『壹』 儀器分析的發展趨勢
現代科學技術的發展、生產的需要和人民生活水平的提高對分析化學提出了新的要求,為了適應科學發展,儀器分析隨之也將出現以下發展趨勢:
1.方法創新 進一步提高儀器分析方法的靈敏度、選擇性和准確的。各種選擇性檢測技術和多組分同時分析技術等是當前儀器分析研究的重要課題。
2.分析儀器智能化 微機在一起分析法中不僅只運算分析結果,而且可以儲存分析方法和標准數據,控制儀器的全部操作,實現分析操作自動化和智能化。
3.新型動態分析檢測和非破壞性檢測 離線的分析檢測不能瞬時、直接、准確地反映生產實際和生命環境的情景實況,布恩那個及時控制生產、生態和生物過程。運用先進的技術和分析原理,研究並建立有效而使用的實時、在線和高靈敏度、高選擇性的新型動態分析檢測和非破壞性檢測,將是21世紀儀器分析發展的主流。生物感測器和酶感測器、免疫感測器、DNA感測器、細胞感測器等不斷涌現;納米感測器的出現也為活體分析帶來了機遇。
4.多種方法的聯合使用 儀器分析多種方法的聯合使用可以使每種方法的優點得以發揮,每種方法的缺點得以補救。聯用分析技術已成為當前儀器分析的重要發展方向。
5.擴展時空多維信息 隨著環境科學、宇宙科學、能源科學、生命科學、臨床化學、生物醫學等學科的興起,現代儀器分析的發展已不局限於將待測組分分離出來進行表徵和測量,而且成為一門為物質提供盡可能多的化學信息的科學。隨著人們對客觀物質認識的深入,某些過去所不甚熟悉的領域(如多維、不穩定和邊界條件等)也逐漸提到日程上來。採用現代核磁共振光譜、質譜、紅外光譜等分析方法,可提供有機物分子的精細結構、空間排列構成及瞬態變化等信息,為人們對化學反應歷程及生命的認識提供了重要基礎。
總之,儀器分析正在向快速、准確、靈敏及適應特殊分析的方向迅速發展。

『貳』 儀器分析在生命科學領域中的應用
在各種分析儀器的發明和研製過程中,有著許許
多多的發人深省、鼓舞人心的歷史事例,在這其中
無數化學家做了大量艱苦卓絕的探索工作,取得了令
人矚目的成就,這些偉大的化學家們都具有令人敬仰
的個人品質及孜孜不倦投身科學的奉獻精神。在儀
器分析發展史中有許多位科學家獲得了諾貝爾獎,回
顧這些對近代科學發展的重大貢獻, 追蹤科學家走
過的足跡, 激發了我參與科研和追求創新的
熱情。核磁共振從其一開始就與諾
貝爾獎聯系在一起:1945 年以Bloch 和Purcell 為
首的兩個課題組同時發現了核磁共振現象,為此他們
獲得了1952 年諾貝爾物理學獎; Richard Ernst 教授
因為他在高解析度核磁共振二維波譜新技術方面的
貢獻而獲得1991 年諾貝爾化學獎; Kurt Wuthrich 教
授又因其在應用核磁共振技術測定溶液中生物大分
子三維結構的新方法而獲得了2002 年諾貝爾化學
獎。由於核磁共振提供分子空間立體結構的信息,目
前已經發展成為分析分子結構和研究化學動力學的
重要手段,在有機化學、生物化學、葯物化學等領域里
得到了廣泛的應用,這反映出了核磁共振技術的迅猛
發展及其對世界前沿研究工作的巨大貢獻。在質譜
分析發展史中,先後有3 位科學家獲得了諾貝爾化學
獎。他們是:英國科學家Aston 設計了世界上第一台
質譜儀,並使用該儀器發現了212 種同位素,將人類
研究微觀粒子的手段大大向前推進了一步,因而獲得
了1922 年諾貝爾化學獎;日本科學家田中耕一和瑞
士科學家Kurt Wuthrich 共同開發出生物大分子的
質譜分析技術和發展了基質輔助激光解析電離法,為
發展生物大分子的鑒定與結構分析方法所做出了重
大貢獻,因而獲得了2002 年諾貝爾化學獎瑞典皇家
