導航:首頁 > 儀器儀表 > 什麼叫定向儀器

什麼叫定向儀器

發布時間:2022-05-29 05:30:51

⑴ 下面哪個定向儀器,是利用地球磁場作為基準測定航向

利用地磁場水平分量作定向基準測量飛機磁航向的儀16368網表。飛機磁航向是空中導航所需要的一個重要參量。在飛機作水平等速飛行時,可用磁羅盤指示飛機的磁航向。中國在公元前2000多年發明了指南針,用它來確定方位,這就是磁羅盤的雛型。

⑵ 儀器儀表的發展史

(一)早期主要的測量、度量器具1.稱重器和計時器人類最早的度量器具是稱重器和計時器,反映了人類早期的認識和生活需求。現已發現公元前2500年使用天平的證據,而在普通貿易中使用天平的最早跡象是在公元前1350年。天平桿為木製,砝碼則是用青銅做成的各類鳥獸形狀。原始的計時器主要有影鍾、水鍾和水運天文台3種。公元前1450年,古埃及就有綠石板影鍾。至公元14世紀,用以表示時間的唯一可靠的方法是日晷或影鍾。
公元前600年至公元前525年,也有用棕櫚葉和鉛垂線記錄夜間時間和特定天體的儀器。當天體通過子午線時,從棕櫚葉的開口中觀察到天體穿過鉛垂線的過程。在中國江蘇儀征,出土了東漢中期的小型折疊銅質民間測影儀器。
公元1400年前,埃及記錄較短時間的儀器叫水鍾,水鍾內有刻度,下有小孔,整個水鍾用雪花石膏做成瓶狀。在古希臘,古羅馬有當時世界上唯一的機械計時儀——水儀。通過水的傳遞計量時間,記錄的是不斷流動的概念而不是連續相等的時間,非常不精確。中國北宋時期的蘇頌和韓公謙於1088年製作了天文計時器——天文儀象台。它採用民間的水車、筒車、桔槔、凸輪和天平秤桿等,是集觀測、演示和報時為一身的天文鍾,被稱為水運天文台。2.指南針、渾天儀、地動儀
在中國,公元前300~公元前100年,有人利用天然磁石的性質,發明了磁羅盤,即定向儀器;指南針到宋代發展成熟。中國西夏時候就有觀測和記錄天文的儀器,叫渾天儀元代的郭守儀(1231年~1361年)對渾天儀進行了改造,製成簡儀,其製造水平在當時遙遙領先,其原理在現代工程測量、地形觀測和航海儀器中廣泛使用。東漢時期,張衡發明了世界上第一台自動天文儀——渾天儀和世界上第一台觀測氣象的候風儀,開創了人類使用儀器測量地震的歷史。
(二)中世紀的儀器
至1500年,世界上已有了精密儀器。這時的天文儀器已經比較精確,主要有赤道經緯儀、子午渾儀、視差儀,以及希臘的角度儀、水準儀及星盤等;計時儀器有攜帶型日昝和水鍾;計算和證明儀器有天球儀、日歷、小時計算器等。這些儀器的製造工藝和使用材料等在當時都有相當高的水平和測量精度。780年,穆斯林造幣廠的工人把天平放在密閉容器中,以兩次的稱量結果相比較,天平經過無數次擺動達到平衡後讀取數據,能稱出1 /3毫克。這是分析天平的始祖。
(三)文藝復興時期的科學儀器
15世紀後期,隨著自然科學的發展,早期的科學儀器也以不同的背景和形式逐漸形成,主要有光學儀器、溫度計、擺鍾、數學儀器等。 光學儀器 1590年左右,荷蘭人扎哈里那斯·詹森製造了第一個非常精確的復合顯微鏡,這就是今天人們常說的顯微鏡。
另一荷蘭人漢斯·利佩於1608年發明了單筒望遠鏡,後來又發明了雙筒望遠鏡。伽利略把望遠鏡和顯微鏡第一次用於科學實驗,並於1609年後製造了第一台長29米、直徑42毫米的鉛管儀器,所以後來人們常把伽利略作為望遠鏡和顯微鏡的實際發明者。1611年,刻卜勒出版了《屈光學》,解釋瞭望遠鏡和顯微鏡的光學原理,並提出了「天文望遠鏡」的設想。再後來,沙伊納製造第一架天文望遠鏡,牛頓於1668年製成了第一架天文反射望遠鏡。
18世紀後半葉,所有的光學儀器都是在開普勒式透鏡組合的基礎上改造。 溫度計 伽利略在他早期的實驗中,用玻璃管製成了空氣溫度計。後來,托斯卡斯的大公斐迪南二世改良製成液體溫度計。
