❶ 世界上最早測風儀器是什麼
風是自然界最常見的現象之一,它跟生產,生活,交通運輸、行軍打仗都有密切的關系,對風的觀測歷來受到人們的重視。同時,在中國古代風又被看做是一種重要的天象,對風的觀測成為官方天文機構的一項重要工作內容。

在泉州,人們認為季風是由一個名叫通遠的仙翁管理的,為了航行的來回順風,人們舉行了祈風活動。唐朝就已在泉州九日山給這個所謂通遠仙翁建廟;宋朝的統治者為了鼓勵航海,還把他封做通遠王、善利王、廣福顯濟王,把他的廟稱做昭惠廟(祠)。祈風還成為一種制度。每年由泉州地方官員和負責航海的官員在出海和回航季節進行兩次祈風祭祀典禮。現在,在泉州九日山還留下了十方祈風石刻。
除官方在泉州進行祈風活動外,不少地方民間也樹有風神。這類祈風活動一直沿襲下來,特別是在民間廣泛進行。祈風活動雖然是迷信,但是它卻從一個側面反映了我國古代利用季風航海的情況。
❷ 測量風速的叫什麼儀器
測量風速有哪幾種方法-風速儀
風速的測試方法
風速(流速)測試有平均風速的測試和紊流成分(風的亂流1~150KHz、與變動不同)的測試。熱式風速計是測試平均風速的。測試平均風速的方法有熱式、音波式、葉輪式、及皮拖管式等,但在這些方式中,熱線式風速計是利用熱耗散的原理。
風和風速測量:
空氣流通過濾網後會產生一個壓差,這個壓差和氣流的速度成正比,風速越大,壓差就越大,根據兩者之間的對應關系來標定風速;還有一種就是類似於流體力學中的文丘力管,氣流沖擊到測力板上,沖擊力和風速成正比,根據沖擊力來標定風速。
地面風的測量:風即空氣的水平運動。氣象中風的觀測包括風向觀測和風速觀測兩個部分。風向幾水平氣流的來向,在地面氣象觀測中常用16個地理方位來表示。風速即單位時間內空氣所經過的距離,單位m/s。風的測量除瞬時風速、風向外,主要是用算術平均法或矢量平均法計算平均風速、風向,或用多風向代替平均風向。平均風一般指瞬時風的時間平均值,而瞬時風與平均風之間的差別即脈動風。風向測量用風向標,並用機械傳送、電傳送及光電轉換等自記方式實時記錄風向變化。
風速的測量用風速儀(或風速計)。
常用的風速儀(風速計)有以下幾種:
(1)旋轉式風速儀(風速計);
(2)壓力式風速儀:利用風的壓力效應(風壓與風速的平方成正比)來
測量風速;
(3)熱力式風速表:利用被加熱物體散熱速率與周圍空氣流速有關的特
性測量風速;
(4)聲學風速表:利用聲波在大氣中傳播速度與風速之間的函數關系測
量風速。
風速測量的誤差較大,這主要是由風速儀(風速計)的滯後效應所造成的。
風速儀,測量空氣流速的儀器,其可廣泛應用於各領域,如電力、鋼鐵、石化、節能等行業,日常生活中,很多行業都需要用到風速計,如風扇製造業、出海捕撈業、抽風排氣供暖系統等,都需要用到風速計進行風速、風溫、風量測量,以確保正常運作。
我公司是國內專業的儀器儀表,已成為行業中專業的風速計製造商之一,其銷售的CEM風速計性能穩定、堅固耐用,具有快速響應、高穩定性、高測試精度等優點。可廣泛應用於廣泛用於採暖通風、空氣調節、氣象、環保、體育、科研、公共場所及勞動衛生等方面。
❸ 測量風力的儀器叫什麼
風速計。
通常分為風葉型(風車型)和風杯型。氣象站使用的是風杯型的,一般安裝在離地10米高的桿子上,四周應空曠。根據一定時間內風杯的轉速,可算出平均速度。
風速計其基本原理是將一根細的金屬絲放在流體中,通電流加熱金屬絲,使其溫度高於流體的溫度,因此將金屬絲風速計稱為「熱線」。當流體沿垂直方向流過金屬絲時,將帶走金屬絲的一部分熱量,使金屬絲溫度下降。