科學院稱贊他們的研究工作「提升了人類對生命進程
的認識」。隨著科學技術的進步,儀器分析方法的發展日新
月異,從航天工程使用的特種材料到生命科學的過程
研究,先進的分析儀器和有效的分析方法都成為了不
可或缺的手段。對於當今的大學生來說,由於計算機
和互聯網的迅速發展,使得他們獲得最新科技信息的
途徑被大大地拓寬。因此,將最新的分析儀器和分析
方法介紹給學生,對於他們理解最前沿的科技動向具
有很有利的幫助作用,從而激發了他們對所學專業的
熱愛以及為科學獻身的崇高理想。比如,傅立葉變換
紅外光譜(FTIR) 可提供有關分子結構的多種信息,
輔以二階導數、去卷積、曲線擬合等解析方法可以研
究蛋白質二級結構的變化規律。近幾年,應用FTIR
從分子水平的角度研究癌症正是生物醫學領域的熱
門課題[4 ] 。癌組織和正常組織的譜圖表明癌組織樣
品與正常樣品的紅外光譜存在明顯差異,通過譜圖解
析可直接或間接地闡明引起譜圖變化的主要原因,以
及細胞癌變的可能機理及病程進展各期。通過在教
學過程中穿插相關的圖片、實驗數據等,生動地將正
常組織與腫瘤組織的紅外譜圖在譜型、強度、頻率等
譜學參數上存在明顯的差異展示給學生,從而使學生
了解紅外分析方法的重要意義。
在對生物大分子的分析中,生物質譜與其他分析
方法相比具有準確性和靈敏度高、快速、易於大規模
和高通量操作等優點,因此在基因組學和蛋白質組學
研究中扮演著越來越重要的角色[5 ] 。例如,在蛋白
分析技術中生物質譜以其不可比擬的優越性能,已經
成為蛋白質組學研究中必不可少的技術平台[6 ] ,在
蛋白質鑒定、序列分析、定量、翻譯後加工(修飾) 及蛋
白質相互作用等方面已得到了較廣泛的應用,其中用
於蛋白序列分析的生物質譜鑒定方法有基質輔助激
光解吸- 飛行時間- 肽質量指紋譜(MALDI - TOF
- PMF) 、串聯質譜的肽序列標簽以及肽段的從頭測
序。
隨著人類探知未知世界的手段的不斷進步,即使
有先進分析儀器的不斷涌現,僅藉助於某一種單一的
儀器分析方法往往也難以達到分析檢測的目的,於是
出現了分析儀器聯用技術。從這個課程的學習,我體會到科學
家們既積極探索、勇於創新的科學精神,所以我們要主動投
入到學習和科研中去。
『叄』 現代儀器分析發展趨於自動化 智能化 快速化 便捷化 在此種發展趨勢下 請簡述學習原理和手動操作意義
很簡單的道理:現代儀器很簡單,一按鈕可能就完成了。但是,如果出了一點點問題,你就傻眼了。舉例來說,數控機床操作簡單,裝上程序,夾上工件,一會一個成品就做成了。但是,為什麼這么做,怎麼切削,切削的要求和注意事項你不知道,你就編不出好程序,而且一旦出現一點點問題,你就不知道怎麼辦了。如果你會手動操作,那你接下來馬上就可以手動操作。
如果某一個動作,你按照要求一直做不好,如果你懂原理,你可以換一種方式去做,同樣能做好。
懂了原理,又會手動操作,那你對這種現代儀器操作起來,就會更加得心應手。碰上問題,馬上就能解決。
『肆』 根據用以測量的物質性質,儀器分析方法主要有哪些
儀器分析法
儀器分析法是以物質的物理和物理化學性質為基礎,並借用特殊儀器設備的分析方法它包括光學分析法、電化學分析法、色譜分析法和質譜分析法等。
1)光學分析法
這是根據物質的光學性質建立的分析方法。主要有分光光度法,在可見光區稱比色法,在紫外和紅外光區分別稱為紫外和紅外分光光度法。此外,還有原子吸收法、發射光譜法及熒光分析法等。
2)電化學分析法
這是根據物質的電化學性質所建立的分析方法,如電導分析法、電流滴定法、庫侖分析法、電位分析法、伏安法和極譜法等.