大約1714年,華倫海特創造了以其名字命名的溫度計,被稱為華氏溫度計。17世紀末,氣壓計和溫度計與刻度標尺、指針和其它配件配合安裝在一起,成為儀器大家庭中的重要組成部分,也是儀器製造貿易中的重要部分。 數學儀器 英格蘭的吉米尼( Thomas Gemini)率先進行數學儀器(1524年~1562年)的製造,之後不久英國雕刻匠和制模匠科爾(Humfray Cole)開始從事儀器的專門製作,從此開始出現了大批的儀器供應商,產品范圍也由星盤、日昝和象限儀擴展到觀測和測量用儀器,以及一系列演示「自然科學實驗」的儀器。 其它儀器 到1650年後,新型的精密儀器就不斷地被製造出來。如測量用的圓周儀、量角器,航海用的高度觀測儀和反向式八分儀,繪圖和校儀用的分度尺和繪圖儀,還有經緯儀、氣泡水平儀、新型望遠准鏡、測探儀、海水取暖器、玻意爾製造的比重計、擺鍾,等等。這些精密儀器為17世紀後自然科學的發展提供了重要保障,是科學技術發展的標志,也為科學儀器的進一步發展打下了良好的基礎。 到了18世紀初,由於科學研究和科學課堂的需求,製造者們開始設計和生產標準的儀器和配件;儀表工匠與其它專業製造者聯合起來,製造了光學、氣動、磁力和電力等方面的儀器,從此將儀器與儀表正式結合起來,使儀器儀表融為一體,成為一個專門的學科。 以蒸汽機的發明為標志,一種將蒸汽的能量轉換為機械功的往復式動力機械,引起了18世紀的工業革命,人類進入了工業化時代。 1800年,英國的特里維西克設計了可安裝在較大車體上的高壓蒸汽機,這是機車的雛型。英國的史蒂芬孫將機車不斷改進,在1829年創造了「火箭」號蒸汽機車,該機車拖帶一節載有30位乘客的車廂,時速達46公里/時,引起了各國的重視,開創了鐵路時代。 自從奧斯特在1820發現了電流的磁效應,奧斯特做了六十多個實驗,考察電流對磁針作用的強弱、電流對磁針的影響;並在1820年7月21日發表了題為《關於磁針上電流碰撞的實驗》的論文,向科學界宣布了電流的磁效應,揭開了電磁學的序幕,標志著電磁學時代的到來。 1831年8月26日,法拉第用伏打電池在給一組線圈通電(或斷電)的瞬間,在另一組線圈獲得的感生電流,稱之為「伏打電感應」。同年10月17日,法拉第完成了在磁體與閉合線圈相對運動時在閉合線圈中激發電流的實驗,稱之為「磁電感應」,並提出磁場的概念,實現了「磁生電」,創造電磁力學,設計了圓盤發電機,宣告了電氣時代的到來,以電磁為核心的第一代電磁式儀器開始逐步走向成熟。
電磁效應的發現與應用,為原始的機械式儀器儀表向電磁式儀器儀表發展提供了理論和技術保障,使第一代指針式儀器儀表正式形成與發展。3.麥克斯韋繼法拉第之後集電磁學大成,在1865年他預言了電磁波的存在,說並指出電磁波只可能是橫波,計算出電磁波的傳播速度等於光速。麥克斯韋於1873年建立電磁理論,在出版的科學名著《電磁理論》中系統、全面、完美地闡述了電磁場理論,成為經典物理學的重要支柱之一。4.1886 年至1888 年,德國物理學家赫茲通過試驗驗證了麥克斯韋爾的理論,證明了無線電輻射具有波的所有特性,進而發現了無線電波,設計出了雷達,開啟了無線電波通信技術,使遠距離無線測量儀器的出現成為可能,讓電話、電視等電器有了飛躍發展。 隨著X射線、γ射線先後被德國科學家倫琴、法國科學家P.V.維拉德發現,因其超強穿透力這一特性,使儀器的功能與概念被進一步推向更深的領域,如廣東正業的X光檢查機、檢孔機ASIDA-JK2400、線寬檢測儀等儀器,就採用了X射線、γ射線的超強穿透力研發的先進檢測儀器設備。 6.20世紀初,電子技術的發展使各類電子儀器快速產生,如今後普及全球的電子計算機,便是從這一時代開始崛起的。同時,隨著工業化程度的不斷提高,各行各業的電子儀器如雨後春筍般地出現,如計量、分析、生物、天文、汽車、電力、石油、化工儀器等。
電子儀器的產生使儀器儀表從模擬式儀器過渡到數字式儀器。

