⑴ 機械運動與電磁運動和熱運動之間的轉換
發動機的轉動機械零件磨擦起熱
⑵ 什麼是「電磁能」什麼是「機械能」
好問題
動能+勢能抄
系統的各粒子的襲動能總和
化學反應前後釋放的能量,(原子間的結合能,舉例來說,兩個相距無窮遠的氫原子結合為氫氣分子時釋放的能量)
電勢場中系統具有的勢能
電磁勢場中系統具有的勢能
粒子質量改變過程所產生的能量
⑶ 有關物理學機械運動的知識
物理學概覽
力學
靜力學 動力學 流體力學 分析力學 運動學 固體力學 材料力學 復合材料力學 流變學 結構力學 彈性力學 塑性力學 爆炸力學 磁流體力學 空氣動力學 理性力學 物理力學 天體力學
生物力學 計算力學
熱學 熱力學
光學
幾何光學 波動光學 大氣光學 海洋光學 量子光學 光譜學 生理光學 電子光學 集成光學 空間光學
聲學
次聲學 超聲學 電聲學 大氣聲學 音樂聲學 語言聲學 建築聲學 生理聲學 生物聲學 水聲學
電磁學
磁學 電學 電動力學
量子物理學
量子力學 核物理學 高能物理學 原子物理學 分子物理學
固體物理學
高壓物理學 金屬物理學 表面物理學
"給我一個舞台,還您一個精彩!" 歡迎進入學科教育網www.bbs.xueke.cn
xklouxw
管理員
威望:5
文章:1259
積分:575
門派:家長
注冊:2006年9月17日
狀態:離線 # 2 發表於2007-3-29 1:04:00郵件 物理學概覽
物理學是研究宇宙間物質存在的基本形式、性質、運動和轉化、內部結構等方面,從而認識這些結構的組成元素及其相互作用、運動和轉化的基本規律的科學。
物理學的各分支學科是按物質的不同存在形式和不同運動形式劃分的。人對自然界的認識來自於實踐,隨著實踐的擴展和深入,物理學的內容也在不斷擴展和深入。
經典力學
經典力學是研究宏觀物體做低速機械運動的現象和規律的學科。宏觀是相對於原子等微觀粒子而言的;低速是相對於光速而言的。物體的空間位置隨時間變化稱為機械運動。人們日常生活直接接觸到的並首先加以研究的都是宏觀低速的機械運動。
牛頓深入研究了這些經驗規律和初步的現象性理論,發現了宏觀低速機械運動的基本規律,為經典力學奠定了基礎。亞當斯根據對天王星的詳細天文觀察,並根據牛頓的理論,預言了海王星的存在,以後果然在天文觀察中發現了海王星。於是牛頓所提出的力學定律和萬有引力定律被普遍接受了。
在經典力學中,力學系統的總能量和總動量有特別重要的意義。物理學的發展表明,任何一個孤立的物理系統,無論怎樣變化,其總能量和總動量數值是不變的。這種守恆性質的適用范圍已經遠遠超出了經典力學的范圍,現在還沒有發現它們的局限性。
早在19世紀,經典力學就已經成為物理學中十分成熟的分支學科,它包含了豐富的內容。例如:質點力學、剛體力學、分析力學、彈性力學、塑性力學、流體力學等。經典力學的應用范圍,涉及到能源、航空、航天、機械、建築、水利、礦山建設直到安全防護等各個領域。當然,工程技術問題常常是綜合性的問題,還需要許多學科進行綜合研究,才能完全解決。
熱學、熱力學和經典統計力學
熱學是研究熱的產生和傳導,研究物質處於熱狀態下的性質及其變化的學科。人們很早就有冷熱的概念。對於熱現象的研究逐步澄清了關於熱的一些模糊概念(例如區分了溫度和熱量),並在此基礎上開始探索熱現象的本質和普遍規律。關於熱現象的普遍規律的研究稱為熱力學。到19世紀,熱力學已趨於成熟。
物體有內部運動,因此就有內部能量。19世紀的系統實驗研究證明:熱是物體內部無序運動的表現,稱為內能,以前稱作熱能。19世紀中期,焦耳等人用實驗確定了熱量和功之間的定量關系,從而建立了熱力學第一定律:宏觀機械運動的能量與內能可以互相轉化。就一個孤立的物理系統來說,不論能量形式怎樣相互轉化,總的能量的數值是不變的,因此熱力學第一定律就是能量守恆與轉換定律的一種表現。
