① 光譜法的儀器有哪幾部分組成它們的作用是什麼
原子發射光譜分析所用儀器裝置通常包括光源、分光儀和檢測器三部分。光源作用是提供能量,使物質蒸發和激發;分光儀作用是把復合光分解為單色光,即起分光作用;檢測器是進行光譜信號檢測
又稱原子分光光度法,是基於待測元素的基態原子蒸汽對其特徵譜線的吸收,由特徵譜線的特徵性和譜線被減弱的程度對待測元素進行定性定量分析的一種儀器分析的方法
② 電致發光光譜原理及用什麼儀器檢測
熒光分光光度計能測電致發光?怎麼個測法?
③ 紫外可見光譜儀的應用和原理
應用:
1.定性分析
緊外-可見分光光度法對無機元素的定性分析應用較少,無機元素的定性分析可用原子發射光譜法或化學分析的方法。在有機化合物的定性鑒定和結構分析中,由於紫外-可見光譜較簡單,特徵性不強,因此該法的應用也有一定的局限性。但是它適用於不飽和有機化合物。尤其是共軛體系的鑒定,以此推斷未知物的骨架結構。此外,可配合紅外光譜、核磁共振波譜法和質譜法進行定性鑒定和結構分析,因此它仍不失為是一種有用的輔助方法。
一般有兩種定性分析方法,比較吸收光譜曲線和用經驗規則計算最大吸收波長λmax,然後與實測值進行比較。
2.結構分析
結構分析可用來確定化合物的構型和構象。如辨別順反異構體和互變異構體。
3.定量分析
紫外-可見分光光度定量分析的依據是Lambert-Beer定律,即在一定波長處被測定物質的吸光度與它的溶度呈線性關系。應此,通過測定溶液對一定波長入射光的吸光度可求出該物質在溶液中的濃度和含量。種常用的測定方法有:單組分定量法、多組分定量法、雙波長法、示差分光光度法和導數光譜法等。
4.配合物組成及其穩定常數的測定
測量配合物組成的常用方法有兩種:摩爾比法(又稱飽和法)和等摩爾連續變化法(又稱Job法)。
5.酸鹼離解常數的測定
光度法是測定分析化學中應用的指示劑或顯色劑離解常數的常用方法,該法特別適用於溶解度較小的弱酸或弱鹼。
紫外光譜儀原理:
利用紫外-可見吸收光譜來進行定量分析由來已久,可追溯到古代,公元60年古希臘已經知道利用五味子浸液來估計醋中鐵的含量,這一古老的方法由於最初是運用人眼來進行檢測,所以又稱比色法。到了16、17世紀,相關分析理論開始蓬勃發展,1852年,比爾(Beer)參考了布給爾(Bouguer)1729年和朗伯(Lambert)在1760年所發表的文章,提出了分光光度的基本定律,即液層厚度相等時,顏色的強度與呈色溶液的濃度成比例,從而奠定了分光光度法的理論基礎,這就是著名的朗伯-比爾定律。
④ 光譜分析儀器設備有那些
光譜儀的簡單分類
1可見分光光度計、紫外分光度計(UV)即利用不同物質在吸收紫外光能量的情況不同,從而可根據吸收光譜上的某些特徵波長處的吸光度的高低判別或測定該物質的含量此外,朗伯-比耳定律(Lambert-Beer)是光吸收的基本定律。
組成:輻射源(光源)、色散系統、檢測系統、吸收池、數據處理機、自動記錄器及顯示器等部件。
用途:主要用於研究物質的成分、結構和物質間相互作用,在食品和環境以及醫葯等行業廣泛用於定性定量檢測。
品牌:美譜達、上海元析、島津、珀金埃爾默、上分、賽默飛、棱光技術、舜宇恆平
由高壓汞燈或氙燈發出的紫外光和藍紫光經濾光片照射到樣品池中,激發樣品中的熒光物質發出熒光,熒光經過濾過和反射後,被光電倍增管所接受,然後以圖或數字的形式顯示出來。
組成:光源、激發單色器:發射單色器、 樣品室、 檢測器
用途:對經光源激發後產生熒光的物質或經化學處理後產生熒光的物質成份分析,可應用於生物化學、生物醫學、環境化工等部門。
