『壹』 生物質鍋爐讓用嗎,生物質鍋爐要淘汰了嗎
缺點:生物質鍋爐只能燃燒固體生物質燃料,在設備設計不好的時候還會出現燃料燃燒不完全的情況,並且在部分地區有被取締的風險,所以缺點明顯。取締原因:取締的地區限制:禁燃區、生態紅線區、中心鎮區等環境敏感區域。燃料的限制:嚴禁使用由廢木製傢具、廢紙、生產及生活垃圾等含有人工合成化合物的可燃廢物加工成型的燃料。配套設施的限制:沒有使用專用生物質鍋爐配套袋式除塵器的鍋爐嚴禁使用。 補充:生物質鍋爐是鍋爐的一個種類,就是以生物質能源做為燃料的鍋爐叫生物質鍋爐,分為生物質蒸汽鍋爐、生物質熱水鍋爐、生物質熱風爐、生物質導熱油爐、立式生物質鍋爐、卧式生物質鍋爐等。
『貳』 太陽能儀表使用方法
感測器安裝常識
1、將感測器由溢流管插入,輕拉引線,使之貼緊進口處,再向內伸進1公分左右,然後將固定件套在溢流管上。
2、將感測器專用線引入室內,並且固定,不等用力過猛,以免擦傷或拉斷。
3、安裝過程中禁止插座淋濕。感測器不能與電加熱管相碰或距離過近。
4、若選配下置式感測器,從水箱底部向上安裝,擰緊固定螺帽,檢查有無滲水情況。
5、若現配上置式感測器,從水箱頂部向下安裝,並用扎帶將導線固定。

(2)生物質儀表怎麼用擴展閱讀:
主要功能
1、開機自檢:接上220V電源時,儀表LCD北光點亮顯示開機畫面,蜂鳴器長鳴一聲,表示系統開始正常啟動。
2、工作狀態顯示:
上水電磁閥標志, 電加熱標志、集熱循環泵標志、管道循環泵標志、伴熱帶標志。
儀表正常工作、感測器故障信息、試用天數信息等。
北京時間的顯示:顯示北京時間。
3、掉電保護:當系統斷電時,控制器會自動保存當前設置的工作參數,等來電時控制器會按之前的工作參數繼續運行。掉電時北京時間正常運行無需重新設置。
4、鎖屏功能:控制器在工作狀態界面,15分鍾沒有任何按鍵會自動鎖屏;須要輸入密碼才能進行手動操作或設置。此功能可以通過設置關閉。
5、節能功能:控制器在工作狀態界面,15分鍾沒有任何按鍵, LCD液晶顯示的背光會自動關閉。
6、試用功能:需要密碼開啟或修改試用功能。最長試用天數為1年。在最後七天屏幕上顯示試用天數到期,並每小時有蜂鳴長三聲的語音提示。此功能可以通過設置關閉。
7、上水功能: 手動上水,定溫上水,三個時間段定時上水。
『叄』 太陽能全智能儀表怎麼用
不同品牌的設置稍微有區別的,但是大概都差不多
特點:上水實現全自動,有恆溫補水功能,定時上水,水溫水位數碼彩屏顯示,採用人性化設計,具有水位預置、低水壓上水模式、可定時控制,手動控制、自動防溢流、高溫保護等主要功能,使用更方便、更安全、更實用。
一、主要技術指標
1、使用電源:220VAC功耗:<5W
2、測溫精度:±2℃
3、測溫范圍:0-99%℃
4、水位分檔:五檔
5、電磁閥參數:直流DCl 2V,可選用有壓閥或無壓閥
二、主要功能
1、開機自檢:開機時發出「嘀」提示音,表示機器處於正常狀態
2、水位預置:可預置加水水位50、80、100%
3、水位顯示:顯示太陽能熱水器內部所有水量
4、水溫顯示:可顯示太陽能熱水器內部實際水溫
5、水溫預置:可預置加熱溫度30%-80%,若不需要加熱功能,可預置為00℃。
6、缺水報警: 當水位從高變低,出現缺水狀態時,蜂嗚報警,同時位時,測控儀會自動進入低水壓模式,「低水壓」圖案點亮,在此上水模式中,測控儀會間隔30分鍾啟動一次,同時測控儀自動靜音,以免上水、關閉時經常蜂嗚,打擾用戶休息:按「上水鍵」可取消該次低水壓上水模式:
11、溫控上水: 當水箱水未加滿,水溫以超過85~C時, 自動補水至合適水溫65cC左右,此功能可防止出現低水量高水溫的不合理現象。