根據強迫對流熱交換理論,可導出熱線散失的熱量Q與流體的速度v之間存在關系式。標準的熱線探頭由兩根支架張緊一根短而細的金屬絲組成。金屬絲通常用鉑、銠、鎢等熔點高、延展性好的金屬製成。
常用的絲直徑為5μm,長為2mm;最小的探頭直徑僅1μm,長為0.2mm。根據不同的用途,熱線探頭還做成雙絲、三絲、斜絲及V形、X形等。為了增加強度,有時用金屬膜代替金屬絲,通常在一熱絕緣的基體上噴鍍一層薄金屬膜,稱為熱膜探頭。
熱線探頭在使用前必須進行校準。靜態校準是在專門的標准風洞里進行的,測量流速與輸出電壓之間的關系並畫成標准曲線;動態校準是在已知的脈動流場中進行的,或在風速儀加熱電路中加上一脈動電信號,校驗熱線風速儀的頻率響應,若頻率響應不佳可用相應的補償線路加以改善。
0至100m/s的流速測量范圍可以分為三個區段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。風速儀的熱敏式探頭用於0至5m/s的精確測量;風速儀的轉輪式探頭測量5至40m/s的流速效果最理想;而利用皮託管則可在高速范圍內得到最佳結果。
正確選擇風速儀的流速探頭的一個附加標準是溫度,通常風速儀的熱敏式感測器的使用溫度約達+-70C。特製風速儀的轉輪探頭可達350C。皮託管用於+350C以上。

類型
1、杯形風速計
1845年,阿馬天文台的約翰·托馬斯·羅姆尼·羅賓遜博士發明了一種簡單類型的風速計。它由四個安裝在水平臂上的半球形杯組成,這些杯安裝在垂直軸上。沿任何水平方向流過杯子的氣流以大致與風速成比例的速度轉動軸。
因此,在設定的時間間隔內計算軸的轉數會產生一個與廣泛速度范圍內的平均風速成比例的值。它也被稱為旋轉風速計。
2、葉片風速計
其他形式的機械速度風速計之一是葉片式風速計。它可以被描述為風車或螺旋槳風速計。與旋轉軸垂直的Robinson風速計不同,葉片式風速計的軸必須與風向平行,因此是水平的。此外,由於風的方向會發生變化,並且軸必須跟隨其變化,因此必須採用風向標或其他一些裝置來實現相同的目的。
因此,葉片風速計將螺旋槳和尾翼組合在同一軸上,從而從同一儀器獲得准確和精確的風速和風向測量值。風扇的速度由轉速計數器測量,並由電子晶元轉換為風速。因此,如果橫截面積已知,則可以計算體積流量。
3、板式風速計
這是第一款現代風速計。它們由一個從頂部懸掛的平板組成,以便風使平板偏轉。1450年,義大利藝術建築師萊昂·巴蒂斯塔·阿爾貝蒂發明了第一台機械風速計;1664年,它被羅伯特胡克(他經常被誤認為是第一個風速計的發明者)重新發明。
這種形式的後來版本由一個平板組成,無論是方形的還是圓形的,通過風向標保持垂直於風。它臉上的風壓由彈簧平衡。
彈簧的壓縮決定了風施加在板上的實際力,這可以在合適的儀表上讀取,也可以在記錄儀上讀取。這種儀器對小風沒有反應,對大風讀數不準確,對多變風的反應很慢。
❹ 賭石,為什麼一直沒人用現代技術手段檢測呢
因為這本身就不是能用現在的技術去檢測出來的,這是一個需要靠有經驗的人去望聞問切的。
❺ 什麼儀器能檢測玉的折射率,密度,硬度
珠寶鑒定儀器,可以測試這些屬性。
目前常用的、易於掌握的寶石鑒定儀器有以下幾種:
1.筆式聚光手電筒:用來觀察濃色寶石的透明度。聚光手電筒的電珠應凹於筆頭面,不能凸出筆頭面,否則不便於觀察。
