❶ 請問下鋼筋採用機械連接時(連接套筒),接頭錯開搭接的間距有什麼要求
沒明白!什麼叫接頭錯開搭接的間距啊!建議你去看一下JGJ107-2010規程,那是國家制定的直螺紋鋼筋連接套筒的規范
❷ 框架結構分兩部分施工(無伸縮縫),後施工的框架梁需預留鋼筋,梁板鋼筋預留多長接頭位置如何錯開
首先施工縫位置應留置正確,應在梁板跨中1/3范圍內。鋼筋接頭位置也必須留置正確:梁板上部鋼筋在跨中1/3范圍內,梁楹下部鋼筋在邊跨1/3范圍內,梁板鋼筋按焊接或機械連接必須錯開50%(即一長一短),長短錯開距離要根據鋼筋品種、規格、混凝土強度、抗震等級進行計算,詳圖集11G101—1的錨固及構造要求。
❸ 梁下部鋼筋要錯開35D機械連接嗎
一般一根隔一根錯開(即4根+4根分2處錯開),接頭距離滿足35D要求,同時滿足受拉區、受壓區接頭面積最大百分率要求滿足。
❹ 你好,鋼筋機械連接的接頭位置有什麼要求,梁的底筋是不是全部在柱位連接,接頭要錯開嗎
底筋接頭應該在支座兩端三分之一范圍內。接頭必須錯開,且滿足同一截面內接頭百分率
❺ 樑上部鋼筋機械連接規范要求
4.0.3結構構件縱向受力鋼筋的接頭宜相互錯開。鋼筋機械連接的連接區段長度應專按 35d計算, 當直徑不同的鋼屬筋連接時,按直徑較小的計算。位於該連接區段內的鋼筋機械連接接頭的面積百分率應符合下列規定:
1 接頭宜設置在結構構件受力鋼筋應力較小部位,高應力部位設置接頭時,同一連接區段內Ⅲ級接頭面積百分率不應大於 25% ,Ⅱ級接頭面積百分率不應大於 50%。Ⅰ級接頭面積百分率除本款和第4款所列情況外可不受限制。
2 接頭宜避開有抗震設防要求的框架的梁端,柱端箍筋加密區;當無法避開時,應採用Ⅱ級接頭或Ⅰ級接頭,且接頭面積百分率不應大於 50% 。
3 受力鋼筋應力較小部位或縱向受壓鋼筋,接頭面積百分率可不受限制。
4 對直接承受重復荷載的結構構件,接頭面積百分率不應大於 50% 。
參考資料:《鋼筋機械連接技術規程》JGJ107-2016
❻ 鋼筋接頭要錯開這錯開是什麼意思
鋼筋接頭要錯開是在規定的同一連接區段內有接頭的鋼筋面積與全部受力鋼筋總面積的比值應小於規范規定的數值。
舉例:柱縱筋分角筋、截面b邊中部筋和h邊中部筋;相鄰縱向鋼筋連接接頭要相互錯開;在同一截面內鋼筋接頭面積百分率不應大於50%;柱縱筋連接方式包括綁扎搭接、機械連接和焊接連接。這個意思就是柱子的縱向鋼筋至少需要在兩個不同標高的截面才能實現全部搭接完成。

如梁下部有四根鋼筋,在規定的區段長度內,只能有兩根鋼筋的接頭。其它鋼筋的接頭必須錯出這個區段之外,即為錯開。
鋼筋是指鋼筋混凝土用和預應力鋼筋混凝土用鋼材,其橫截面為圓形,有時為帶有圓角的方形。包括光圓鋼筋、帶肋鋼筋、扭轉鋼筋。
鋼筋混凝土用鋼筋是指鋼筋混凝土配筋用的直條或盤條狀鋼材,其外形分為光圓鋼筋和變形鋼筋兩種,交貨狀態為直條和盤圓兩種。
❼ 採用套筒連接鋼筋,相鄰接頭錯開的距離是多少
按下面規范規定,35D或500mm便是鋼筋籠主筋焊接的錯開距離(接頭中線至中線)。
混凝土結構工程施工質量驗收規范(GB 50204—2002)第 5.4.5條 當受力鋼筋採用機械連接接頭或焊接接頭時,設置在同一構件內的接頭宜相互錯開。