12、定時上水:若有供水不正常,有時有水,有時沒水等特殊情況用戶可根據自己的生活習慣,設定定時上水或定時加熱,設定完畢後測控儀每天會根據所設定的時間自動上水及加熱。
1 3、強制上水:水位感測器出現故障時,可按「上水」鍵,實現強制止水,每分鍾會出現蜂鳴提示,注意有無溢水,8分鍾後自動關閉上水。
三、使用方法
通電後,測控儀會自動將水位加滿至100%,如果無太陽光照使水溫升高,則3小時後自動加熱至水溫50℃,太陽能上水、加熱是合智 能運行的,因此,用戶不必作任何操作,若想變更預置水位、水溫或採用定時模式,可按如下方法操作:
1、水溫水位設置:先按「預置」鍵,當前預置溫度。預置水位快速跳動,然後按「上水、水位」鍵設置水位,按「加熱、水溫」鍵設置水溫,請用戶根據自己的需要設置到所需水位和水溫;建議設置水溫不超過60~C,可充分利用太陽能,減少電加熱,節約電能。
2、定時控制:在需要定時上水或加熱時,長按「上水、水位」鍵或「加熱、水溫」鍵盤,約3秒鍾聽到「嘀」短提示音後放手,數碼顯示「00'』,然後按「上水、水位」或「加熱、水溫」鍵調整時間,設定溫度℃或圓圈圖案閃爍:若3小時後上水或加熱,先按「上水、水位」鍵或「加熱、保溫」鍵盤約3秒鍾,聽到「嘀」短提示音後放手,再按 「上水、水位」或「加熱、水溫」鍵三下,數碼顯示 「03」則定時完成。
3、溫控上水:根據季節不同,太陽光照不同,可設置溫控上水功能,按「電源」鍵溫控上水則啟動,若取消再按電源鍵同取消。
長按電源鍵則關機。
四、注意事項
1、不要讓水直接沖淋測控儀
2、水箱內不得長期無水,以免空曬造成太陽能超高溫,保護太陽能熱水器及水溫水位感測器
3、為防止錯誤操作、電源不正常及控制失靈等意外。問題造成長時間溢流,電磁閥及太陽能熱水器必須安裝在不發生水滲漏到室內或噴射造成事故的地方,若裝有回水管,必須接可靠排水管道,並必須安裝可靠避雷措施,注意防雷擊。當發生雷電時應及時斷開電源停止使用太陽能,注意人身安全
4、發現上水速度很慢而水壓正常,可能是電磁閥濾網堵塞,卸開介面、清洗衣濾網:
5、本測控儀具有漏電保護功能,因此用戶用水時只需按「加熱」鍵關閉加熱,加熱圖案熄來,即可放心使用,不必拔下電源插頭
『肆』 生物質燃料鍋爐怎樣使用,使用的過程是怎樣的。謝謝大家
只要調試好了,保證燃料充足,和及時掏灰,基本上就是自動的。
『伍』 生物質方面用什麼樣的電位計沼氣發酵方面的
水位用尺子,壓力用壓力表,不知道你問的是什麼東西了/
『陸』 多功能電力儀表的使用方法
多功能電力儀表可測量電網中的電力參數有:Ua、Ub、Uc(相電壓);Uab、Ubc、Uea(線電壓)Ia、Ib、Ic(電流);Pa、Pb、Pc、Ps(每相有功功率和總有功功率);Qa、Qb、Qc、Qs(每相無功功率和總無功功率);PFs(總功率因數);Ss(總視在功率);FR(頻率)以及有功(無功)電能,所有的測量電量參數全部保存儀表內部的電量信息表中,通過儀表的數字通訊介面可訪問採集這些數據。而對於不同的型號的儀表,其顯示內容和方式卻可能不一致,請參考具體的說明。
顯示方式:
可設置XS1控制字用來編程設置通常狀態下顯示內容,XS1=0表示自動循環顯示,1(三相電壓),2(三相電流),3(有功功率、無功功率、功率因數),4(頻率),5(有功電能信息),6(無功電能信息)。 在編程操作下,儀表提供了設置(SET)、輸入(INPT)、通訊(CONN)三大類輸入設置菜單項目,採用LED顯示的分層菜單結構管理方式:第1排LED顯示第1層菜單信息;第2排LED顯示第2層菜單信息,第3排LED提供第3層菜單信息。