2.放大鏡:是寶石放大觀察的儀器之一。最常用的是10倍放大鏡,還有20、30倍的幾種。放大鏡是寶石專家的關鍵工具和必備之物,便於攜帶。可用它來鑒定寶石的品種和真偽。用放大鏡可以觀察:(1)寶石的表面損傷、劃痕、缺陷。(2)琢型質量。(3)拋光的質量。(4)寶石內部的缺陷、包裹體。(5)顏色的分布和生長線等。鑒定時,應將寶石置於離10倍放大鏡約2.5厘米的強光之下,慢慢調節距離,直到看清楚為止。選擇放大鏡的質量也很重要,質量差者在放大時將產生圖形畸變。
3.二色鏡:有的寶石具有多色性,觀察寶石多色性最好的儀器是二色鏡。二色鏡是一種結構合理、價格便宜、小巧簡單的光學儀器。二色鏡使用的是一塊合適的透明的無色方解石(冰洲石)菱面體,由於冰洲石的雙折射率較高,該儀器可以將穿過寶石的兩條平面偏振光線分離開來。要求必須是有顏色透明的單晶體寶石才能夠檢測出多色性,玉石不能檢測多色性。二色鏡主要用於區別紅寶石和紅色尖晶石、紅色紫牙烏;區別藍色尖晶石和細小的藍碧璽;區別藍寶石和藍色人工合成尖晶石等。用二色鏡檢測寶石時必須不斷轉動寶石,直到兩個差異最大的顏色出現在窗口上為止。對於寶石的三色性的確定,必須認真地反復檢測,從三個不同的方向觀測,出現三種顏色才是三色性。檢測時注意:眼睛、二色鏡和寶石樣品,其間距應不超過2-5毫米。
❻ 請教:什麼是測量風速的儀器謝謝!
風速表是測量風速的儀器。
風速表是測量風流速度的儀器,風速計適用於煤礦、井下及其它易燃易爆場合精確測定瞬時風速及一分鍾平均風速。同時也適用於交通、建築、化工、糧食加工、空氣動力學研究等場合的風速測量。
風速儀表是基於冷沖擊氣流帶走熱元件上的熱量,藉助一個調節開關,保持溫度恆定,則調節電流和流速成正比關系。當在湍流中使用熱敏式探頭時,來自各個方向的氣流同時沖擊熱元件。
從而會影響到測量結果的准確性。在湍流中測量時,熱敏式風速表流速感測器的示值往往高於轉輪式探頭。以上現象可以在管道測量過程中觀察到。根據管理管道紊流的不同設計,甚至在低速時也會出現。

(6)石頭成風用什麼儀器檢測擴展閱讀:
由於主機片芯採用單片機,使測量風速的精度超過機械風表及其它同類產品,本風速計採用高亮度數碼管顯示,直接顯示出所測的風速值 M/S 。
免除在使用過程中的秒錶計時,計算平均風速,查取測量風速和實際風速曲線等麻煩,並將所測行的風速依次存入,免除測量中的記錄之勞。
由於採用高亮度數碼顯示,使在井下暗處讀取的風速值清晰、明亮。風速計採用薄膜式輕觸開關,開關密封性良好,准確可靠,很適合井下惡劣環境的應用。
❼ 測量風速的儀器叫什麼
測量風速的儀器叫做風速計(anemometer)。
氣象台站最常用的為風杯風速計,它由3個互成120°固定在支架上的拋物
錐空杯組成感應部分,空杯的凹面都順向一個方向。整個感應部分安裝在一根垂直旋轉軸上,在風力的作用下,風杯繞軸以正比於風速的轉速旋轉。
另一種旋轉式風速計為旋槳式風速計,由一個三葉或四葉螺旋槳組成感應部分,將其安裝在一個風向標的前端,使它隨時對准風的來向。槳葉繞水平軸以正比於風速的轉速旋轉。
❽ 2011和2022規范在石子檢測參數所用儀器上有哪些不同
2011和2022規范在石子檢測參數所用儀器上的不同,相比2011版,2022新版標准在術語定義、技術要求和試驗方法等方面進行了修訂,主要技術變化如下:
1、更改了碎石的定義,增加了不規則顆粒的定義,不規則顆粒,卵石、碎石顆粒的最小一維尺寸小於該顆粒所屬粒級的平均粒徑0.5倍者為不規則顆粒。
2、更改了卵石含泥量的定義,增加了碎石泥粉含量的定義,碎石泥粉含量,碎石中粒徑小於75的粘土和石粉顆粒含量。
3、改了堅固性的定義,相比於舊版,新版標准刪去了自然風化的作用。
