晶化溫度以前沒有表現出顯著的玻璃轉變。但是Tx/T1有很高的值大約為0.9,這又表明有非常穩定的非晶相抑制了晶化,晶化溫度以前沒有表現出顯著的玻璃轉變和Tx/T1有很高的值,這一對矛盾使得該體系不同於其他大塊金屬玻璃,我們以膠的動態力學試驗結果表明在600k時彈性模量迅速衰減和內耗試驗峰,這表明有玻璃轉變發生了。本文中我們將在不同工下測試NdAlFeCo金屬玻璃的變形行為。
本文對電渣熔鑄整體大型曲軸所涉及到的一些關鍵技術的研究作了簡要的敘述。
『拾』 機械合金化的機械合金化簡介
機械合金化(Mechanical Alloying,簡稱MA)是指金屬或合金粉末在高能球磨機中通過粉末顆粒與磨球之間長時間激烈地沖擊、碰撞,使粉末顆粒反復產生冷焊、斷裂,導致粉末顆粒中原子擴散,從而獲得合金化粉末的一種粉末制備技術。
機械合金化粉末並非像金屬或合金熔鑄後形成的合金材料那樣,各組元之間充分達到原子間結合,形成均勻的固溶體或化合物。在大多數情況下,在有限的球磨時間內僅僅使各組元在那些相接觸的點、線和面上達到或趨近原子級距離,並且最終得到的只是各組元分布十分均勻的混合物或復合物。當球磨時間非常長時,在某些體系中也可通過固態擴散,使各組元達到原子間結合而形成合金或化合物。