鍵盤的編程操作採用四個按鍵的操作方式,即:左右移動鍵「←」、「→」,菜單進入或上回退「MENU」鍵、選擇確定「 」 來完成上述功能的的有操作。
MENU:在儀表測量顯示的情況下,按該鍵盤進入編程模式,儀表提示密碼:CODE,輸入正確密碼後,可對儀表進行編程、設置,儀表出廠時密碼初始為0001;「MENU」另一個作用是在編程操作過程中,起上退作用。例如,在編程模式下,INPT-I.SCL-5下按「MENU」,儀表會顯示INPT-I.SCL。
「→」、「←」,切換移動鍵實現菜單項目的切換或者數字量的增加或減少。例如,在菜單項目INPT-T.U-0001下按動「→」會變成INPT-T.U-0002,按住「→」、「←」不放可實現快速增/減功能。
「」選擇後確認,並返回到上次菜單。
在編程方式退回到測量模式的情況下,儀表會提示「SAVE-YES」,選擇「MENU」表示不保存退出,選擇「 」保存退出。
菜單的組織結構如下,用戶可根據實際情況選擇適當的編程設置參數。 第1層 第2層 第3層 描述 密碼CODE —— 密碼數據9999 當輸入的密碼正確時才可以進入編程 系統設置SET 顯示DISP 0-6 選擇顯示項目分別為自動和顯示項目 清電能CLR.E —— 確認後,電能清0. 信號輸入
INPT 網路NET N.3.4和N.3.3 選擇測量信號的輸入網路 編程設置字元含義對照表
使用要求:所有的儀表在第一次使用的時候,請檢查儀表的參數周所在配電系統中需要的參數的一致性。例如,對於AC380V、200A/5A的線路中需要配置AC400V、200A/5A的儀表。用戶也可以根據實際需要對儀表重新進行編程設置。同樣一個表,對於400A/5A的線路中,只需要將儀表的CT變比「T.I」修改為80就可以了。在一般情況下,儀表後面的標簽中都表注了儀表的類型參數和出廠設置參數。
在正確的配置儀表後,按照實際的要求對儀表進行正確的接線,對輔助電源、輸入信號和輸出信號按說明書操作說明中進行。

『柒』 污水廠生化池過程儀表指示作用以及如何控制
污水廠生化池過程儀表指示作用以及如何控制
在了解在線儀表的應用之前,我們先來看看沒有在線的情況下,污水廠能夠掌握的生物池的數據都有哪些。污水廠內建有化驗室,化驗室會對每天的進出水水質、生物池內的活性污泥參數等進行化驗,得出運行數據以供工藝人員調整使用,受到化驗方法的限制,以及化驗人員的工作時間等,一般這些數據每天化驗一次。
污水廠化驗室針對管理重點的生物池的活性污泥控制化驗參數,比較常用的有污泥濃度、揮發性污泥濃度MLVSS、沉降比SV、溶解氧、微生物鏡檢等,受到人工取樣的時間、周期以及生物池內水流的推動流向的限制,一般會選擇生物池的末端進行取樣,這個點位的化驗數據主要監測的是生物池內活性污泥對污水中各種污染物質的最終反應的結果,一般的傳統的專業書籍也在用這個點位的數據對生物池的常規檢測參數進行確定。比如溶解氧常規的說法是2mg/L,但是在整個好氧池中,前段的溶解氧由於進水中的有機物較多,微生物大量的吸附降解有機物,消耗大量的氧氣,這樣就出現了前段的溶解氧遠遠低於2mg/L,但是隨著曝氣區域的延伸,污水中的有機污染物逐步被微生物降解完畢,微生物不再需要氧氣,水中剩餘的溶解氧會逐步增多,為了避免氧氣的浪費,一般在生物池曝氣區的末端控制溶解氧在2mg/L,這樣可以減少不必要的能源消耗,也對活性污泥的老化有良好的控制。
因此在生物池末端的監測,可以以傳統的數據來評判生物池內的活性污泥對污水的處理程度,工藝人員使用這些數據進行日常的工藝調整和管理等。但是在末端檢測和以日為單位的頻次對出水水質結果對整體的工藝調控也存在很大的滯後性,化驗室手工檢測其實也是一種結果檢測,不過是將出水水質的結果檢測提前到了生物池的末端,並沒有形成生物反應的過程檢測,提前預判也就更無能為力,在現階段出水水質的嚴格管控下,對工藝運行的有了更高層次的要求,原有的結果檢測需要向前進入到過程中進行檢測,甚至需要具備預判的能力,在現有的手工檢測的模式下是很難實現這個目標的。