⑶ 定向工具及儀器的應用現狀

1.液動螺桿鑽具的應用

液動螺桿是目前施工定向井中造斜段、穩斜段、水平鑽進段的常用鑽具。液動螺桿以鑽井液作為動力介質,底部輸出動力,推動鑽頭工作,這種方法的優點是鑽具可以不轉動,減少了井下鑽具磨損及鑽桿折斷事故,可精確控制井眼軌跡。

螺桿鑽具分為直螺桿、彎螺桿和可調螺桿3種,水平定向鑽進一般採用單彎螺桿鑽具鑽進,其角度有1°,1.25°,1.5°,1.75°等多種,可依據具體情況選用,並配合無磁鑽鋌和測斜儀器組成定向鑽具組合。通過液動鑽進方式實現增斜、降斜,通過復合鑽進方式穩斜,即達到連續鑽井目的,又可隨時調整井眼軌跡。

2.定向測斜儀的應用

定向鑽進主要控制的井身軌跡參數包括:井斜角、方位角、工具面和斜深。在鑽進過程中必須及時測得井眼軌跡參數。應用單點照相測斜儀,有線隨鑽測斜儀和無線隨鑽測斜儀可確定上述參數,水平對接井連通時,還需強磁連通工具。

(1)單點照相測斜儀

這類儀器在國內應用已很普遍,這類儀器在螺桿鑽具上部工作面方面設有定位座,單點照相測斜儀下到定位座位置時,在設定的時間內膠片曝光,膠片上留有該點的井斜角、方位角。適當轉動鑽具可實現工作面的調整,按設定井身軌跡鑽進。單點照相測斜儀操作簡單、性能穩定,但每次測量時需停鑽靜止等待,測出的軌跡不連續,適用於傾斜角不太大的定向井、叢式井施工。

(2)有線隨鑽測斜儀

此測斜儀通過電纜將信號從孔底輸到地表,此種方法傳輸信號衰減小,數據可靠,但需把測量探管的電纜從鑽桿中送入井底,在回次終了需提升儀器,需要專門的水龍頭和電纜絞車。有線隨鑽測斜儀實現了井身軌跡在鑽進時的連續測量,進而隨時控制鑽進軌跡。有線隨鑽儀器使用缺點在於每次加尺時需將探管提升和下放,影響作業時間,在水平段鑽進時,有時依靠鑽井液的沖力使探管下到井底。有線隨鑽適合於井斜較大、井身軌跡要求精度高的井,在地層穩定情況下,在水平段也有應用,但由於煤層的不穩定性,不適合在煤層中水平鑽進。

(3)泥漿脈沖無線隨鑽測斜儀———PMWD

PMWD系統(圖2-1)可將測量的井斜、方位、工具面、井深等數據通過泥漿脈沖介質傳遞到地面,還可在PMWD系統中按放伽馬探管進行隨鑽判層,這點在煤層氣水平鑽井中非常重要。