深入研究熱現象的本質,就產生了統計力學。統計力學應用數學中統計分析的方法,研究大量粒子的平均行為。統計力學根據物質的微觀組成和相互作用,研究由大量粒子組成的宏觀物體的性質和行為的統計規律,是理論物理的一個重要分支。
在一定時期內,人們對客觀世界的認識總是有局限性的,認識到的只是相對的真理,經典力學和以經典力學為基礎的經典統計力學也是這樣。經典力學應用於原子、分子以及宏觀物體的微觀結構時,其局限性就顯示出來,因而發展了量子力學。與之相應,經典統計力學也發展成為以量子力學為基礎的量子統計力學。
經典電磁學、經典電動力學
經典電磁學是研究宏觀電磁現象和客觀物體的電磁性質的學科。人們很早就接觸到電和磁的現象,並知道磁棒有南北兩極。在18世紀,發現電荷有兩種:正電荷和負電荷。不論是電荷還是磁極都是同性相斥,異性相吸,作用力的方向在電荷之間或磁極之間的連接線上,力的大小和它們之間的距離的平方成反比。在這兩點上和萬有引力很相似。18世紀末發現電荷能夠流動,這就是電流。但長期沒有發現電和磁之間的聯系。
19世紀前期,奧斯特發現電流可以使小磁針偏轉。而後安培發現作用力的方向和電流的方向,以及磁針到通過電流的導線的垂直線方向相互垂直。不久之後,法拉第又發現,當磁棒插入導線圈時,導線圈中就產生電流。這些實驗表明,在電和磁之間存在著密切的聯系。
在電和磁之間的聯系被發現以後,人們認識到電磁力的性質在一些方面同萬有引力相似,另一些方面卻又有差別。為此法拉第引進了力線的概念,認為電流產生圍繞著導線的磁力線,電荷向各個方向產生電力線,並在此基礎上產生了電磁場的概念。
事實上,發電機無非是利用電動力學的規律,將機械能轉化為電磁能:電動機無非是利用電動力學的規律將電磁能轉化為機械能。電報、電話、無線電、電燈也無一不是經典電磁學和經典電動力學發展的產物。經典電動力學對生產力的發展起著重要的推動作用,從而對社會產生普遍而重要的影響。
光學和電磁波
光學研究光的性質及其和物質的各種相互作用,光是電磁波。雖然可見光的波長范圍在電磁波中只佔很窄的一個波段,但是早在人們認識到光是電磁波以前,人們就對光進行了研究。
17世紀對光的本質提出了兩種假說:一種假說認為光是由許多微粒組成的;另一種假說認為光是一種波動。19世紀在實驗上確定了光有波的獨具的干涉現象,以後的實驗證明光是電磁波。20世紀初又發現光具有粒子性,人們在深入入研究微觀世界後,才認識到光具有波粒二象性。
光學方法是研究大至天體、小至微生物以至分子、原子結構的非常有效的方法。利用光的干涉效應可以進行非常精密的測量。物質所放出來的光攜帶著關於物質內部結構的重要信息,例如:原子所放出來原子光譜的就和原子結構密切相關。
在經典電磁學的建立與發展過程中,形成了電磁場的概念。在物理學其後的發展中,場成了非常基本、非常普遍的概念。在現代物理學中,場的概念已經遠遠超出了電磁學的范圍,成為物質的一種基本的、普遍的存在形式。
狹義相對論和相對論力學
在經典力學取得很大成功以後,人們習慣於將一切現象都歸結為由機械運動所引起的。在電磁場概念提出以後,人們假設存在一種名叫「以太」的媒質,它彌漫於整個宇宙,滲透到所有的物體中,絕對靜止不動,沒有質量,對物體的運動不產生任何阻力,也不受萬有引力的影響。可以將以太作為一個絕對靜止的參照系,因此相對於以太作勻速運動的參照系都是慣性參照系。
在慣性參照系中觀察,電磁波的傳播速度應該隨著波的傳播方向而改變。但實驗表明,在不同的、相對作勻速運動的慣性參照系中,測得的光速同傳播方向無關。特別是邁克爾遜和莫雷進行的非常精確的實驗,可靠地證明了這一點。這一實驗事實顯然同經典物理學中關於時間、空間和以太的概念相矛盾。愛因斯坦從這些實驗事實出發,對空間、時間的概念進行了深刻的分析,提出了狹義相對論,從而建立了新的時空觀念。