同時數據的檢測密度也帶來了工藝控制的不準確性,污水廠的生物處理流程是一個流動性的過程,流動的處理過程,水質數據,過程數據是一個隨著時間、空間位置實時變化的狀態,而取樣時,僅能取到一個固定地點的瞬時的水樣,瞬時水樣要代表整個生物池內的所有的變化時不可能的。只有當取樣點的密度或者數量足夠大的時候才會有比較貼合實際的數據,所以這需要一個長期的穩定的檢測,並且保證工藝、進水、環境等都處於一個較為穩定的狀態下才會有,但實際上這時不可能的,因此手工取樣的化驗結果,要盡可能積累更多的數據量,在大數據量中消除取樣的偶然性,才會具備判斷的依據。
在線儀表在數據的密集度上,是完全可以取代人工的,那麼工藝管理人員除去具備了更密集的數據以外,通過使用在線儀表,有沒有可能把控制向前移動呢?先前移動的控制需要對工藝運行的各個階段進行監控,把生物池由原來的末端出水監測向前移動到過程中的監測,生物池以空間推流式工藝較多(SBR及其變種以時間變化為主),在不同的流程中的點位監測數值是不一樣的,而且在不同的時段監測的數據也是會發生變化的,在實時變化的工況下,人工檢測的頻次低,周期長的弊病就明顯的顯現出來,而在線儀表的實時監測的優勢就顯而易見。因此希望採取先前進行工藝的過程式控制制污水廠,越來越需要在線儀表在工藝運行中的實時監測的作用。下面以生物池的各項控制點來說明下在線儀表在生物池工藝控制中的應用。
污水處理的生物池形式多樣,不同的工藝要求有不同的工藝池體,下面就以A2O的工藝控制點來進行在線儀表的應用探討。現有的除磷脫氮工藝中A2O及其改良工藝越來越多的在實際中得到應用,A2O工藝中比較重要的特點就是將過量吸附磷的厭氧段(A)和反硝化的缺氧段(A)分離出來單獨的控制區域進行控制,在工藝管理中具有明確的管理參數,便於實際的運行管理。對於工藝管理人員來說,僅僅在出水口安裝的溶解氧和污泥濃度的在線儀表就不再能檢測到除磷脫氮的效果了,這需要更多更新的設備,或者通過一些常用的表徵參數比如溶解氧、ORP、硝態氮儀表等來評估除磷脫氮的效果,以便在後期的管理中進行調控。
『捌』 生物質顆粒熱量(熱值)怎麼檢測
一般都是以加熱多少水計算生物質燃燒的效率,因為生物質本身的熱值大約2500左右
『玖』 生物質的應用是什麼
生物質的應用包括大量至關重要的而且常常可以反映政策的內容,包括能源、環境、農業、全球貿易、交通運輸和土地使用規劃等,這些內容極為復雜。生物質是極為豐富且有多種用途的可再生資源,目前佔全球初級能源供應12%的份額,也佔到了歐洲共同體初級能源供應的4%。各種假設與預測表明,2030—2050年,生物質在全球能源需求中將會達到15%~35%的比重。到2030年,歐洲共同體的初級生物能源潛力總量將達2.5億~2.9億噸石油當量,而在2003年,僅為0.69億噸石油當量。

生物質燃料生產可能的途徑
然而,如果沒有任何補貼,生物質往往會無法與今天廣泛使用的用於發電或汽車燃料的化石燃料競爭。但是,這種缺憾可能會變得並不重要,在能源供給中,生物質將會具有更大的潛能。