圖2-2 EM-MWD結構圖

兩井連通過程中採用的技術為近鑽頭電磁測距法———RMRS。RMRS技術的硬體構成報包括強磁短節和強磁探管。強磁短節的長度約為40cm,由橫行排列的多個強磁體組成。它主要用來提供一個恆定的待測磁場,電磁信號的有效傳播距離為40m。探管由3部分組成:扶正器、感測器組件、加重桿,其長度約為3m。當旋轉的強磁短節通過另一井洞穴附近區域時,洞穴中的探管可採集強磁短節產生的磁場強度信號,最後通過採集軟體可准確計算兩井間的距離及當前鑽頭的位置。RMRS必須與 MWD和螺桿馬達等配合使用,鑽具組合通常為:鑽頭+強磁短節+馬達+無磁鑽鋌+MWD+鑽桿。目前強磁連通儀器國內無生產,依靠國外引進或國外提供租賃服務。

⑷ 陀螺儀是干什麼用的

若使用的是vivo手機,陀螺儀又叫角速度感測器,可以對手機轉動、偏轉的動作做很好的測量,從而對手機做相應的操作。應用到陀螺儀的有游戲、相機防抖、導航等。配置陀螺儀的機型,是默認開啟這個功能的。

⑸ 全站儀坐標測量中定向的目的是什麼

定向就是確定測量坐標系統。

全站儀是一種集光、機、電為一體的高技術測量儀器,是集水平角、垂直角、距離(斜距、平距)、高差測量功能於一體的測繪儀器系統。

全站儀的主要功能:

1、測角功能:測量水平角、豎直角或天頂距;

2、測距功能:測量平距、斜距或高差;

3、跟蹤測量:即跟蹤測距和跟蹤測角;

4、連續測量:角度或距離分別連續測量或同時連續測量。

(5)什麼叫定向儀器擴展閱讀:

全站儀同軸化的基本原理是:在望遠物鏡與調焦透鏡間設置分光棱鏡系統,通過該系統實現望遠鏡的多功能,即既可瞄準目標,使之成像於十字絲分劃板,進行角度測量,同時其測距部分的外光路系統又能使測距部分的光敏二極體發射的調制紅外光在經物鏡射向反光棱鏡後。

經同一路徑反射回來,再經分光棱鏡作用使回光被光電二極體接收,為測距需要在儀器內部另設一內光路系統,通過分光棱鏡系統中的光導纖維將由光敏二極體發射的調制紅外光傳也送給光電二極體接收 ,進行而由內、外光路調制光的相位差間接計算光的傳播時間,計算實測距離。

⑹ 誰能告訴我:陀螺儀的定向原理

陀螺儀基本上就是運用物體高速旋轉時,角動量很大,旋轉軸會一直穩定指向一個方向的性質,所製造出來的定向儀器。不過它必需轉得夠快,或者慣量夠大(也可以說是角動量要夠大)。不然,只要一個很小的力矩,就會嚴重影響到它的穩定性。就像前面第四頁的活動中,我們可以輕易的改變旋轉中車輪轉軸的方向一樣。所以設置在飛機、飛彈中的陀螺儀是靠內部所提供的動力,使其保持高速轉動。
陀螺儀通常裝置在除了要定出東西南北方向,還要能判斷上方跟下方的交通工具或載具上,像是飛機、飛船、飛彈、人造衛星、潛艇......等等。它是航空、航海及太空導航系統中判斷方位的主要依據。這是因為在高速旋轉下,陀螺儀的轉軸穩定的指向固定方向,將此方向與飛行器的軸心比對後,就可以精確得到飛機的正確方向。羅盤不能取代陀螺儀,因為羅盤只能確定平面的方向;另方面陀螺儀也比傳統羅盤方便可靠,因為傳統羅盤是利用地球磁場定向,所以會受到礦物分布干擾,例如受到飛機的機身或船身含鐵物質的影響;另方面在兩極也會因為地理北極跟地磁北極的不同而出現很大偏差,所以目前航空、航海都已經以陀螺儀以及衛星導航系統作為定向的主要儀器。

