A. 用什麼儀器觀測海洋請問一般觀測海洋各種物理性質,比
觀察和測量海洋現象的基本工具.通常指采樣、測量、 觀察、 分析和數據處理等設備.海洋觀測儀器主要是為了滿足海洋學研究的需要而設計的,有些國家以海洋學儀器命名,中國習慣上稱為海洋儀器.
發展概況 早在15世紀中葉,便有人研製測量海水深度的儀器但是比較簡便而又可靠的測溫工具,是1874年研製出的.隨後又設計出埃克曼海流計.20世紀初研製出了.1938年研製出機械式,從而可以快速觀測水溫隨深度的變化.直到20世紀50年代以前,海洋觀測主要使用機械式儀器,回聲測深儀是唯一的電子式測量裝置.60年代以後,海洋觀測儀器在設計上大量採用新技術,逐步實現了電子化.海洋觀測儀器的電子化,是從單項測量儀器開始的,以後又發展多要素的綜合儀器,例如.今後,海洋觀測儀器將不斷改進結構,降低功耗,增加可靠性,除感測器多樣化外,信號形式和儀器終端將日趨通用化,並進一步向智能化發展.
海洋觀測儀器的種類 海洋觀測儀器可以按照結構原理分為聲學式儀器、光學式儀器、電子式儀器、機械式儀器,以及遙測遙感儀器等.還可以根據運載工具不同,劃分成船用儀器、潛水器儀器、浮標儀器、岸站儀器和飛機、衛星儀器.其中船用海洋觀測儀器品種最多,按其操作方式又可分為投棄式、自返式、懸掛式、拖曳式等.投棄式儀器使用時將其感測器部分投入海中,觀測的數據通過導線或無線電波傳遞到船上,感測器用後不再回收.自返式儀器觀測時沉入海中,完成測量或采樣任務後卸掉壓載物,借自身浮力返回海面.懸掛式儀器利用船上的絞車吊桿從船舷旁送入海中,在船隻錨碇或漂流的情況下進行觀測.拖曳式儀器工作時從船尾放入海中,拖曳在船後進行走航觀測.
B. 海洋磁力測量的測量儀器
一、GB-6型海洋氦光泵磁探儀
GB-6型海洋氦光泵磁探儀是一種原子磁力儀,是一種高精度磁異常探測器,適合於航空及海洋地球物理勘探中高精度磁測量,也可用於航空磁異常探潛。該儀器具有數字化、模塊化、小型化和系統集成特點。用光泵技術製成的高靈敏度磁探儀,無零點漂移、不須嚴格定向,對周圍磁場梯度要求不高,可連續測量等顯著優點,可廣泛用於航空及海洋地球物理勘探;航空探潛及探雷等軍事目的。
該儀器已廣泛用於港口、航道、錨地等對泥下障礙物、管道探測及海纜路由調查、重要工程水域磁場測量等海洋工程開發中,在海上和長江中已完成數十次探測與定位、打撈作業。
二、海洋磁力測量廣泛使用核子旋進磁力儀,它是利用氫質子磁矩在地磁場中自由旋進的原理來測量地磁場總向量的絕對值。煤油、水、酒精等都含有不停「自旋」的氫質子,並產生一個「自旋」磁矩,稱質子磁矩。這些質子在沒有外磁場作用時,其指向毫無規則,宏觀磁矩為零。當含氫液體處在地磁場中,經過一段時間,磁矩的方向就趨於地磁場的方向。如果加一個垂直於地磁場T 的強人工磁場H0(大於100奧斯特),則迫使質子磁矩趨於H0的方向。當人工磁場突然消失,質子磁矩受地磁場的作用,將逐漸回到T 的方向上去。因為每個質子具有「自旋」磁矩,同時受地磁場T 的作用,就產生了質子磁矩繞地磁場T 的旋進現象,即所謂質子旋進。旋進的圓頻率ω與地磁場總強度T的絕對值T成正比,即旋進的頻率越高地磁場越強。
ω=νpT