用生物質作為一種能量資源是自然碳循環的一部分,因為燃燒時釋放到大氣層中的二氧化碳量基本上等於在光合作用光合作用是指在生物體內從光能轉化為化學能的一系列酶—催化劑過程。它的初始物質是二氧化碳和水,能量來源是光(電磁、輻射);而終端產物是氧(含有能量的)和碳水化合物,如蔗糖、葡萄糖、澱粉。這一過程是可以論證的最重要的生物化學途徑,因為地球上所有的生物都直接或間接地依靠這種作用。這是一種發生在較高等植物、藻類以及細菌(如藍藻)體內的一種復雜的過程。中被生物質所吸收的量。培育和轉化生物質給料(指供送入機器或加工廠的原料)的非能源密集型加工技術具有一種二氧化碳平衡功能。生物質可以提供的能源形式包括熱量、電力、氣體的,液體的或固體的加熱燃料和汽車燃料。三種主要的生物質能轉化加工技術為:(1)熱化學技術,如燃燒、熱解和汽化;(2)生物技術,如發酵和酶的水解;(3)油脂化學技術,如植物油和動物脂肪的煉制。
從廣義上講,生物燃料(可以培育或栽培的稱為「農業燃料」)定義為由源自死亡不久的生物體(絕大部分為植物)構成的固體、液體或氣體燃料。據此,可以與化石燃料區別開來,後者源自死亡已久的生物質。從理論上講,生物燃料可以產自任何(生物學的)碳源。最常見的植物都是具有能夠俘獲太陽能的光合作用的植物。許多不同的植物和源自植物的物質都可被用於生物燃料的製造。生物燃料的應用已經遍布全球,在歐洲、亞洲和美洲的生物燃料工業正在蓬勃發展,最常見的用途是車用液體燃料。所以,可再生的生物燃料的使用可以減少人們對石油的依賴性並提高能源的安全性。生物燃料的生產與使用的各種當代的要素有緩解石油價格的壓力、食品與燃料之爭、碳排放的水平、可持續性生物燃料生產、森林的濫伐與土壤流失的影響、人權方面的內容、減少貧困的潛力、生物燃料價格、能源的平衡與效率以及集中於分散生產的模式等。
最大的技術挑戰之一,就是研發一些用特殊手段將生物質能轉化為可供車用的液態燃料的方式。為達此目的,有兩種最常用的戰略:(1)增加糖類作物(甘蔗、甜菜、甜高粱等)或澱粉(玉米、穀物等)的產量,然後將其做發酵處理,生成乙醇(酒精);(2)增加那些能夠(自然地)生產油脂的植物,如油棕櫚樹、大豆或藻類的產量。當這些油料被加熱時,它們的黏度就會下降,這樣就可以在柴油發動機內進行直接燃燒,也可以將這些油經過化學處理後產生燃料(如生物柴油);木材和木材的副產品可以被轉化為生物燃料,如木(煤)氣、甲醇或乙醇燃料。
從2006年的石油價格來看,一些生物燃料已經具備了競爭力(參見下表),如果石油價格長期保持高位的話,研究與開發工作將會使更多的生物燃料投入使用。隨著人們對農作物關注的增加,有三種植物都可供利用:草、樹木和藻類。草和樹生長在乾燥的土地上,但加工處理工藝比較復雜。目前的觀點是將樹的所有生物質(特別是由樹的細胞壁構成的纖維素)轉化為燃料。
與油類和油類產品價格相比的生物燃料價格
發展中國家的生物燃料
許多發展中國家都在建立自己的生物燃料工業。這些國家擁有極為豐富的生物質資源,而隨著人們對生物質和生物燃料需求量的增加,生物質正在變得更有價值。世界各地的生物燃料開發的進度不盡相同,印度和中國等國正在大力發展生物乙醇和生物柴油技術。印度正在擴大麻風樹屬的種植,這是一種可用於生產生物柴油的產油作物。印度的糖酒精研究的目標是在車用燃料中達到5%的份額。中國是一個重要的生物乙醇生產國。開發生物燃料的成本也是非常高昂的。在發展中國家,生物質能可以為生活在農村的人們提供加熱和做飯的燃料。牲畜的糞便和農作物的殘余物常常被用作燃料。國際能源署的數據表明,在發展中國家初始能源中約30%是由生物質提供的。全球20多億人用生物燃料作為他們的初始能源來源,用於戶內做飯的生物燃料的使用往往會產生健康問題和污染。據國際能源署2006年的《世界能源展望》,生物質燃料使用時不通風現象已經造成了全球130萬人的死亡。解決這一問題的方法是改進爐灶和使用替代燃料。然而,燃料具有對生物(尤其是人)的傷害性,而可替代燃料則又過於昂貴。從1980年或更早以來,人們就開始設計生產出極低成本、較高燃燒效率且低污染的生物質能灶具。