⑺ 人造飛船和太空梭在太空中還需要陀螺儀這種定向穩定儀器嗎 800字左右科普

簡介
現代光纖陀螺儀包括干涉式陀螺儀和諧振式陀螺儀兩種,它們都是根據塞格尼克的理論發展起來的。塞格尼克理論的要點是這樣的:當光束在一個環形的通道中前進時,如果環形通道本身具有一個轉動速度,那麼光線沿著通道轉動的方向前進所需要的時間要比沿著這個通道轉動相反的方向前進所需要的時間要多。也就是說當光學環路轉動時,在不同的前進方向上,光學環路的光程相對於環路在靜止時的光程都會產生變化。利用這種光程的變化,如果使不同方向上前進的光之間產生干涉來測量環路的轉動速度,這樣就可以製造出干涉式光纖陀螺儀,如果利用這種環路光程的變化來實現在環路中不斷循環的光之間的干涉,也就是通過調整光纖環路的光的諧振頻率進而測量環路的轉動速度,就可以製造出諧振式的光纖陀螺儀。從這個簡單的介紹可以看出,干涉式陀螺儀在實現干涉時的光程差小,所以它所要求的光源可以有較大的頻譜寬度,而諧振式的陀螺儀在實現干涉時,它的光程差較大,所以它所要求的光源必須有很好的單色性。 自從上個世紀七十年代以來,現代陀螺儀的發展已經進入了一個全新的階段。1976年等提出了現代光纖陀螺儀的基本設想,到八十年代以後,現代光纖陀螺儀就得到了非常迅速的發展,與此同時激光諧振陀螺儀也有了很大的發展。由於光纖陀螺儀具有結構緊湊,靈敏度高,工作可*等等優點,所以目前光纖陀螺儀在很多的領域已經完全取代了機械式的傳統的陀螺儀,成為現代導航儀器中的關鍵部件。和光纖陀螺儀同時發展的除了環式激光陀螺儀外,還有現代集成式的振動陀螺儀,集成式的振動陀螺儀具有更高的集成度,體積更小,也是現代陀螺儀的一個重要的發展方向。
編輯本段分類
現代光纖陀螺儀包括干涉式陀螺儀和諧振式陀螺儀兩種,它們都是根據塞格尼克的理論發展起來的。塞格尼克理論的要點是這樣的:當光束在一個環形的通道中前進時,如果環形通道本身具有一個轉動速度,那麼光線沿著通道轉動的方向前進所需要的時間要比沿著這個通道轉動相反的方向前進所需要的時間要多。也就是說當光學環路轉動時,在不同的前進方向上,光學環路的光程相對於環路在靜止時的光程都會產生變化。利用這種光程的變化,如果使不同方向上前進的光之間產生干涉來測量環路的轉動速度,這樣就可以製造出干涉式光纖陀螺儀,如果利用這種環路光程的變化來實現在環路中不斷循環的光之間的干涉,也就是通過調整光纖環路的光的諧振頻率進而測量環路的轉動速度,就可以製造出諧振式的光纖陀螺儀。從這個簡單的介紹可以看出,干涉式陀螺儀在實現干涉時的光程差小,所以它所要求的光源可以有較大的頻譜寬度,而諧振式的陀螺儀在實現干涉時,它的光程差較大,所以它所要求的光源必須有很好的單色性。
編輯本段原理
陀螺儀基本上就是運用物體高速旋轉時,角動量很大,旋轉軸會一直穩定指向一個方向的性質,所製造出來的定向儀器。不過它必需轉得夠快,或者慣量夠大(也可以說是角動量要夠大)。不然,只要一個很小的力矩,就會嚴重影響到它的穩定性。就像前面第四頁的活動中,我們可以輕易的改變旋轉中車輪轉軸的方向一樣。所以設置在飛機、飛彈中的陀螺儀是*內部所提供的動力,使其保持高速轉動。
編輯本段用途
陀螺儀通常裝置在除了要定出東西南北方向,還要能判斷上方跟下方的交通工具或載具上,像是飛機、飛船、飛彈、人造衛星、潛艇......等等。它是航空、航海及太空導航系統中判斷方位的主要依據。這是因為在高速旋轉下,陀螺儀的轉軸穩定的指向固定方向,將此方向與飛行器的軸心比對後,就可以精確得到飛機的正確方向。羅盤不能取代陀螺儀,因為羅盤只能確定平面的方向;另方面陀螺儀也比傳統羅盤方便可*,因為傳統羅盤是利用地球磁場定向,所以會受到礦物分布干擾,例如受到飛機的機身或船身含鐵物質的影響;另方面在兩極也會因為地理北極跟地磁北極的不同而出現很大偏差,所以目前航空、航海都已經以陀螺儀以及衛星導航系統作為定向的主要儀器。
編輯本段激光陀螺
原理