狹義相對論的基本假設是:
①在一切慣性參照系中,基本物理規律都一樣,都可用同一組數學方程來表達;
②對於任何一個光源發出來的光,在一切慣性參照系中測量其傳播速率,結果都相等。
在狹義相對論中,空間和時間是彼此密切聯系的統一體,空間距離是相對的,時間也是相對的。因此尺的長短,時間的長短都是相對的。但在狹義相對論中,並不是一切都是相對的。
相對論力學的另一個重要結論是:質量和能量是可以相互轉化的。假使質量是物質的量的一種度量,能量是運動的量的一種度量,則上面的結論:物質和運動之間存在著不可分割的聯系,不存在沒有運動的物質,也不存在沒有物質的運動,兩者可以相互轉化。這一規律己在核能的研究和實踐中得到了證實。
當物體的速度遠小於光速時,相對論力學定律就趨近於經典力學定律。固此在低速運動時,經典力學定律仍然是很好的相對真理,非常適合用來解決工程技術中的力學問題。
狹義相對論對空間和時間的概念進行了革命性的變革,並且否定了以太的概念,肯定了電磁場是一種獨立的、物質存在的恃殊形式。由於空間和時間是物質存在的普遍形式,因此狹義相對論對於物理學產生了廣泛而又深遠的影響。
廣義相對論和萬有引力的基本理論
狹義相對論給牛頓萬有引力定律帶來了新問題。牛頓提出的萬有引力被認為是一種超距作用,它的傳遞不需要時間,產生和到達是同時的。這同狹義相對論提出的光速是傳播速度的極限相矛盾。因此,必須對牛頓的萬有引力定律也要加以改造。
改造的關鍵來自厄缶的實驗,它以很高的精確度證明:慣性質量和引力質量相等,固此不論行星的質量多大多小,只要在某一時刻它們的空間坐標和速度都相同,那末它們的運行軌道都將永遠相同。這個結論啟發了愛因斯坦設想:萬有引力效應是空間、時間彎曲的一種表現,從而提出了廣義相對論。
根據廣義相對論,空間、時間的彎曲結構決定於物質的能量密度、動量密度在空間、時間中的分布;而空間、時間的彎曲結構又反過來決定物體的運行軌道。在引力不強,空間、時間彎曲度很小情況下,廣義相對論的結論同牛頓萬有引力定律和牛頓運動定律的結論趨於一致;當引力較強,空間、時間彎曲較大的隋況下,就有區別。不過這種區別常常很小,難以在實驗中觀察到。從廣義相對論提出到現在,還只有四種實驗能檢驗出這種區別。
廣義相對論不僅對於天體的結構和演化的研究有重要意義,對於研究宇宙的結構和演化也有重要意義。
"給我一個舞台,還您一個精彩!" 歡迎進入學科教育網www.bbs.xueke.cn
xklouxw
管理員
威望:5
文章:1259
積分:575
門派:家長
注冊:2006年9月17日
狀態:離線 # 3 發表於2007-3-29 1:04:00郵件 原子物理學、量子力學、量子電動力學
原子物理學研究原子的性質、內部結構、內部受激狀態,以及原子和電磁場、電磁波的相互作用以及原子之間的相互作用。原子是一個很古老的概念。古代就有人認為:宇宙間萬物都是由原子組成的,原子是不可分割的、永恆不變的物質最終單元。
1897年湯姆遜發現了電子,使人們認識到原子是具有內部結構的粒子。於是,經典物理學的局限性進一步的暴露出來了。為此,德國科學家普朗克提出了同經典物理學相矛盾的假設:光是由一粒一粒光子組成的。這一假設導出的結論和黑體輻射及光電效應的實驗結果符合。於是,19世紀初被否定了的光的微粒說又以新的形式出現了。
1911年,盧瑟福用粒子散射實驗發現原子的絕大部分質量,以及內部的正電荷集中在原子中心一個很小的區域內,這個區域的半徑只有原子半徑的萬分之一左右,因此稱為原子核。這才使人們對原子的內部結構得到了一個定性的、符合實際的概念。在某些方面,原子類似一個極小的太陽系,只是太陽和行星之間的作用力是萬有引力,而原子核和電子間的作用力是電磁力。