品牌:賽默飛、上海棱光、天津港東、天津拓普、上海三科
型號:F96系列、F97系列;F-380型、F-320型、F-280型;WFY-28型;970CRT型
3原子吸收光譜儀(AAS)儀器從光源輻射出具有待測元素特徵譜線的光,通過試樣蒸氣時被蒸氣中待測元素基態原子所吸收,由輻射特徵譜線光被減弱的程度來測定試樣中待測元素的含量。
組成: 光源、原子化器、分光系統、檢測系統
用途:因原子吸收光譜儀的靈敏、准確、簡便等特點,現已廣泛用於冶金、地質、采礦、石油、輕工、農業、醫葯、衛生、食品及環境監測等方面的常量及微痕量元素分析。
品牌:珀金埃爾默、島津、東西分析
4原子熒光光譜儀(AFS)5紅外光譜儀(IR)
FTIR-680傅里葉變換型6近紅外光譜儀(NIR)7X射線熒光光譜儀(XRF)8光電直讀光譜儀(OES)9激光拉曼光譜儀(RAMAN)10等離子體發射光譜儀(ICP)11火焰光度計12光柵光譜儀13光纖光譜儀
2熒光分光光度計(FLUORO)
⑤ 現代的光譜儀器有哪些
現代的光譜儀器有哪些?
有紫外分光光度計 紅外分光光度計 熒光光譜儀 等

⑥ 常見的光譜儀器有哪些
紫外分光光度計 紅外分光光度計 熒光光譜儀 等
⑦ GC, GC/MS, LS, LC/MS, ICP-MS, IR, UV, RMN分別是什麼測試方法~主要測試什麼~~~球高人指點~~謝謝
GC :Gas Chromatography 氣相色譜法 用氣體作為移動相的色譜法。根據所用固定相的不同可分為兩類:固定相是固體的,稱為氣固色譜法;固定相是液體的則稱為氣液色譜法 氣相色譜系統由盛在管柱內的吸附劑或惰性固體上塗著液體的固定相和不斷通過管柱的氣體的流動相組成。將欲分離、分析的樣品從管柱一端加入後,由於固定相對樣品中各組分吸附或溶解能力不同,即各組分在固定相和流動相之間的分配系數有差別,當組分在兩相中反復多次進行分配並隨移動相向前移動時,各組分沿管柱運動的速度就不同,分配系數小的組分被固定相滯留的時間短,能較快地從色譜柱末端流出
GC-MS是氣相色譜和質譜聯用,GC分離,MS檢測;GPC是凝膠滲透色譜,LC分離,一般情況是UV檢測。前者是GC,後者是LC。
其次GC-MS是用MS檢測分子離子峰,從而推斷分子量;GPC是做大分子物質的,比如蛋白質、多肽,是根據分子量和空間幾何形狀來分離的(先大後小),得到的是一個順序(從大到小),或一個范圍(要加Mark)
質譜儀的聯用技術
質譜儀可以與其他儀器聯用,如氣相色譜-質譜聯用(GC/MS)、
高效液相色譜-質譜聯用(HPLC/MS);也可以質譜-質譜聯用(MS-MS)。
(1) GC/MS、HPLC/MS 儀:
基於色譜和質譜的儀器靈敏度相當,加之使分離效果好的色譜成
為質譜的進樣器,而速度快、分離好、應用廣的質譜儀作為色譜的鑒
定器,使它們成為目前最好的用於分析微量的有機混合物的儀器。
(2)液質聯用與氣質聯用的區別:
氣質聯用儀(GC-MS)是最早商品化的聯用儀器,適宜分析小分
子、易揮發、熱穩定、能氣化的化合物;用電子轟擊方式(EI)
得到的譜圖,可與標准譜庫對比。
液質聯用(LC-MS)主要可解決如下幾方面的問題:不揮發性化合
物分析測定;極性化合物的分析測定;熱不穩定化合物的分析
測定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析
測定;一般沒有商品化的譜庫可對比查詢,只能自己建庫或自