4、更改了顆粒級配的技術要求,更改了碎石泥粉含量和泥塊含量的技術要求。
5、修改了針、片狀顆粒含量的技術要求,相比於舊版,新版標准將II類卵石、碎石的針、片狀顆粒含量由原來的小於等於10,調整為小於等於8。
❾ 什麼儀器可以看見地下有沒有石頭我想用探測器在50公分至1米深的地下探出我想要的石頭,請問有沒有這種
摘要 伽馬射線機能看見石頭,但是這種設備很少見。另外地震儀也可以檢測地下岩石的岩性。如果是想達到熱成像儀那種效果的儀器,應該是沒有的。
❿ 請問什麼東西可以穿透石頭而不損傷被穿透物
編輯詞條核磁共振
核磁共振
核磁共振(Nuclear Magnetic Resonance即NMR)
核磁共振成像(Nuclear Magnetic Resonance Imaging,NMRI),又稱磁共振成像(Magnetic Resonance Imaging,MRI),
核磁共振全名是核磁共振成像(MRI),是磁矩不為零的原子核,在外磁場作用下自旋能級發生塞曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。核磁共振波譜學是光譜學的一個分支,其共振頻率在射頻波段,相應的躍遷是核自旋在核塞曼能級上的躍遷。
核磁共振是處於靜磁場中的原子核在另一交變磁場作用下發生的物理現象。通常人們所說的核磁共振指的是利用核磁共振現象獲取分子結構、人體內部結構信息的技術。
並不是是所有原子核都能產生這種現象,原子核能產生核磁共振現象是因為具有核自旋。原子核自旋產生磁矩,當核磁矩處於靜止外磁場中時產生進動核和能級分裂。在交變磁場作用下,自旋核會吸收特定頻率的電磁波,從較低的能級躍遷到較高能級。這種過程就是核磁共振。
核磁共振(MRI)又叫核磁共振成像技術。是後繼CT後醫學影像學的又一重大進步。自80年代應用以來,它以極快的速度得到發展。其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MRI)。
MRI是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。
MRI提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MRI對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。
MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。
核磁共振技術的歷史
1930年代,物理學家伊西多·拉比發現在磁場中的原子核會沿磁場方向呈正向或反向有序平行排列,而施加無線電波之後,原子核的自旋方向發生翻轉。這是人類關於原子核與磁場以及外加射頻場相互作用的最早認識。由於這項研究,拉比於1944年獲得了諾貝爾物理學獎。
1946年兩位美國科學家布洛赫和珀塞爾發現,將具有奇數個核子(包括質子和中子)的原子核置於磁場中,再施加以特定頻率的射頻場,就會發生原子核吸收射頻場能量的現象,這就是人們最初對核磁共振現象的認識。為此他們兩人獲得了1952年度諾貝爾物理學獎。
人們在發現核磁共振現象之後很快就產生了實際用途,化學家利用分子結構對氫原子周圍磁場產生的影響,發展出了核磁共振譜,用於解析分子結構,隨著時間的推移,核磁共振譜技術不斷發展,從最初的一維氫譜發展到13C譜、二維核磁共振譜等高級譜圖,核磁共振技術解析分子結構的能力也越來越強,進入1990年代以後,人們甚至發展出了依靠核磁共振信息確定蛋白質分子三級結構的技術,使得溶液相蛋白質分子結構的精確測定成為可能。