原子物理學的基本理論主要是由德布羅意、海森堡、薛定諤、狄里克萊等所創建的量子力學和量子電動力學。它們與經典力學和經典電動力學的主要區別是:物理量所能取的數值是不連續的;它們所反映的規律不是確定性的規律,而是統計規律。
應用量子力學和量子電動力學研究原子結構、原子光譜、原子發射、吸收、散射光的過程,以及電子、光子和電磁場的相互作用和相互轉化過程非常成功,理論結果同最精密的實驗結果相符合。
量子力學和量子電動力學產生於原子物理學的研究,但是它們起作用的范圍遠遠超出原子物理學。量子力學是所有微觀、低速現象所遵循的規律,固此不僅應用於原子物理,也應用於分子物理學、原子核物理學以及宏觀物體的微觀結構的研究。量子電動力學則是所有微觀電磁現象所必須遵循的規律,直到現在,還沒有發現量子電動力學的局限性。
量子統計力學
量子力學為基礎的統計力學,稱為量子統計力學。經典統計力學以經典力學為基礎,因而經典統計力學也具有局限性。例如:隨著溫度趨於絕對零度,固體的熱也趨於零的實驗現象,就無法用經典統計力學來解釋。
根據微觀世界的這些規律改造經典統計力學,就得到量子統計力學。應用量子統計力學就能使一系列經典統計力學無法解釋的現象,如黑體輻射、低溫下的固體比熱窖、固體中的電子為什麼對比熱的貢獻如此小等等,都得到了合理的解釋。
固體物理學
固體物理學是研究固體的性質、它的微觀結構及其各種內部運動,以及這種微觀結構和內部運動同固體的宏觀性質的關系的學科。固體的內部結構和運動形式很復雜,這方面的研究是從晶體開始的,因為晶體的內部結構簡單,而且具有明顯的規律性,較易研究。以後進一步研究一切處於凝聚狀態的物體的內部結構、內部運動以及它們和宏觀物理性質的關系。這類研究統稱為凝聚態物理學。
固體物理對於技術的發展有很多重要的應用,晶體管發明以後,集成電路技術迅速發展,電子學技術、計算技術以至整個信息產業也隨之迅速發展。其經濟影響和社會影響是革命性的。這種影響甚至在日常生活中也處處可見。固體物理學也是材料科學的基礎。
原子核物理學
原子核是比原子更深一個層次的物質結構。原子核物理學是研究原子核的性質,它的內部結構、內部運動、內部激發狀態、衰變過程、裂變過程以及它們之間的反應過程的學科。
在原子核被發現以後,曾經以為原子核是由質子和電子組成的。1932年,英國科學家查德威克發現了中子,這才使人們認識到原子核可能具有更復雜的結構。
原子核主要由強相互作用將核子結合而成,當原子核的結構發生變化或原子核之間發生反應時,要吸收或放出很大的能量。一些很重的原子核(如鈾原子核)在吸收一個中子以後,會裂變成為兩個較輕的原子核,同時放出二十到三十中子和很大的能量。兩個很輕的原子核也能熔合成為一個較重的原子核,同時放出巨大的能量。這種原子核熔合過程叫作聚變。
高能物理研究發現,核子還有內部結構。原子核結構是一個比原子結構更為復雜的研究領域,目前,已有的關於原子核結構,原子核反應和衰變的理論都是模型理論,其中一部分相當成功地反映了原子核的客觀規律。
等離子體物理學
等離子體物理是研究等離子體的形成及其各種性質和運動規律的學科。宇宙間的大部分物質處於等離子體狀態。例如:太陽中心區的溫度超過一千萬度,太陽中的絕大部分物質處於等離子體狀態。地球高空的電離層也處於等離子體狀態。19世紀以來對於氣體放電的研究、20世紀初以來對於高空電離層的研究,推動了等離子體的研究工作。從20世紀50年代起,為了利用輕核聚變反應解決能源問題,促使等離子體物理學研究蓬勃發展。
粒子物理學
目前對所能探測到的物質結構最深層次的研究稱為粒子物理學,又稱為高能物理學。在20世紀20年代末,人們曾經認為電子和質子是基本粒子,後來又發現了中子。在宇宙射線研究和後來利用高能加速器進行的實驗研究中,又發現了數以百計的不同種類的粒子。這些粒子的性質很有規律性,所以現在將基本兩字去掉,統稱為粒子。