激光陀螺儀的原理是利用光程差來測量旋轉角速度( Sagnac 效應)。在閉合光路中,由同 一光源發出的沿順時針方向和反時針方向傳輸的兩束光和光干涉,利用檢測相位差或干涉條 紋的變化,就可以測出閉合光路旋轉角速度。激光陀螺儀的基本元件是環形激光器,環形激 光器由三角形或正方形的石英製成的閉合光路組成,內有一個或幾個裝有混合氣體(氦氖氣 體)的管子,兩個不透明的反射鏡和一個半透明鏡。用高頻電源或直流電源激發混合氣體, 產生單色激光。為維持迴路諧振,迴路的周長應為光波波長的整數倍。用半透明鏡將激光導 出迴路,經反射鏡使兩束相反傳輸的激光干涉,通過光電探測器和電路輸入與輸出角度成比 例的數字信號。 通過右邊的
示意圖更加容易理解。 激光陀螺儀需要突破的主要技原理術為漂移、雜訊和閉鎖閾值。
激光陀螺儀的飄移
激光陀螺儀的飄移表現為零點偏置的不穩定度,主要誤差來源有:諧振光路的折射系數 具有各向異性,氦氖等離子在激光管中的流動、介質擴散的各向異性等。
激光陀螺儀的雜訊
激光陀螺儀的雜訊表現在角速度測量上。雜訊主要來自兩個方面:一是激光介質的自發 發射,這是激光陀螺儀雜訊的量子極限。二是機械抖動為目前多數激光陀螺儀採用的偏頻技 術,在抖動運動變換方向時,抖動角速率較低,在短時間內,低於閉鎖閾值,將造成輸入信 號的漏失,並導致輸出信號相位角的隨機變化。
激光陀螺儀的閉鎖閾值
閉鎖閾值將影響到激光陀螺儀標度因數的線性度和穩定度。閉鎖閾值取決於諧振光路中 的損耗,主要是反射鏡的損耗 激光陀螺是在光學干涉原理基礎上發展起來的新型導航儀器,成為新一代捷聯式慣性導航系 統理想的主要部件,用於對所設想的物體精確定位。石英撓性擺式加速度計是由熔融石英制 成的敏感元件,撓性擺式結構裝有一個反饋放大器和一個溫度感測器,用於測量沿載體一個 軸的線加速度。 光纖陀螺三軸慣測組合由三個光纖陀螺儀和三個石英撓性擺式加速度計組成,可以實時 地輸出載體的角速度、線加速度、線速度等數據,具有對准、導航和航向姿態參考基準等多 種工作方式,用於移動載體的組合導航和定位,同時為隨動天線的機械操控裝置提供准確的 數據。主要性能:加表精度 1×10-4g ;光纖陀螺精度(漂移穩定性)≤1°/h ;標度固形線性度 ≤5×10-4 。 激光於1960 年在世界上首次出現。1962 年,美、英、法、前蘇聯幾乎同時開始醞釀研製用激光來作為 方位測向器,稱之為激光陀螺儀。 激光陀螺儀的原理是利用光程差來測量旋轉角速度(Sagnac 效應)。在閉合光路中,由同一光源發出的 沿順時針方向和反時針方向傳輸的兩束光和光干涉,利用檢測相位差或干涉條紋的變化,就可以測出閉合 光路旋轉角速度。激光陀螺儀的基本元件是環形激光器,環形激光器由三角形或正方形的石英製成的閉合 光路組成,內有一個或幾個裝有混合氣體(氦氖氣體)的管子,兩個不透明的反射鏡和一個半透明鏡。用 高頻電源或直流電源激發混合氣體,產生單色激光。為維持迴路諧振,迴路的周長應為光波波長的整數倍。 用半透明鏡將激光導出迴路,經反射鏡使兩束相反傳輸的激光干涉,通過光電探測器和電路輸入與輸出角 度成比例的數字信號。 [相關技術]控制技術;測量技術;半導體技術;微電子技術;計算機技術
編輯本段技術難點
激光陀螺儀需要突破的主要技術為漂移、雜訊和閉鎖閾值。
激光陀螺儀的飄移
激光陀螺儀的飄移表現為零點偏置的不穩定度,主要誤差來源有:諧振光路的折射系數具有各向異性,氦氖等離子在激光管中的流動、介質擴散的各向異性等。
激光陀螺儀的雜訊
激光陀螺儀的雜訊表現在角速度測量上。雜訊主要來自兩個方面:一是激光介質的自發發射,這是激光 陀螺儀雜訊的量子極限。二是機械抖動為目前多數激光陀螺儀採用的偏頻技術,在抖動運動變換方向時,抖動角速率較低,在短時間內,低於閉鎖閾值,將造成輸入信號的漏失,並導致輸出信號相位角的隨機變化。
激光陀螺儀的閉鎖閾值
閉鎖閾值將影響到激光陀螺儀標度因數的線性度和穩定度。閉鎖閾值取決於諧振光路中的損耗,主要是 反射鏡的損耗。
編輯本段國外概況