式中ω=2πfp,fp為旋進頻率;νp為磁旋比,νp=26751.3/(奧斯特·秒)。經換算:T=23.4874fp(伽馬)(1伽馬=10-5奧斯特)。
由此可見,地磁場的測量可以轉化為旋進頻率的測量。在電路中採用放大、倍頻和控制電子門開啟時間的方法,可將測量結果直接以伽馬示出。
為了消除日變和海岸效應的影響,在海洋質子旋進磁力儀的基礎上製造了海洋質子磁力梯度儀。它的基本結構是由兩台高精度的同步質子旋進磁力儀、微分計算器、雙筆記錄器和由同軸電纜拖曳船後兩個一前一後的感測器組成,感測器間的距離大於 100米。磁擾動場的影響,可由兩個相同感測器獲得的總磁場強度差值中消除,實際上得到的是總磁場強度的水平梯度值。然後對水平梯度值進行積分,得到消除了日變和海岸效應的總磁場強度值。這樣,海洋質子磁力梯度儀作大洋磁測就無須再設置日變觀測站,即可消除日變和海岸效應的影響,因而比質子磁力儀更適合於海上測量。
由於大氣受太陽輻射的影響,引起電離層的變化,致使磁場發生短周期的變化,這種現象稱為日變。由於海水和岩石之間,不同岩性的岩石之間有電導率的差異,致使大地電磁場在海陸和不同岩石之間的邊界發生畸變。這種畸變是一種不規則的磁擾,因地而異,尤其是在海溝和島弧地區更為明顯,這種現象稱之為海岸效應。

C. 航海氣象的航海氣象觀測及儀器
船舶在航行過程中主要觀測氣壓、風、氣溫、濕度,此外還觀測波浪和海霧等,以便對海洋氣象和水文部門提供的情報進行檢驗和訂正。有的船舶還常帶有為船籍國作順路觀測的任務。船上測定氣壓的常用儀器有水銀氣壓表和空盒氣壓表兩種。水銀氣壓表應垂直懸掛底艙內,並加裝平衡環,以減少震動,避免受直接通風、溫度劇烈變化和船舶搖擺的影響。氣壓讀數必須經過一系列的訂正後才能算作現場氣壓,這種訂正,水銀氣壓表比空盒氣壓表繁瑣,所以船上多採用空盒氣壓表。近年來製成船上專用的觀測風速、風向、氣溫和濕度的船舶氣象儀。它的感應部分安裝在駕駛台頂部開闊通風處,指示儀表安裝在駕駛台內,可直接讀取上述氣象要素值,既可測瞬時風速,也可測100秒內的平均風速。各種形式的查算表或計算盤等是查算真風用的。船舶觀測波浪、海霧的方法也比岸上的簡易。

D. 有哪些種類的海洋觀測儀器
逯玉佩觀察和測量海洋現象的基本工具。通常指采樣、測量、 觀察、 分析和數據處理等設備。海洋觀測儀器主要是為了滿足海洋學研究的需要而設計的,有些國家以海洋學儀器命名,中國習慣上稱為海洋儀器。
發展概況 早在15世紀中葉,便有人研製測量海水深度的儀器但是比較簡便而又可靠的測溫工具,是1874年研製出的。隨後又設計出埃克曼海流計。20世紀初研製出了。1938年研製出機械式,從而可以快速觀測水溫隨深度的變化。直到20世紀50年代以前,海洋觀測主要使用機械式儀器,回聲測深儀是唯一的電子式測量裝置。60年代以後,海洋觀測儀器在設計上大量採用新技術,逐步實現了電子化。海洋觀測儀器的電子化,是從單項測量儀器開始的,以後又發展多要素的綜合儀器,例如。今後,海洋觀測儀器將不斷改進結構,降低功耗,增加可靠性,除感測器多樣化外,信號形式和儀器終端將日趨通用化,並進一步向智能化發展。