1946年,美國哈佛大學的珀塞爾和斯坦福大學的布洛赫宣布,他們發現了核磁共振NMR。兩人因此獲得了1952年諾貝爾獎。核磁共振是原子核的磁矩在恆定磁場和高頻磁場(處在無線電波波段)同時作用下,當滿足一定條件時,會產生共振吸收現象。核磁共振很快成為一種探索、研究物質微觀結構和性質的高新技術。目前,核磁共振已在物理、化學、材料科學、生命科學和醫學等領域中得到了廣泛應用。
原子核由質子和中子組成,它們均存在固有磁矩。可通俗的理解為它們在磁場中的行為就像一根根小磁針。原子核在外加磁場作用下,核磁矩與磁場相互作用導致能級分裂,能級差與外加磁場強度成正比。如果再同時加一個與能級間隔相應的交變電磁場,就可以引起原子核的能級躍遷,產生核磁共振。可見,它的基本原理與原子的共振吸收現象類似。
早期核磁共振主要用於對核結構和性質的研究,如測量核磁矩、電四極距、及核自旋等,後來廣泛應用於分子組成和結構分析,生物組織與活體組織分析,病理分析、醫療診斷、產品無損監測等方面。對於孤立的氫原子核(也就是質子),當磁場為1.4T時,共振頻率為59.6MHz,相應的電磁波為波長5米的無線電波。但在化合物分子中,這個共振頻率還與氫核所處的化學環境有關,處在不同化學環境中的氫核有不同的共振頻率,稱為化學位移。這是由核外電子雲對磁場的屏蔽作用、誘導效應、共厄效應等原因引起的。同時由於分子間各原子的相互作用,還會產生自旋-耦合裂分。利用化學位移與裂分數目,就可以推測化合物尤其是有機物的分子結構。這就是核磁共振的波譜分析。20世紀70年代,脈沖傅里葉變換核磁共振儀出現了,它使C13譜的應用也日益增多。用核磁共振法進行材料成分和結構分析有精度高、對樣品限制少、不破壞樣品等優點。
最早的核磁共振成像實驗是由1973年勞特伯發表的,並立刻引起了廣泛重視,短短10年間就進入了臨床應用階段。作用在樣品上有一穩定磁場和一個交變電磁場,去掉電磁場後,處在激發態的核可以躍遷到低能級,輻射出電磁波,同時可以在線圈中感應出電壓信號,稱為核磁共振信號。人體組織中由於存在大量水和碳氫化合物而含有大量的氫核,一般用氫核得到的信號比其他核大1000倍以上。正常組織與病變組織的電壓信號不同,結合CT技術,即電子計算機斷層掃描技術,可以得到人體組織的任意斷面圖像,尤其對軟組織的病變診斷,更顯示了它的優點,而且對病變部位非常敏感,圖像也很清晰。
核磁共振成像研究中,一個前沿課題是對人腦的功能和高級思維活動進行研究的功能性核磁共振成像。人們對大腦組織已經很了解,但對大腦如何工作以及為何有如此高級的功能卻知之甚少。美國貝爾實驗室於1988年開始了這方面的研究,美國政府還將20世紀90年代確定為「腦的十年」。用核磁共振技術可以直接對生物活體進行觀測,而且被測對象意識清醒,還具有無輻射損傷、成像速度快、時空解析度高(可分別達到100μm和幾十ms)、可檢測多種核素、化學位移有選擇性等優點。美國威斯康星醫院已拍攝了數千張人腦工作時的實況圖像,有望在不久的將來揭開人腦工作的奧秘。