美國斯佩里公司於1963 年首先次做出了激光陀螺儀的實驗裝置。1966 年美國霍尼威爾公司開始使用 石英作腔體,並研究出交變機械抖動偏頻法,使這項技術有了使用的可能。1972 年,霍尼威爾公司研製出 GG-1300 型激光陀螺儀。1974 年美國國防部下令海軍和空軍聯合制定研究計劃,1975 年在戰術飛機上試 飛成功,1976 年在戰術導彈上試驗成功。 進入80 年代以來,美國空軍表示要堅定地把激光陀螺應用到空軍系統中去,並與麥克唐納·道格拉斯公 司簽定了兩項合同,以實施一項名為"綜合慣性基準組件"的研製計劃,其內容是研製一種採用激光陀螺的 雙盒組件式感測器系統。海軍也計劃在80 年代內將激光陀螺慣導系統用到艦載飛機中,這種系統稱為 CA1NS1 。陸軍准備將激光陀螺用於陸軍飛機的定位/導航、監視/偵察、火控以及飛行控制系統。 1985 年美國提出了戰略防禦計劃(SDI)後,激光技術在軍事系統和空間武器上的應用倍受重視。根據 SDI 預算,1985 財年在這方面投資10.4 億美元,大部分用於開展激光實驗,其中包括激光陀螺的研製。 90 年代,根據先進巡航導彈和戰術飛機導航的要求,美國進行了激光陀螺捷聯性能的研究(SPS)。麥 克唐納·道格拉斯公司被選為SPS 的主承包商,其次還有霍尼威爾、利頓、洛克威爾、辛格·基爾福特等公 司參加。 國外激光陀螺儀的研製單位很多,其中,美國和法國研製的水平較高,此外還有俄羅斯、德國等國家。 1.美國 美國研製激光陀螺儀的廠家有霍尼威爾、利頓、斯佩里等公司。 (1)霍尼威爾公司 理想的戰術慣性器件必須同時具有低成本、體積小、重量輕、堅固等幾個特點,霍尼威爾公司的GG1308 和GG1320 就是為此研製的最新產品。 該公司採用的關鍵技術如下: 1)在提高精度方面 輸出信號的細分技術,在小型化的RLG 中,保持所需的解析度。提高抖動偏頻的頻率,以提高RLG 的 采樣頻率。小型化RLG 的慣性小,諧振頻率高,在抖動偏頻裝置的設計上,可以提高頻率。由此,可以提 高RLG 的采樣頻率和捷聯慣性導航系統SINS 的計算頻率,有利於保證捷聯慣性導航系統SINS 的精度。 2)在降低成本方面 利用玻璃熔結工藝來實現反射鏡和電極等的密封。採用BK-7 光學玻璃取代Zeror 等零膨脹系數材料, 為此需要建立光波在諧振器中諧振的條件,並對溫度誤差採取補償。採用GG1308 組成的一種慣導系統型 號為HGl500 一IMU。採用GG1320 組成的慣導系統型號為H-764C 。 (2)基爾福特公司 在單軸RLG 的基礎上,為滿足小型衛星和航天器的需要,該公司研製了微型三軸激光陀螺儀MRLG。 該公司採用力反饋式加速度計和MRLG 組成慣性測量組合IMU。這種慣性導航系統也可用於戰術武器,包 括魚雷。 2.法國 法國的激光陀螺儀和系統技術具有很強的實力。法國SWXTANT 公司和SAGEM 公司均從70 年代開始 研究激光陀螺技術,到目前已經形成不同尺寸和精度的激光陀螺儀。 (1)SEXTANT 公司 SEXTANT 公司1972 年開始研究激光陀螺儀,1979 年SEXTANT 型激光陀螺儀首先用於"美洲虎"直升 機飛行。1981 年33cm 型激光陀螺儀在ANS 超音速導彈項目中標,1987 年首次把激光陀螺儀用在"阿里 安"4 火箭的飛行,1990 年SEXTANT 公司在法國未來戰略導彈項目上中標。 (2)SAGEM 公司 SAGEM 公司從1977 年開始研究環行激光陀螺儀。1987 年組裝了第一個樣機GLS32 型。在工藝成熟 後,主要生產用於航空及潛水艇的捷聯慣導系統。1987 年組裝了GLC16 型樣機,主要用於直升機和小型 運載火箭的捷聯慣導系統。
編輯本段影響
作為飛行器慣導系統核心的慣性器件,在國防科學技術和國民經濟的許多領域中佔有十分重要的地位。 激光陀螺儀花費了很長時間和大量投資解決了閉鎖問題,直到80 年代初才研製出飛機導航級儀表,此後就 迅速應用於飛機和直升機,取代了動力調諧陀螺和積分機械陀螺儀。目前已廣泛用於導航、雷達和制導等 領域。