海洋觀測儀器的種類 海洋觀測儀器可以按照結構原理分為聲學式儀器、光學式儀器、電子式儀器、機械式儀器,以及遙測遙感儀器等。還可以根據運載工具不同,劃分成船用儀器、潛水器儀器、浮標儀器、岸站儀器和飛機、衛星儀器。其中船用海洋觀測儀器品種最多,按其操作方式又可分為投棄式、自返式、懸掛式、拖曳式等。投棄式儀器使用時將其感測器部分投入海中,觀測的數據通過導線或無線電波傳遞到船上,感測器用後不再回收。自返式儀器觀測時沉入海中,完成測量或采樣任務後卸掉壓載物,借自身浮力返回海面。懸掛式儀器利用船上的絞車吊桿從船舷旁送入海中,在船隻錨碇或漂流的情況下進行觀測。拖曳式儀器工作時從船尾放入海中,拖曳在船後進行走航觀測。
海洋觀測儀器對使用者來說,通常按所測要素分類。例如測溫儀器、測鹽儀器、測波儀器、測流儀器、營養鹽儀器、重力和磁力儀器、底質探測儀器、浮游生物與底棲生物儀器等等。將它們歸納起來可以劃分成 4大類,即海洋物理性質觀測儀器、海洋化學性質觀測儀器、海洋生物觀測儀器、海洋地質及地球物理觀測儀器。
海洋物理性質觀測儀器 用於觀測海洋中的聲、光、溫度、密度、動力等現象。因為海水密度不便直接測定,通常用溫度、鹽度和壓力值計算得到,所以鹽度取代密度成為一個必測參數。觀測海水溫度、鹽度和壓力的儀器,20世紀60年代以前只能用顛倒溫度表、、滴定管和機械式深溫計(BT),現在則用電子式鹽溫深測量儀(STD或CTD)等船隻走航測溫常用投棄式深溫計(XBT)。空中遙感觀測海水溫度則用紅外輻射溫度計
。岸邊潮汐觀測使用浮子式,外海測潮採用壓力式自容儀,大洋潮波的觀測依靠衛星上的雷達測高儀。海浪觀測儀器的品種比較繁雜,有各種形式的測波桿、壓力式、光學原理的測波儀、超聲波式測波儀。近年用得較多的是加速度計式測波儀。海流觀測相當困難,或用儀器定點測量,或用漂流物跟蹤觀測。定點測流是海洋觀測中常用的辦法,所用儀器有轉子式海流計、電磁式海流計、聲學海流計等,其中最流行的是轉子式儀器(見)。海洋聲參數儀器主要有,用以觀測聲波在海水裡的傳播速度。海洋光參數儀器有透明度計和照度計,用以觀測海水對光線的吸收和海洋自然光場的強度。
海洋化學性質觀測儀器 海洋觀測中所用的化學儀器,主要用來測定海水中各種溶解物的含量。60年代以前,除少數幾項可在船上用滴定管和目力比色裝置完成外,大部分項目要保存樣品帶回陸上實驗室分析。60年代以後,調查船上逐漸採用船用、船用pH計、溶解氧測定儀,以及船用分光光度計和船用熒光計。近年來船用單項化學分析儀器與自動控制裝置相結合,形成船用多要素的自動測定儀器。這種綜合儀器還可配備電子計算機
,提高其自動化程度。船用化學分析儀器的工作原理大致分兩類:一類用感測器(主要為電極)直接測定化學參數;一類通過樣品顯色進行光電比色測定。目前,海水中的各種營養鹽靠比色儀器測定,pH值、溶解氧、氧化-還原電位等利用電極式儀器測定。
海洋生物觀測儀器 海洋生物種類繁多,從微生物、浮游生物、底棲生物到游泳生物,相應有不同的觀測儀器。海水中的微生物需采樣後進行研究,采樣工具有復背式采水器和無菌采水袋。浮游生物采樣器主要有浮游生物網和浮游生物連續採集器。底棲生物采樣使用海底拖網、采泥器和取樣管。游泳生物采樣依靠魚網,觀察魚群使用魚探儀(見)。海洋初級生產力的觀測,除利用化學儀器測營養鹽,利用光學儀器測定光場強度之外,還用熒光計測定海水中的葉綠素含量。為了觀察海洋生物在海中的自然狀態,需要利用水中攝象,有時還得使用。可使人們在海底停留較長時間,是觀察海洋生物活動情況的良好設備。