弱相互作用也有其獨特的性質。它的基本規律對於左和右,正、反粒子,過去和未來都是不對稱的。弱相互作用的不對稱就是李政道和楊振寧在1956年所預言,不久在實驗上為吳健雄所證實的宇稱在弱相互作用中的不守恆。
在量子場論中,各種粒子均用相應的量子場來反映。空間、時間中每一點的量子場均以算符來表示,稱為場算符。這些場算符滿足一定的微分方程和對應關系或反對應關系。量子場的確既能反映披粒二象性,又能反映粒子的產生和消滅,還能自然地反映正、反粒子配成對的現象。
"給我一個舞台,還您一個精彩!" 歡迎進入學科教育網www.bbs.xueke.cn
xklouxw
管理員
威望:5
文章:1259
積分:575
門派:家長
注冊:2006年9月17日
狀態:離線 # 4 發表於2007-3-29 1:05:00郵件 物理學同其他自然科學和技術之間的關系
物質的各種存在形式和運動形式之間普遍存在著聯系。隨著學科的發展,這種聯系逐步顯示出來。物理學也和其他學科相互滲透,產生一系列交叉學科,如:化學物理、生物物理、大氣物理、海洋物理、地球物理、天體物理等等。
數學對物理學的發展起了重要的作用,反過來物理學也促進數學的發展。在物理學的基礎性研究過程中,形成和發展出來的基本概念、基本理論、基本實施手段和精密的測試方法,已成為其他許多學科的重要組成部分,並產生了良好的效果。這對於天文學、化學、生物學、地學、醫學、農業科學都是如此。
物理學研究的重大突破導致生產技術的飛躍已經是歷史事實。反過來,發展技術和生產力的要求,也有力地推動物理學研究的發展,固體物理、原子核物理、等離子體物理、激光研究、現代宇宙學等之所以迅速發展,是和技術及生產力發展的要求分不開的。
詳細到:http://bbs.xueke.cn/dispbbs.asp?boardID=211&ID=14409&page=1訪問哦!
⑷ (1)自然界中物質的運動形式多種多樣,我們常見的有機械運動、熱運動、電磁運動等.電磁波的傳播屬於電
(1)水中糖分子的擴散屬於熱運動,小轎車在公路上行駛屬於機械運動;
(2)由內圖示可知,甲車在每個10s內的容路程分別是:300m、300m、300m、300m,由此可知,在相等時間內,甲車的路程相等,由此可知,甲車的運動是勻速直線運動;
乙車在每個10s內的路程分別是:200m、250m、300m、450m,由此可知,在相等時間內,乙車的路程不相等,由此可知,乙車的運動不是勻速直線運動而是加速直線運動,乙車的速度是變化的,甲車速度v=
s |
t |
300m |
10s |
⑸ 機械運動的上述性質,叫做
物體之間或同一物體各部分之間相對位置隨時間的變化叫做機械運動。它是物質的各種運動形態中最簡單,最普遍的一種。例如,地球的轉動、彈簧的伸長和壓縮等都是機械運動。而其他較復雜的運動形式,例如,熱運動、化學運動、電磁運動、生命現象中都含有位置的變化,但不能把它們簡單地歸結為機械運動。
一切物體都在運動,絕對不動的物體是沒有的,這就是說運動是相對的,我們平常說的運動和靜止都是相對於另一個物體參照物而言的,所以,對運動的描述是相對的。
高一機械運動
1,機械運動
1)物體相對於其他物體的位置變化,叫做機械運動。機械運動簡稱為運動
一個物體相對於另一個物體的位置只是發生了變化,這個物體就在運動。
2)宇宙中沒有不動的物體,一切物體都在不停的運動,運動是絕對的,靜止是相對的
2.參照物
1)要描述某一物體的位置變化,就必須選擇另外的一個物體作為標准。這個被選來作為標準的另外的物體,叫做參照物。
2)選擇不同的參考系來觀察同一物體的運動,觀察結果可能會有所不同。比如生活在地球上的人,覺得地球是不動的,其實地球在以30km/s的巨大速度繞太陽公轉。這就是物理運動和靜止的相對性.