縱向受力鋼筋機械連接接頭及焊接接頭連接區段的長度為35倍d(d為縱向受力鋼筋的較大直徑)且不小於500mm,凡接頭中點位於該連接區段長度內的接頭均屬於同一連接區段。
同一連接區段內,縱向受力鋼筋機械連接及焊接的接頭面積百分率為該區段內有接頭的縱向受力鋼筋截面面積與全部縱向受力鋼筋截面面積的比值。

原則:
1、接頭應盡量設置在受力較小處,應避開結構受力較大的關鍵部位。抗震設計時避開梁端、柱端箍筋加密范圍,如必須在該區域連接,則應採用機械連接或焊接。
2、在同一跨度或同一層高內的同一受力鋼筋上宜少設連接接頭,不宜設置2個或2個以上接頭。
3、接頭位置宜互相錯開,在連接范圍內,接頭鋼筋面積百分率應限制在一定范圍內。
4、在鋼筋連接區域應採取必要的構造措施,在縱向受力鋼筋搭接長度范圍內應配置橫向構造鋼筋或箍筋。
以上內容參考:網路-鋼筋連接
❽ 樑上鋼筋機械連接
連接方法:
一, 套筒揉捏銜接接頭:經過揉捏力使銜接件鋼套筒塑性變形與帶肋鋼筋嚴密咬合構成的接頭。有兩種方法,徑向揉捏銜接和軸向揉捏銜接。因為軸向揉捏銜接現場施工不便利及接頭質量不行安穩,沒有得到推行;而徑向揉捏銜接技能,銜接接頭得到了大面積推行運用。如今工程中運用的套筒揉捏銜接接頭,都是徑向揉捏銜接。因為其優秀的質量,套筒揉捏銜接接頭在我國從二十世紀90年代初至今被廣泛應用於建築工程中。
二、 錐螺紋銜接接頭:經過鋼筋端頭特製的錐形螺紋和銜接件錐形螺紋咬合構成的接頭。錐螺紋銜接技能的誕生克服了套筒揉捏銜接技能存在的缺乏。錐螺紋絲頭完全是提早預制,現場銜接佔用工期短,現場只需用力矩扳手操作,不需搬動設備和拉扯電線,深受各施工單位的好評。可是錐螺紋銜接接頭質量不行安穩。因為加工螺紋的小徑削弱了母材的橫截面積,然後下降了接頭強度,通常只能到達母材實踐抗拉強度的85~95%。我國的錐螺紋銜接技能和國外比較還存在必定距離,最傑出的一個問題就是螺距單一,從直徑16~40mm鋼筋選用螺距都為2.5mm,而2.5mm螺距最適合於直徑22mm鋼筋的銜接,太粗或太細鋼筋銜接的強度都不抱負,尤其是直徑為36mm,40mm鋼筋的錐螺紋銜接,很難到達母材實踐抗拉強度的0.9倍。許多生產單位自稱到達鋼筋母材規范強度,是利用了鋼筋母材超強的功能,即鋼筋實踐抗拉強度大於鋼筋抗拉強度的規范值。因為錐螺紋銜接技能具有施工速度快、接頭成本低的特色,自二十世紀90年代初推行以來也得到了較大規模的推行運用,但因為存在的缺點較大,逐步被直螺紋銜接接頭所替代。
三、 直螺紋銜接接頭
等強度直螺紋銜接接頭是二十世紀90年代鋼筋銜接的世界最新潮流,接頭質量安穩牢靠,銜接強度高,可與套筒揉捏銜接接頭相媲美,並且又具有錐螺紋接頭施工便利、速度快的特色,因而直螺紋銜接技能的呈現給鋼筋銜接技能帶來了質的騰躍。目前我國直螺紋銜接技能呈現出百家爭鳴的表象,呈現了多種直螺紋銜接方法。
直螺紋銜接接頭主要有鐓粗直螺紋銜接接頭和滾壓直螺紋銜接接頭。這兩種工藝選用不一樣的加工方法,增強鋼筋端頭螺紋的承載才能,到達接頭與鋼筋母材等強的意圖。
種類:
市場上常用的鋼筋機械連接接頭類型如下:
一、 套筒擠壓連接接頭:通過擠壓力使連接件鋼套筒塑性變形與帶肋鋼筋緊密咬合形成的接頭。有兩種形式,徑向擠壓連接和軸向擠壓連接。由於軸向擠壓連接現場施工不方便及接頭質量不夠穩定,沒有得到推廣;而徑向擠壓連接技術,連接接頭得到了大面積推廣使用。工程中使用的套筒擠壓連接接頭,都是徑向擠壓連接。由於其優良的質量,套筒擠壓連接接頭在我國從二十世紀90年代初至今被廣泛應用於建築工程中。
二、 錐螺紋連接接頭:通過鋼筋端頭特製的錐形螺紋和連接件錐形螺紋咬合形成的接頭。錐螺紋連接技術的誕生克服了套筒擠壓連接技術存在的不足。錐螺紋絲頭完全是提前預制,連接佔用工期短,現場只需用力矩扳手操作,不需搬動設備和拉扯電線,深受各施工單位的好評。但是錐螺紋連接接頭質量不夠穩定。由於加工螺紋的小徑削弱了母材的橫截面積,從而降低了接頭強度,一般只能達到母材實際抗拉強度的85~95%。我國的錐螺紋連接技術和國外相比還存在一定差距,最突出的一個問題就是螺距單一,從直徑16~40mm鋼筋採用螺距都為2.5mm,而2.5mm螺距最適合於直徑22mm鋼筋的連接,太粗或太細鋼筋連接的強度都不理想,尤其是直徑為36mm,40mm鋼筋的錐螺紋連接,很難達到母材實際抗拉強度的0.9倍。許多生產單位自稱達到鋼筋母材標准強度,是利用了鋼筋母材超強的性能,即鋼筋實際抗拉強度大於鋼筋抗拉強度的標准值。由於錐螺紋連接技術具有施工速度快、接頭成本低的特點,自二十世紀90年代初推廣以來也得到了較大范圍的推廣使用,但由於存在的缺陷較大,逐漸被直螺紋連接接頭所代替。
錐螺紋
三、 直螺紋連接接頭
等強度直螺紋連接接頭是二十世紀90年代鋼筋連接的國際最新潮流,接頭質量穩定可靠,連接強度高,可與套筒擠壓連接接頭相媲美,而且又具有錐螺紋接頭施工方便、速度快的特點,因此直螺紋連接技術的出現給鋼筋連接技術帶來了質的飛躍。目前我國直螺紋連接技術呈現出百花齊放的景象,出現了多種直螺紋連接形式。直螺紋連接接頭主要有鐓粗直螺紋連接接頭和滾壓直螺紋連接接頭。這兩種工藝採用不同的加工方式,增強鋼筋端頭螺紋的承載能力,達到接頭與鋼筋母材等強的目的。
1. 鐓粗直螺紋連接接頭:通過鋼筋端頭鐓粗後製作的直螺紋和連接件螺紋咬合形成的接頭。其工藝是:
先將鋼筋端頭通過鐓粗設備鐓粗,再加工出螺紋,其螺紋小徑不小於鋼筋母材直徑,使接頭與母材達到等強。國外鐓粗直螺紋連接接頭,其鋼筋端頭有熱鐓粗又有冷鐓粗。熱鐓粗主要是消除鐓粗過程中產生的內應力,但加熱設備投入費用高。我國的鐓粗直螺紋連接接頭,其鋼筋端頭主要是冷鐓粗,對鋼筋的延性要求高,對延性較低的鋼筋,鐓粗質量較難控制,易產生脆斷現象。
直螺紋
鐓粗直螺紋連接接頭其優點是強度高,現場施工速度快,工人勞動強度低,鋼筋直螺紋絲頭全部提前預制,現場連接為裝配作業。其不足之處在於鐓粗過程中易出現鐓偏現象,一旦鐓偏必須切掉重鐓;鐓粗過程中產生內應力,鋼筋鐓粗部分延性降低,易產生脆斷現象,螺紋加工需要兩道工序兩套設備完成。
2. 滾壓直螺紋連接接頭:通過鋼筋端頭直接滾壓或擠(碾)壓肋滾壓或剝肋後滾壓製作的直螺紋和連接件螺紋咬合形成的接頭。
其基本原理是利用了金屬材料塑性變形後冷作硬化增強金屬材料強度的特性,而僅在金屬表層發生塑變、冷作硬化,金屬內部仍保持原金屬的性能,因而使鋼筋接頭與母材達到等強。
國內常見的滾壓直螺紋連接接頭有三種類型:直接滾壓螺紋、擠(碾)壓肋滾壓螺紋、剝肋滾壓螺紋。這三種形式連接接頭獲得的螺紋精度及尺寸不同,接頭質量也存在一定差異。