3)色譜分析法
這是一種重要的分離富集方法,主要有氣相色譜法、液相色譜法,以及離子色譜法。
4)其他分析法
其他分析法包括質譜法、核磁共振和X射線等。儀器分析的優點是操作簡單、快速,靈敏度高,有一定的准確度,適用於生產過程中的控制分析及微量組分的側定。缺點是儀器價格較高,平時的維修要求較高,越是復雜、精密的儀器, 維護要求就越高。此外,在進行儀器分析時,分析的預處理及分析的結果必須與標准物質作比較,而所用的標准物質往往需用化學分析方法進行測定。因此,化學分析方法與儀器分析方法 是互為補充的。
以上方法都有其特點,也有其局限性,通常要根據被測物的性質、含量、試樣的成分和對分析結果准確度的要求,選用最合適的分析方法。
『伍』 儀器分析的發展趨勢是什麼
儀器分析的發展趨勢應該是:樣品無損化、分析自動化、智能化、無害化。
『陸』 什麼是儀器分析法
(1)氣相色譜法(GC)。氣相色譜法是Martin等人在研究液—液分配色譜的基礎上,於1952年創立的一種極有效的分離方法。它可分析和分離復雜得多組分混合物。氣相色譜法又可分為氣固色譜(GSC)和氣液色譜(GLC)。前者是用多孔性固體為固定相,分離的對象主要是一些永久性的氣體和低沸點的化合物;後者的固定相是用高沸點的有機物塗漬在惰性載體上。由於可供選擇的固定液種類多,故選擇性較好,應用亦廣泛。
近年來,柱效高、分離能力強、靈敏度高的毛細管氣相色譜有了很大發展,尤其是毛細管柱和進樣系統的不斷完善,使毛細管氣相色譜的應用更加廣泛。盡管樣品前處理的凈化效果越來越好,但樣品中的干擾物是不可避免的,所以,現代氣相色譜一般採用選擇性檢測器,理想的檢測器當然是只對「目標」農葯響應,而對其他物質無響應。農葯幾乎都含有雜原子,而且經常是一個分子含多個雜原子,常見的雜原子有O、P、S、N、Cl、Br和F等。因此,不同類型的農葯應採用不同的檢測器。電子捕獲檢測器(ECD)、氮磷檢測器(NPD)、火焰光度檢測器(FPD)仍然是常用的檢測器。30多年來,ECD一直是農葯殘留分析常用的檢測器,特別適用有機氯農葯的分析。但由於其對其他吸電子化合物如含N和芳環分子的化合物也有響應,因此,其選擇性並不是很好。當分析某些基質復雜且難凈化的樣品時,其效果並不好。但利用核心切換和反沖技術的二維色譜可以很好地解決上述問題。NPD因其對N和P具有良好的選擇性,是測定有機磷和氨基甲酸酯等農葯的常用檢測器。原子發射檢測器(AED)是用於測定F、Cl、Br、I、P、S、N等元素選擇性檢測器,自1989年開始應用於農葯殘留分析,利用AED測定氨基甲酸酯、擬除蟲菊酯、有機磷和有機氯農葯殘留亦有報道。
(2)高效液相色譜法(HPLC)。高效液相色譜法(HPLC)是20世紀60年代末至70年代初發展起來的一種新型分離分析技術。隨著不斷改進與發展,目前已成為應用極為廣泛的化學分離分析的重要手段。它是在經典液相色譜基礎上,引入了氣相色譜的理論,在技術上採用了高壓泵、高效固定相和高靈敏度檢測器,因而具有速度快、效率高、靈敏度高、操作自動化的特點。高效液相色譜法的應用范圍:高沸點、熱不穩定、分子質量大、不同極性的有機物;生物活性物質、天然產物;合成與天然高分子,涉及石油化工、食品、葯品、生物化工、環境等領域。80%的化合物可用HPLC分析。HPLC常用於分析高沸點(如雙吡啶除草劑)和熱不穩定(如苄脲和N-甲基氨基甲酸酯)的農葯殘留。HPLC分析農葯殘留一般採用C18或C8填充柱,以甲醇、乙腈等水溶性有機溶劑做流動相的反相色譜,選擇紫外吸收、二極體陣列檢測器、熒光或質譜檢測器用於農葯殘留的定性和定量。