己解析譜圖。 所以目前液質聯用在環境領域主要應用於有標准
物質參照情況下的定性分析。
電感耦合等離子體質譜ICP-MS 所用電離源是感應耦合等離子體(ICP),它與原子發射光譜儀所用的ICP是一樣的,其主體是一個由三層石英套管組成的炬管,炬管上端繞有負載線圈,三層管從里到外分別通載氣,輔助氣和冷卻氣,負載線圈由高頻電源耦合供電,產生垂直於線圈平面的磁場。如果通過高頻裝置使氬氣電離,則氬離子和電子在電磁場作用下又會與其它氬原子碰撞產生更多的離子和電子,形成渦流。強大的電流產生高溫,瞬間使氬氣形成溫度可達10000k的等離子焰炬。樣品由載氣帶入等離子體焰炬會發生蒸發、分解、激發和電離,輔助氣用來維持等離子體,需要量大約為1L/min。冷卻氣以切線方向引入外管,產生螺旋形氣流,使負載線圈處外管的內壁得到冷卻,冷卻氣流量為10-15L/min
IR,紅外光譜
當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級,分子吸收紅外輻射後發生振動和轉動能級的躍遷,該處波長的光就被物質吸收。所以,紅外 紅外光譜
光譜法實質上是一種根據分子內部原子間的相對振動和分子轉動等信息來確定物質分子結構和鑒別化合物的分析方法
應用: 紅外光譜對樣品的適用性相當廣泛,固態、液態或氣態樣品都能應用,無機、有機、高分子化合物都可檢測。此外,紅外光譜還具有測試迅速,操作方便,重復性好,靈敏度高,試樣用量少,儀器結構簡單等特點,因此,它已成為現代結構化學和分析化學最常用和不可缺少的工具。紅外光譜在高聚物的構型、構象、力學性質的研究以及物理、天文、氣象、遙感、生物、醫學等領域也有廣泛的應用。
紅外吸收峰的位置與強度反映了分子結構上的特點,可以用來鑒別未知 液態水的紅外光譜物的結構組成或確定其化學基團;而吸收譜帶的吸收強度與化學基團的含量有關,可用於進行定量分析和純度鑒定。另外,在化學反應的機理研究上,紅外光譜也發揮了一定的作用。但其應用最廣的還是未知化合物的結構鑒定
UV,紫外光譜:配合物組成及其穩定常數的測定 定量分析結構分析定性分析應用范圍定義紫外光譜是分子中某些價電子吸收了一定波長的電磁波,由低能級躍近到高能級而產生的一種光譜
當分子中的電子吸收能量後會從基態躍遷到激發態,然後放出能量(輻射出特徵譜線)。回到基態 而輻射出特徵普線的波長在紫外區中就叫做紫外光譜
定性分析
在有機化合物的定性分析中,紫外-可見光譜適用於不飽和有機化合物,尤其是共軛體系的鑒定,以此推斷未知物的骨架結構。此外,可配合紅外光譜、核磁共振波譜法和質譜法進行定性鑒定和結構分析,因此它仍不失為是一種有用的輔助方法。一般有兩種定性分析方法,比較吸收光譜曲線和用經驗規則計算最大吸收波長λmax,然後與實測值進行比較。
結構分析
結構分析可用來確定化合物的構型和構象。如辨別順反異構體和互變異構體。
定量分析
紫外-可見分光光度定量分析的依據是Lambert-Beer定律,即在一定波長處被測定物質的吸光度與它的溶度呈線性關系。應此,通過測定溶液對一定波長入射光的吸光度可求出該物質在溶液中的濃度和含量。種常用的測定方法有:單組分定量法、多組分定量法、雙波長法、示差分光光度法和導數光譜法等。
配合物組成及其穩定常數的測定
測量配合物組成的常用方法有兩種:摩爾比法(又稱飽和法)和等摩爾連續變化法(又稱Job法)。
酸鹼離解常數的測定
光度法是測定分析化學中應用的指示劑或顯色劑離解常數的常用方法,該法特別適用於溶解度較小的弱酸或弱鹼。
NMR,核磁共振波譜