若將核磁共振的頻率變數增加到兩個或多個,可以實現二維或多維核磁共振,從而獲得比一維核磁共振更多的信息。目前核磁共振成像應用僅限於氫核,但從實際應用的需要,還要求可以對其他一些核如:C13、N14、P31、S33、Na23、I127等進行核磁共振成像。C13已經進入實用階段,但仍需要進一步擴大和深入。核磁共振與其他物理效應如穆斯堡爾效應(γ射線的無反沖共振吸收效應)、電子自旋共振等的結合可以獲得更多有價值的信息,無論在理論上還是在實際應用中都有重要意義。核磁共振擁有廣泛的應用前景,伴隨著脈沖傅里葉技術已經取得了一次突破,使C13譜進入應用階段,有理由相信,其它核的譜圖進入應用階段應為期不遠。
另一方面,醫學家們發現水分子中的氫原子可以產生核磁共振現象,利用這一現象可以獲取人體內水分子分布的信息,從而精確繪制人體內部結構,在這一理論基礎上1969年,紐約州立大學南部醫學中心的醫學博士達馬迪安通過測核磁共振的弛豫時間成功的將小鼠的癌細胞與正常組織細胞區分開來,在達馬迪安新技術的啟發下紐約州立大學石溪分校的物理學家保羅·勞特伯爾於1973年開發出了基於核磁共振現象的成像技術(MRI),並且應用他的設備成功地繪制出了一個活體蛤蜊地內部結構圖像。勞特伯爾之後,MRI技術日趨成熟,應用范圍日益廣泛,成為一項常規的醫學檢測手段,廣泛應用於帕金森氏症、多發性硬化症等腦部與脊椎病變以及癌症的治療和診斷。2003年,保羅·勞特伯爾和英國諾丁漢大學教授彼得·曼斯菲爾因為他們在核磁共振成像技術方面的貢獻獲得了當年度的諾貝爾生理學或醫學獎。 其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。
核磁共振的原理
核磁共振現象來源於原子核的自旋角動量在外加磁場作用下的進動。
根據量子力學原理,原子核與電子一樣,也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數決定,實驗結果顯示,不同類型的原子核自旋量子數也不同:
質量數和質子數均為偶數的原子核,自旋量子數為0
質量數為奇數的原子核,自旋量子數為半整數
質量數為偶數,質子數為奇數的原子核,自旋量子數為整數
迄今為止,只有自旋量子數等於1/2的原子核,其核磁共振信號才能夠被人們利用,經常為人們所利用的原子核有: 1H、11B、13C、17O、19F、31P
由於原子核攜帶電荷,當原子核自旋時,會由自旋產生一個磁矩,這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動量成正比。將原子核置於外加磁場中,若原子核磁矩與外加磁場方向不同,則原子核磁矩會繞外磁場方向旋轉,這一現象類似陀螺在旋轉過程中轉動軸的擺動,稱為進動。進動具有能量也具有一定的頻率。
原子核進動的頻率由外加磁場的強度和原子核本身的性質決定,也就是說,對於某一特定原子,在一定強度的的外加磁場中,其原子核自旋進動的頻率是固定不變的。
原子核發生進動的能量與磁場、原子核磁矩、以及磁矩與磁場的夾角相關,根據量子力學原理,原子核磁矩與外加磁場之間的夾角並不是連續分布的,而是由原子核的磁量子數決定的,原子核磁矩的方向只能在這些磁量子數之間跳躍,而不能平滑的變化,這樣就形成了一系列的能級。當原子核在外加磁場中接受其他來源的能量輸入後,就會發生能級躍遷,也就是原子核磁矩與外加磁場的夾角會發生變化。這種能級躍遷是獲取核磁共振信號的基礎。
為了讓原子核自旋的進動發生能級躍遷,需要為原子核提供躍遷所需要的能量,這一能量通常是通過外加射頻場來提供的。根據物理學原理當外加射頻場的頻率與原子核自旋進動的頻率相同的時候,射頻場的能量才能夠有效地被原子核吸收,為能級躍遷提供助力。因此某種特定的原子核,在給定的外加磁場中,只吸收某一特定頻率射頻場提供的能量,這樣就形成了一個核磁共振信號.