⑻ 關於石油鑽井定向儀器

這位朋友是想了解市場情況啊,其實想這種屬於石油勘探的定向儀器,我建議你還是要把精力投入在那些鑽井工程服務這一塊,不知道你打算在什麼地方發展自己的市場,長慶,勝利還是大港,亦或四川,大慶。其實無論你在哪裡,這裡面都有一定的難度,因為像1樓所說的海藍儀器,確實有一定的市場,並且這裡面也有不少的潛規則,建議你多跑一跑這些油田的總部和後勤服務部門,多了解情況,知己知彼,總能發現隱藏的商機,祝你好運。

閱讀全文

與什麼叫定向儀器相關的資料

熱點內容
steam令牌換設備了怎麼辦 瀏覽:246
新生測聽力儀器怎麼看結果 瀏覽:224
化學試驗排水集氣法的實驗裝置 瀏覽:156
家用水泵軸承位置漏水怎麼回事 瀏覽:131
羊水鏡設備多少錢一台 瀏覽:125
機械制圖里型鋼如何表示 瀏覽:19
測定空氣中氧氣含量實驗裝置如圖所示 瀏覽:718
超聲波換能器等級怎麼分 瀏覽:800
3萬軸承是什麼意思 瀏覽:110
鑫旺五金製品廠 瀏覽:861
蘇州四通閥製冷配件一般加多少 瀏覽:153
江北全套健身器材哪裡有 瀏覽:106
水表閥門不開怎麼辦 瀏覽:109
花冠儀表盤怎麼顯示時速 瀏覽:106
洗砂機多少錢一台18沃力機械 瀏覽:489
超聲波碎石用什麼材料 瀏覽:607
組裝實驗室製取二氧化碳的簡易裝置的方法 瀏覽:165
怎麼知道天然氣充不了閥門關閉 瀏覽:902
公司賣舊設備掛什麼科目 瀏覽:544
尚葉五金機電 瀏覽:59