(1) 直接滾壓直螺紋連接接頭:
其優點是:螺紋加工簡單,設備投入少,不足之處在於螺紋精度差,存在虛假螺紋現象。由於鋼筋粗細不均,公差大,加工的螺紋直徑大小不一致,給現場施工造成困難,使套筒與絲頭配合松緊不一致,有個別接頭出現拉脫現象。由於鋼筋直徑變化及橫縱肋的影響,使滾絲輪壽命降低,增加接頭的附加成本,現場施工易損件更換頻繁。
(2) 擠(碾)壓肋滾壓直螺紋連接接頭:
這種連接接頭是用專用擠壓設備先將鋼筋的橫肋和縱肋進行預壓平處理,然後再滾壓螺紋,目的是減輕鋼筋肋對成型螺紋精度的影響。
其特點是:成型螺紋精度相對直接滾壓有一定提高,但仍不能從根本上解決鋼筋直徑大小不一致對成型螺紋精度的影響,而且螺紋加工需要兩道工序,兩套設備完成。
(3) 剝肋滾壓直螺紋連接接頭:
其工藝是先將鋼筋端部的橫肋和縱肋進行剝切處理後,使鋼筋滾絲前的柱體直徑達到同一尺寸,然後再進行螺紋滾壓成型。
剝肋滾壓直螺紋連接技術是由中國建築科學研究院建築機械化研究分院研製開發的鋼筋等強度直螺紋連接接頭的一種新型式,為國內外首創。通過對現有HRB335、HRB400鋼筋進行的型式試驗、疲勞試驗、耐低溫試驗以及大量的工程應用,證明接頭性能不僅達到了《鋼筋機械連接通用技術規程》JGJ107-2010中Ⅰ級接頭性能要求,實現了等強度連接,而且接頭還具有優良的抗疲勞性能和抗低溫性能。接頭通過200萬次疲勞強度試驗,接頭處無破壞,在-40ºC低溫下試驗,接頭仍能達到與母材等強連接。剝肋滾壓直螺紋連接技術不僅適用於直徑為16~40mm(近期又擴展到直徑12~50mm)HRB335、HRB400級鋼筋在任意方向和位置的同、異徑連接,而且還可應用於要求充分發揮鋼筋強度和對接頭延性要求高的混凝土結構以及對疲勞性能要求高的混凝土結構中,如機場、橋梁、隧道、電視塔、核電站、水電站等。
剝肋滾壓直螺紋連接接頭與其它滾壓直螺紋連接接頭相比具有如下特點:
①螺紋牙型好,精度高,牙齒表面光滑;
②螺紋直徑大小一致性好,容易裝配,連接質量穩定可靠;
③滾絲輪壽命長,接頭附加成本低。滾絲輪可加工5000~8000個絲頭,比直接滾壓
壽命提高了3~5倍;
④接頭通過200萬次疲勞強度試驗,接頭處無破壞;
⑤在-40ºC低溫下試驗,其接頭仍能達到與母材等強,抗低溫性能好。
❾ 鋼筋機械連接的接頭位置的規范要求
徑向擠壓連接和軸向擠壓連接。
鐓粗直螺紋連接接頭其優點是強度高,現場專施工速屬度快,工人勞動強度低,鋼筋直螺紋絲頭全部提前預制,現場連接為裝配作業。其不足之處在於鐓粗過程中易出現鐓偏現象,一旦鐓偏必須切掉重鐓;鐓粗過程中產生內應力,鋼筋鐓粗部分延性降低,易產生脆斷現象,螺紋加工需要兩道工序兩套設備完成。

市場上常用的鋼筋機械連接接頭類型如下:
一、 套筒擠壓連接接頭:通過擠壓力使連接件鋼套筒塑性變形與帶肋鋼筋緊密咬合形成的接頭。有兩種形式,徑向擠壓連接和軸向擠壓連接。由於軸向擠壓連接現場施工不方便及接頭質量不夠穩定,沒有得到推廣;而徑向擠壓連接技術,連接接頭得到了大面積推廣使用。工程中使用的套筒擠壓連接接頭,都是徑向擠壓連接。
二、 錐螺紋連接接頭:通過鋼筋端頭特製的錐形螺紋和連接件錐形螺紋咬合形成的接頭。錐螺紋連接技術的誕生克服了套筒擠壓連接技術存在的不足。