3.質點
1)質點是用來代替物體的有質量的點,因而其突出的特點是「具有質量」和「佔有質量」。但卻沒有體積——即沒有大小。
2)質點是對實際物體的抽象,因而它是一個具有質量而又沒有體積(大小)的抽象的點,這顯然是一種理想化模型,實際上並不存在。引入理想化模型時,要善於抓主要矛盾,盡可能把復雜問題簡單化,這是物理學中經常要用到的一種研究問題的方法——科學抽象法。
3)雖然質點實際不存在,但實際問題中不少物體又可以看作是質點。一個物體可否視為質點,這要根據具體情況分析。只有當物體的形狀和大小在所研究的問題中處於次要地位時,才可以把物體當作質點。
4)由於質點沒有體積,因而質點是不可能轉動的。所以,質點是沒有轉動可言的。任何轉動的物體,在研究其自轉時,均不能簡化成質點。
4.直線運動和曲線運動
質點運動時所通過的路線,就叫做質點運動的軌跡。
按照軌跡來劃分,質點運動的軌跡是直線的運動叫做直線運動,是曲線的運動叫做曲線運動。
例: 下列各運動的物體中,能被看作質點的是( )
A。研究公轉著的地球 B。研究自轉著的地球 C。研究體操運動員的轉動 D。鍾表上轉動的時針和分針
析:由於質點只有質量而沒有體積,所以質點也沒有轉動(一個沒大小的點是談不上有轉動的!),這樣我們研究物體的自轉時,絕不能把物體看作質點。據此本題的正確答案只有A
一個物體能否被簡化為質點,並不是看物體的大小。很小的物體有時候反而是不能當作質點的,如自身旋轉著的小球在研究期自轉情況時,小球就不能認為是質點。很大的物體有時候可以簡化為質點,如繞太陽公轉著的地球。同一物體有時可以看作質點,有時又不能看作質點。只有當物體的形狀和大小在所研究的問題中處於次要地位時,才可以把物體看作質點。如在研究地球的公轉規律時就可以把地球看作是質點,但研究地球的自轉規律時則不能吧地球看作是質點。
在以上說法基礎上還應該加上一條,當物體的一部分相對於另一部分的位置之發生改變的過程也叫做機械運動。如一輛車在公路上行駛,它相對於地面上固定的物體發生了位置的改變,可以說車發生了機械運動。當一個輪子繞著固定軸轉動時,輪上的各部分相對於軸在做機械運動。
機械運動是我們見到的各種運動中最簡單的、最普遍的一種運動形式。車、船的運動,天體的運動,原子、分子的運動都是機械運動。常見的機械運動有平動和轉動。
⑹ 做機械運動的物體內部分子的運動具有什麼能
內能是物體內部所有分子的所具有的分子動能和分子勢能 的總和,其大小與物體回內部所有分子的熱運動答情況和分子間的相互作用情況有關;而機械能和內能是沒有必然聯系的,機械能和物體的機械運動情況有關.故分析上述四個選項可知,ABD都是錯誤的,即C是正確的.
故選C.
⑺ 什麼是機械運動
物體之間或同一物體各部分之間相對位置隨時間的變化叫做機械運動。它是物質專的各種運動屬形態中最簡單,最普遍的一種。例如,地球的轉動、彈簧的伸長和壓縮等都是機械運動。而其他較復雜的運動形式,例如,熱運動、化學運動、電磁運動、生命現象中都含有位置的變化,但不能把它們簡單地歸結為機械運動。
⑻ 電磁運動是機械運動嗎
A、種子發芽是植物的生長現象,不是機械運動.
B、電磁運動沒有位置的變化版,不是於機械運動.
C、微觀世權界里分子、原子的運動,不是機械運動.
D、春風中飄盪的雨滴相對於地面有位置的變化,是機械運動.
故選D.
⑼ 做機械運動的物體具有的能叫 它又分 ()能和()能
做機械運動的物體具有的能叫機械能
它又分
(勢能)能和(動能)能
。
凡是(運動)的物體都有動能。動能跟(質量)和(速度)有關。