「生物燃料的生產一直頗受質疑,因為生物燃料的生產肯定會提高農作物的價格,進而從整體上影響食品安全!」
問題在於教育與分配的缺乏、腐敗橫生以及外國的投資過少等。在沒有幫助或資助(如小額信貸)的情況下,發展中國家的人們往往不能解決這些問題。一些組織,如中間技術開發集團(Intermediate Technology Development Group)的工作就是為那些無法得到生物燃料的人們建立使用這種燃料和替代燃料的設施。
目前生物燃料生產與使用的問題。人們認為生物燃料的優點在於:減少溫室氣體的排放,減少化石燃料的使用,增加國家能源的安全性,加快了農村的發展並為未來提供可持續性能源。生物燃料的局限性在於:生物燃料生產的原材料必須迅速得到補充,而且必須對生物燃料的生產過程進行創新性設計和不斷補充,這樣方能以最低的價格獲得最多的燃料,而且能夠獲得最大的環境效益。廣義而言,第一代生物燃料的生產加工僅能為我們提供極少的份額,造成這種現象的原因如下所述。第二代加工技術能夠為我們提供更多的生物燃料和更好的環境效益,但其加工技術的主要障礙是投資成本:預計建立第二代生物燃料生產加工的成本高達5億歐元。目前,關於生物燃料的有利與不利之間的爭議時常出現。政治學家和大型企業正在推動以農作物為原料的乙醇生物燃料的進程,並以此為石油的替代品。實際上,這一措施正在加速全球糧食價格的飛速上漲,使得亞馬孫河流域的叢林被毀滅,並使全球變暖加劇。
石油價格的調節
生物燃料使用的全球安全意義。如果石油需求量的增加未被抑制,則會使石油消費國更易受到傷害,嚴重時會使石油供給中斷並會導致油價劇烈波動。有報道表明,生物燃料可能終有一天會成為一種可替代能源,但是,生物燃料的使用對全球能源安全的意義,經濟的、環境的和公共健康的意義還有待於進一步評估。經濟學家不同意生物燃料生產規模的擴大會影響石油價格的說法。在交易市場上,如果不使用生物燃料的話,石油價格將會比目前的還要高15%,汽油價格也會高出25%。可替代能源的有序供給將有助於平抑汽油價格。生物燃料的使用規模受到了極大的限制,而且成本昂貴,這使得它的價格與石油價格之間存在著極大的差異,由於這種能源成本的基本要素之一就是食品的價格,所以生物燃料的生產也代表著對食品價格的調節作用。
「來源於植物的生物燃料轉化為能量,從本質上講是植物通過光合作用獲得的太陽能的再利用。太陽與可用能(與總量的換算)轉化效率比較表明,太陽能發電板的能量效率是穀物乙醇的100倍,是最好的生物燃料的10倍之多。」
上漲的食品價格——「食品與燃料」之爭。這是一個引起全球爭論的話題。對此,美國國家穀物生產者聯合會(National Corn Growers Association)就認為生物燃料並不是主要原因。一些人認為,問題在於政府對生物燃料支持的結果。另一些人則認為,原因在於石油價格的上漲。食品價格上漲的影響對於較貧窮的國家尤甚。在一些國家中,凍結生物燃料生產的呼聲高漲,那裡的人們認為生物燃料不應與食品生產展開競爭,更不能「人口奪食」!生物燃料生產所追求的目的應該在於不會影響到1億多目前因食品價格上漲而處於危險邊緣的人們的生活。