核磁共振的應用
NMR技術
核磁共振頻譜學
NMR技術即核磁共振譜技術,是將核磁共振現象應用於分子結構測定的一項技術。對於有機分子結構測定來說,核磁共振譜扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質譜一起被有機化學家們稱為「四大名譜」。目前對核磁共振譜的研究主要集中在1H和13C兩類原子核的圖譜。
對於孤立原子核而言,同一種原子核在同樣強度的外磁場中,只對某一特定頻率的射頻場敏感。但是處於分子結構中的原子核,由於分子中電子雲分布等因素的影響,實際感受到的外磁場強度往往會發生一定程度的變化,而且處於分子結構中不同位置的原子核,所感受到的外加磁場的強度也各不相同,這種分子中電子雲對外加磁場強度的影響,會導致分子中不同位置原子核對不同頻率的射頻場敏感,從而導致核磁共振信號的差異,這種差異便是通過核磁共振解析分子結構的基礎。原子核附近化學鍵和電子雲的分布狀況稱為該原子核的化學環境,由於化學環境影響導致的核磁共振信號頻率位置的變化稱為該原子核的化學位移。
耦合常數是化學位移之外核磁共振譜提供的的另一個重要信息,所謂耦合指的是臨近原子核自旋角動量的相互影響,這種原子核自旋角動量的相互作用會改變原子核自旋在外磁場中進動的能級分布狀況,造成能級的裂分,進而造成NMR譜圖中的信號峰形狀發生變化,通過解析這些峰形的變化,可以推測出分子結構中各原子之間的連接關系。
最後,信號強度是核磁共振譜的第三個重要信息,處於相同化學環境的原子核在核磁共振譜中會顯示為同一個信號峰,通過解析信號峰的強度可以獲知這些原子核的數量,從而為分子結構的解析提供重要信息。表徵信號峰強度的是信號峰的曲線下面積積分,這一信息對於1H-NMR譜尤為重要,而對於13C-NMR譜而言,由於峰強度和原子核數量的對應關系並不顯著,因而峰強度並不非常重要。
早期的核磁共振譜主要集中於氫譜,這是由於能夠產生核磁共振信號的1H原子在自然界豐度極高,由其產生的核磁共振信號很強,容易檢測。隨著傅立葉變換技術的發展,核磁共振儀可以在很短的時間內同時發出不同頻率的射頻場,這樣就可以對樣品重復掃描,從而將微弱的核磁共振信號從背景噪音中區分出來,這使得人們可以收集13C核磁共振信號。
近年來,人們發展了二維核磁共振譜技術,這使得人們能夠獲得更多關於分子結構的信息,目前二維核磁共振譜已經可以解析分子量較小的蛋白質分子的空間結構。
MRI技術
核磁共振成像
核磁共振成像技術是核磁共振在醫學領域的應用。人體內含有非常豐富的水,不同的組織,水的含量也各不相同,如果能夠探測到這些水的分布信息,就能夠繪制出一幅比較完整的人體內部結構圖像,核磁共振成像技術就是通過識別水分子中氫原子信號的分布來推測水分子在人體內的分布,進而探測人體內部結構的技術。
與用於鑒定分子結構的核磁共振譜技術不同,核磁共振成像技術改編的是外加磁場的強度,而非射頻場的頻率。核磁共振成像儀在垂直於主磁場方向會提供兩個相互垂直的梯度磁場,這樣在人體內磁場的分布就會隨著空間位置的變化而變化,每一個位置都會有一個強度不同、方向不同的磁場,這樣,位於人體不同部位的氫原子就會對不同的射頻場信號產生反應,通過記錄這一反應,並加以計算處理,可以獲得水分子在空間中分布的信息,從而獲得人體內部結構的圖像。
核磁共振成像技術還可以與X射線斷層成像技術(CT)結合為臨床診斷和生理學、醫學研究提供重要數據。
核磁共振成像技術是一種非介入探測技術,相對於X-射線透視技術和放射造影技術,MRI對人體沒有輻射影響,相對於超聲探測技術,核磁共振成像更加清晰,能夠顯示更多細節,此外相對於其他成像技術,核磁共振成像不僅僅能夠顯示有形的實體病變,而且還能夠對腦、心、肝等功能性反應進行精確的判定。在帕金森氏症、阿爾茨海默氏症、癌症等疾病的診斷方面,MRI技術都發揮了非常重要的作用。
MRS技術
核磁共振測深
核磁共振探測是MRI技術在地質勘探領域的延伸,通過對地層中水分布信息的探測,可以確定某一地層下是否有地下水存在,地下水位的高度、含水層的含水量和孔隙率等地層結構信息。