海洋地質及地球物理觀測儀器 底質取樣設備是最早發展的海洋地質儀器,分表層取樣設備與柱狀取樣設備兩類。表層取樣設備又稱采泥器,有重力式采泥器、彈簧式采泥器和箱式采泥器,其中箱式采泥器能保持沉積物原樣。底質柱狀采樣工具有重力取樣管、振動活塞取樣管、重力活塞取樣管和水下淺鑽,有一種靠玻璃浮子裝置使柱狀樣品上浮的重力取樣管稱為自返式取樣管。結合底質取樣,還可進行海底照相。回聲測深儀是觀測水深、地貌和地層結構最常用的儀器。又稱地貌儀,安裝在船殼上或拖曳體上,可以觀測海底地貌。利用聲波在海底沉積物中的傳播和反射測出地層結構。海洋地球物理儀器有重力儀(見)、磁力儀(見)和地熱計等。
E. 海洋重力測量的測量儀器
有海洋擺儀和海洋重力儀兩大類。海洋擺儀是根據單擺原理設計的,藉助光學照相系統觀測擺動周期的變化。它的缺點是結構復雜、笨重低效、抗震性差、資料整理冗繁,因而逐步為重力儀所取代。海洋重力儀按工作條件的差別分為海底重力儀、水中重力儀和船上重力儀。船上重力儀以彈性系統結構劃分,有力平衡型(又分直立型和旋轉型)和振弦型。船上重力儀的結構原理是通過彈簧的伸縮量,水平擺桿的偏角,振弦的頻率變化等測定重力的相對變化。同陸上重力儀相似。

F. 測繪人員常用的儀器有哪些主要的用途又是什麼
常用的工程測量儀器有:
1、水準儀,它是為水準測量提供水平視線和對水準標尺進行讀數,主要功能是測量兩點間的高差,測高程,利用視距測量原理,還可測量兩點間的水平距離。
2、全站儀,全站儀在側站上一經觀測,必要的觀測數據如斜距、豎直角、水平角均能自動顯示,而且可在同一時間內得到平距、高差、點的坐標和高程。
如果通過傳輸介面把全站儀野外採集的數據終端與計算機、繪圖機連接起來,配以數據處理軟體和繪圖軟體,即可實現測圖自動化。全站儀一般用於大型工程的場地坐標測設和復雜工程的定位和細部測設。
3、經緯儀,是對水平角和豎直角進行測量,主要功能是測量兩個方向之間的水平夾角和豎直角,藉助水準尺,利用視距測量原理,還可測量兩點的水平距離和高差。

(6)海洋觀測儀器有哪些種類擴展閱讀:
在工程建設中規劃設計、施工及經營管理階段進行測量工作所需用的各種定向、測距、測角、測高、測圖以及攝影測量等方面的儀器。
1、長度測量工具;
2、溫度測量工具;
3、時間測量工具;
4、質量測量工具;
5、力的測量工具;
6、電流、電壓、電阻測量工具;
7、聲音測量儀器;
8、無線電測量儀器;
9、折射率和平均色散測量儀器。
最早在機械製造中使用的是一些機械式測量工具,例如角尺、卡鉗等。16世紀,在火炮製造中已開始使用光滑量規。
1772年和1805年,英國的J.瓦特和H.莫茲利等先後製造出利用螺紋副原理測長的瓦特千分尺和校準用測長機。
G. 水位監測裝置有哪些