能源效率在物理學與工程學,包括機械與電子工程學中,能量效率是一個量綱一級量,其值介於0到1之間,當用100相乘時,以百分比表示。在一個處理過程中的能量效率以eta表示,其定義為:效率η=輸出/輸入,式中輸出為機械工作的量(以瓦計),或是處理工程中釋放出來的能量(以焦耳計),而輸入則指輸入供加工處理所使用的能量或工作量。根據能量轉換原理,在一個密閉體系內的能量效率永遠不會超過100%。與生物燃料的能源平衡。用原材料進行生物燃料的生產需要能量(如農作物的種植、最終產品的轉化與運輸以及化肥、滅草劑和殺真菌劑的生產與使用),而且也會對環境產生影響。生物燃料的能量平衡是由燃料生產過程中所輸入的能量與它在汽車發電機內燃燒時所釋放出能量的比較,這會因輔料和預計的使用方式而變化。從向日葵籽生產出來的生物柴油可以產生0.46倍於化石燃料的輸出效率;從大豆產生的生物柴油所產生的輸出效率則可達化石燃料的3.2倍。與從石油煉制的汽油和柴油的輸出效率相比,生物柴油分別是前者的0.805倍,後者的0.84倍。
對於生物燃料來說,生產每英熱單位的能量所需輸入的能量要大於化石燃料:石油可以用泵從地下抽到地面,而且其能量效率要高於生物燃料。然而,這並不是一個用石油取代生物燃料的必需條件,而使用生物燃料也並不會對環境產生影響。人們已經進行了關於生物燃料生產能源平衡計算方面的研究,結果顯示,因所採用的生物質和生產地點不同將會導致能源平衡的極大差異。生物燃料生產的生命周期評估表明,在某些條件下,生物燃料的生產僅僅限制了能量的儲存和溫室氣體的排放。化肥輸入和遠距離的生物質運輸能夠減少溫室效應氣體(GHG)的儲存。
人們可以設計生物燃料生產工廠的位置,以便盡量減少所需運輸的距離,建立農業管理制度,以限制用於生物生產所使用的化肥量。一項關於歐洲溫室氣體排放的研究發現,用農作物種子(如歐洲油菜籽)所製成的生物柴油的「油井—車輪」(WTW)CO2排放量可能幾乎與從化石燃料製取的柴油的CO2排放量相當。這表明一個簡單的結果:產自澱粉類農作物的生物乙醇所產生的CO2排放量幾乎與產自化石燃料的汽油的一樣多。這項研究表明,第二代生物燃料具有低CO2排放量的特點。其他獨立的LCA研究表明,同等當量的生物燃料與化石燃料相比,前者的CO2排放量是後者的50%左右。如果使用了第二代生物燃料生產技術或者減少化肥的生產,則可以減少80%~90%的CO2排放量。通過使用副產品提供熱量(如用甘蔗渣生產乙醇),溫室效應氣體的排放量還將下降。
具有相互依存作用的植物的搭配能夠提高效率。一個實例就是利用來自工業產生的廢熱進行乙醇的生產,然後進行冷卻和循環,用於替代能夠使大氣升溫的水熱蒸發。
水力能由流動的水體產生的能量。
水力能或水動力能是活動著的水產生的力或能量。它可以被聚集起來供人類使用。在進行大規模的商業用電之前,水力能被用於灌溉和多種機械,如水磨坊、紡織機械的運轉、鋸木廠等。在一個工廠(作坊)里,可以通過下落的水產生壓縮空氣,然後利用這種壓縮空氣去推動遠離水源的機械運行。
水力能的利用已有數百年的歷史。在印度,建起了水輪機和水磨坊;在羅馬帝國,人們用水力機械磨麵粉,還用於鋸開木材和石料。從蓄水池內釋放出的水波浪能被用於提取金屬礦——這就是所謂的「水清洗(礦石)法」。水清洗法在中世紀的英國得到了廣泛的應用,後來的人們用此法萃取鉛和鋅。再後來,該法演化為水力選礦法,廣泛應用於美國加利福尼亞州的黃金礦的淘選工藝中。在中國和其他遠東地區,人們用水力作為「水輪機」,將水從地下抽到地表,引入灌溉的水渠中去。19世紀30年代是世界上運河的修築高峰期,人們利用一種傾斜面的鐵路藉助水的能量在陡峭的上坡、下坡上拉動河裡的駁船行駛。直接的機械能傳遞需要利用當地的瀑布,如19世紀後半葉,在美國密西西比河的聖安東尼(Saint Anthony)瀑布,水的落差可達50英尺,人們在那裡建起了許多代客加工的磨坊,這些磨坊的建立促進了明尼阿波利斯(美國明尼蘇達州東南部城市)的發展。水力能的利用也呈現網狀發展,利用多條管線從源頭將具有壓力的液體(如泵)輸往終端用戶,以供機械的運行。如今,水力能的最大用途就是發電,它可以使人們用上來自水力的廉價能量。