核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。 磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋能級(核磁能級),其能量間隔為ΔE。對於指定的核素再施加一頻率為ν的屬於射頻區的無線電短波,其輻射能量hν恰好與該核的磁能級間隔ΔE相等時,核體系將吸收輻射而產生能級躍遷,這就是核磁共振現象。
核磁譜在蛋白質研究上的應用
利用核磁譜研究蛋白質,已經成為結構生物學領域的一項重要技術手段。X射線單晶衍射和核磁都可獲得高解析度的蛋白質三維結構,不過核磁常局限於35kDa以下的小分子蛋白,盡管隨著技術的進步,稍大的蛋白質結構也可以被核磁解析出來。另外,獲得本質上非結構化(Intrinsically Unstructured)的蛋白質的高解析度信息,通常只有核磁能夠做到。 蛋白質分子量大,結構復雜,一維核磁譜常顯得重疊擁擠而無法進行解析,使用二維,三維甚至四維核磁譜,並採用13C和15N標記可以簡化解析過程。另外,NOESY是最重要的蛋白質結構解析方法之一,人們通過NOESY獲得蛋白質分子內官能團間距,之後通過電腦模擬得到分子的三維結構。
⑧ 光譜分析儀是一個什麼樣的儀器有什麼樣的作用
光譜分析儀是一種分析如半導體激光器和光纖激光器等光子器件的波長成分,以評價其波長特性的測量儀器。橫河最新發布的AQ6377光譜分析儀採用色散分光技術來測量1.9–5.5μm波長范圍對於此類儀器,支持5μm波段的測量是業界首創。
⑨ 光譜儀是測什麼的
光譜儀是將成分復雜的光分解為光譜線的科學儀器。
光譜儀又稱分光儀,廣泛為認知的為直讀光譜儀。
以光電倍增管等光探測器測量譜線不同波長位置強度的裝置。它由一個入射狹縫,一個色散系統,一個成像系統和一個或多個出射狹縫組成。
以色散元件將輻射源的電磁輻射分離出所需要的波長或波長區域,並在選定的波長上(或掃描某一波段)進行強度測定。分為單色儀和多色儀兩種。

(9)配合物的光譜測定用什麼儀器擴展閱讀:
光譜儀的工作原理:
根據現代光譜儀器的工作原理,光譜儀可以分為兩大類:經典光譜儀和新型光譜儀。
經典光譜儀器是建立在空間色散原理上的儀器;新型光譜儀器是建立在調制原理上的儀器。經典光譜儀器都是狹縫光譜儀器。
調制光譜儀是非空間分光的,它採用圓孔進光。
根據色散組件的分光原理,光譜儀器可分為:棱鏡光譜儀,衍射光柵光譜儀和干涉光譜儀。
光學多道分析儀OMA (Optical Multi-channel Analyzer)是近十幾年出現的採用光子探測器(CCD)和計算機控制的新型光譜分析儀器,它集信息採集,處理,存儲諸功能於一體。
由於OMA不再使用感光乳膠,避免和省去了暗室處理以及之後的一系列繁瑣處理,測量工作,使傳統的光譜技術發生了根本的改變,大大改善了工作條件,提高了工作效率;
使用OMA分析光譜,測量准確迅速,方便,且靈敏度高,響應時間快,光譜解析度高,測量結果可立即從顯示屏上讀出或由列印機,繪圖儀輸出。
它己被廣泛使用於幾乎所有的光譜測量,分析及研究工作中,特別適應於對微弱信號,瞬變信號的檢測。
⑩ 光譜分析儀器應該怎麼挑選呢
1,首先明確做什麼元素,單元素或多元素。
2,速度要求。
3,光譜儀的種類,發射,吸收,等離子,熒光,x光,激光,紅外,紫外,衍射,拉曼等多種。
4,光柵的分辯率,狹縫調整的波長,
5,儀器穩定性。
6,零點漂移
7,數據處理。
8,售後
9,價格,維修,環境要求,