水位感測器是指能將被測點水位參量實時地轉變為相應電量信號的儀器。其工作原理是:容器內的水位感測器,將感受到的水位信號傳送到控制器,控制器內的計算機將實測的水位信號與設定信號進行比較,得出偏差,然後根據偏差的性質,向給水電動閥發出"開"和"關"的指令,保證容器達到設定水位。進水程序完成後,溫控部份的計算機向供給熱媒的電動閥發出"開"的指令,於是系統開始對容器內的水進行加熱。到設定溫度時。控制器才發出關閥的命令、切斷熱源,系統進入保溫狀態。程序編制過程中,確保系統在沒有達到安全水位的情況下,控制熱源的電動調節閥不開閥,從而避免了熱量的損失與事故的發生。
中文名
水位感測器
外文名
Water level sensor
性質
科學
類別
物理
材質
不銹鋼
快速
導航
應用
原理
耐高溫問題
簡介
感測器就是一種能夠感受水溫水位,並且將感受到的水溫水位轉變成變化的電信號的儀器。在太陽能熱水器的發展史上,水溫水位感測器一直起著舉足輕重的作用,熱水器的智能化、人性化都與水溫水位感測器密不可分,水溫水位測控儀更是離不開水溫水位感測器,水溫水位感測器工作穩定是對整個熱水器智能控制的保障。水溫水位感測器的從無到有,從簡單到復雜,使用壽命的由短到長,都與太陽能專業人士的努力是分不開的[1] 。
應用
廣泛用於水廠、煉油廠、化工廠、玻璃廠、污水處理廠、高樓供水系統、水庫、河道、海洋等對供水池、配水池、水處理池、水井、水罐、水箱、油井、油罐、油池及對各種液體靜態、動態液位的測量和控制。
舉例說明投入式水位感測器在水位監測系統中的應用:
水位監測系統拓撲圖
投入式水位感測器DATA-51系列
原理
容器內的水位感測器,將感受到的水位信號傳送到控制器,控制器內的計算機將實測的水位信號與設定信號進行比較,得出偏差,然後根據偏差的性質,向給水電動閥發出"開"和"關"的指令,保證容器達到設定水位。進水程序完成後,溫控部份的計算機向供給熱媒的電動閥發出"開"的指令,於是系統開始對容器內的水進行加熱。到設定溫度時。控制器才發出關閥的命令、切斷熱源,系統進入保溫狀態。程序編制過程中,確保系統在沒有達到安全水位的情況下,控制熱源的電動調節閥不開閥,從而避免了熱量的損失與事故的發生[2] 。
耐高溫問題
感測器要長期工作在熱水器水箱之中,因為真空管的得熱量大,傳給熱水器水箱很多熱量,使水箱溫度能長時間達到100度左右,短時間能達到130度,甚至150度,這就對感測器帶來了耐高溫問題,從太陽能界用的第一個水溫水位感測器一直到近期,感測器的材料在耐高溫方面一直存在缺陷,在長期的空曬過程中、在長期的水煮過程中、在長期的汽蒸過程中,不管是電子器件還是其他的感測器材料都很容易老化、損壞。
突破這一難題,必須使進入水箱的感測器部分能夠耐高溫,在科學快速發展的背景下,我國已經研製除了一種能夠絕緣的、耐高溫的抗高溫聚丙烯材料,它能夠在150度的環境中正常使用,短時間能耐170度高溫,導電的電極部分使用優質不銹鋼材料SUS316L,既能滿足耐高溫,又能滿足耐腐蝕的要求;而不耐高溫的電路部分,可以選取遠離高溫水箱的結構[3] 。
參考資料
[1] 馮保清, 姜海波, 沈言琍,等. 水位感測器在灌區的比選與應用[J]. 中國農村水利水電, 2005(7):104-105.
[2] 馬福昌, 元江博, 馬珺. 感應式數字水位感測器智能變送器設計[J]. 電子設計工程, 2011, 19(7):128-130.
[3] 安全, 范瑞琪. 常用水位感測器的比較和選擇[J]. 水利信息化, 2014(3):52-54.