目前核磁共振探測技術已經成為傳統的鑽探探測技術的補充手段,並且應用於滑坡等地質災害的預防工作中,但是相對於傳統的鑽探探測,核磁共振探測設備購買、運行和維護費用非常高昂,這嚴重地限制了MRS技術在地質科學中的應用。
核磁共振的特點
①共振頻率決定於核外電子結構和核近鄰組態;②共振峰的強弱決定於該組態在合金中所佔的比例;③譜線的解析度極高。
磁共振成像的優點
與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的計算機層析成像(computerized tomography, CT)相比,磁共振成像的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、准確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁共振成像技術進行檢查。具體說來有以下幾點:
對人體沒有游離輻射損傷;
各種參數都可以用來成像,多個成像參數能提供豐富的診斷信息,這使得醫療診斷和對人體內代謝和功能的研究方便、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權圖像,可區別肝部良性腫瘤與惡性腫瘤;
通過調節磁場可自由選擇所需剖面。能得到其它成像技術所不能接近或難以接近部位的圖像。對於椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經根、脊髓和神經節等。能獲得腦和脊髓的立體圖像,不像CT(只能獲取與人體長軸垂直的剖面圖)那樣一層一層地掃描而有可能漏掉病變部位;
能診斷心臟病變,CT因掃描速度慢而難以勝任;
對軟組織有極好的分辨力。對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT;
原則上所有自旋不為零的核元素都可以用以成像,例如氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。
臨床意義:適應症:
神經系統的病變包括腫瘤、梗塞、出血、變性、先天畸形、感染等幾乎成為確診的手段。特別是脊髓脊椎的病變如脊椎的腫瘤、萎縮、變性、外傷椎間盤病變,成為首選的檢查方法。
心臟大血管的病變;肺內縱膈的病變。
腹部盆腔臟器的檢查;膽道系統、泌尿系統等明顯優於CT。
對關節軟組織病變;對骨髓、骨的無菌性壞死十分敏感,病變的發現早於X線和CT。
編輯本段核磁共振和CT的區別
計算機斷層掃描(CT)能在一個橫斷解剖平面上,准確地探測各種不同組織間密度的微小差別,是觀察骨關節及軟組織病變的一種較理想的檢查方式。在關節炎的診斷上,主要用於檢查脊柱,特別是骶髂關節。CT優於傳統X線檢查之處在於其解析度高,而且還能做軸位成像。由於CT的密度解析度高,所以軟組織、骨與關節都能顯得很清楚。加上CT可以做軸位掃描,一些傳統X線影像上分辨較困難的關節都能在叮圖像上「原形畢露」。如由於骶髂關節的關節面生來就傾斜和彎曲,同時還有其他組織之重疊,盡管大多數病例的骶髂關節用x線片已可能達到要求,但有時X線檢查發現骶髂關節炎比較困難,則對有問題的病人就可做CT檢查。
磁共振成像(MRI)是根據在強磁場中放射波和氫核的相互作用而獲得的。磁共振一問世,很快就成為在對許多疾病診斷方面有用的成像工具,包括骨骼肌肉系統。肌肉骨骼系統最適於做磁共振成像,因為它的組織密度對比范圍大。在骨、關節與軟組織病變的診斷方面,磁共振成像由於具有多於CT數倍的成像參數和高度的軟組織解析度,使其對軟組織的對比度明顯高於CT。磁共振成像通過它多向平面成像的功能,應用高分辨的毒面線圈可明顯提高各關節部位的成像質量,使神經、肌腱、韌帶、血管、軟骨等其他影像檢查所不能分辨的細微結果得以顯示。磁共振成像在骨關節系統的不足之處是,對於骨與軟組織病變定性診斷無特異性,成像速度慢,在檢查過程中。病人自主或不自主的活動可引起運動偽影,影響診斷。
X線攝片、CT、磁共振成像可稱為三駕馬車,三者有機地結合,使當前影像學檢查既擴大了檢查范圍,又提高了診斷水平。