(3)色譜—質譜聯用技術。質譜分析法是通過對被測樣品離子的質荷比的測定來進行分析的一種分析方法。被分析的樣品首先要離子化,然後利用不同離子在電場或磁場的運動行為的不同,把離子按質荷比(m/z)分開而得到質譜,通過樣品的質譜和相關信息,可以得到樣品的定性、定量結果。
從Thomson製成第一台質譜儀,到現在已有近90年了,早期的質譜儀主要是用來進行同位素測定和無機元素分析,20世紀40年代以後開始用於有機物分析,60年代出現了氣相色譜—質譜聯用儀,使質譜儀的應用領域大大擴展,開始成為有機物分析的重要儀器。計算機的應用又使質譜分析法發生了飛躍變化,使其技術更加成熟,使用更加方便。80年代以後又出現了一些新的質譜技術,如快原子轟擊電離子源、基質輔助激光解吸電離源、電噴霧電離源、大氣壓化學電離源,以及隨之而來的比較成熟的液相色譜—質譜聯用儀、感應耦合等離子體質譜儀、傅立葉變換質譜儀等。這些新的電離技術和新的質譜儀使質譜分析又取得了長足進展。目前質譜分析法已廣泛地應用於化學、化工、材料、環境、地質、能源、葯物、刑偵、生命科學、運動醫學等各個領域。
①氣相色譜—質譜聯用法(GC-MS):用氣相色譜—質譜(GC-MS)聯用來檢測鄰苯基苯酚、二苯胺及炔蟎特等。其殘留用乙腈提取,再轉移至丙酮中,鄰苯基苯酚、二苯胺及炔蟎特的檢出限分別為10,8,15μg/kg,且回收率比較高。有報道,氣相色譜—離子捕獲質譜法(GC-ITMS)多殘留檢測,可用來檢測有機氯類、有機磷類、氨基甲酸酯類及其他一些污染物。樣品用乙腈—水提取,再溶到石油醚—乙醚中以在GC-ITMS上直接分析,質譜在EI模式下運行。當樣品中農葯的含量在20~1000μg/kg時,其回收率一般大於80%。對絕大多數農葯來說其檢出限為1~10μg/kg。該法可用來檢測痕量農葯,適合研究污染源在環境中的行為。氣相色譜—化學電離質譜法(GC-CIMS)可用來分析多種農葯的殘留,如乙醯甲胺磷、保棉磷、敵菌丹、克菌丹、殺蟲脒、百菌清、烯氟樂靈、異丙甲草胺等。
②液相色譜—質譜聯用(HPLC-MS):大部分農葯可用GC-MS檢測,但對極性或熱不穩定性太強的農葯(及其代謝物)不適用(如滅菌丹、利谷隆等),可採用高效液相色譜—質譜法(HPLC-MS)檢測。據統計,液相色譜可以分析的物質約佔世界上已知化合物的80%以上。內噴射式和粒子流式介面技術可將液相色譜與質譜連接起來,已成功地用於分析一些熱不穩定、分子質量較大、難以用氣相色譜分析的化合物。HPLC-MS具有檢測靈敏度高、選擇性好、定性、定量同時進行、結果可靠等優點。對一種用於毛細管電泳的新型電噴射介面加以改進使其適用與液質聯用,將可大大提高分析靈敏度。另外,研究開發毛細管液相色譜與離子捕獲檢測器的配合將會大大提高液相色譜靈敏度。雖然液質聯用對分析技術和儀器的要求高,但它是一種很有利用價值的高效率、高可靠性分析技術。色質聯用一般在0.5mg/kg添加水平上的回收率為70%~123%,平均變異系數小於13%。
『柒』 常見的儀器分析方法有哪幾類,它們進行分析時各依據物質的哪些主要性質
常見的儀器分析方法:光分析法、電化學分析法、色譜分析法、質譜分析法、熱分析法、分析儀器聯用技術。
1.紅外光譜儀的主要部件包括:光源、吸收池、單色器、檢測器及記錄系統。
2.紅外光譜是基於分子的振動和轉動能級躍遷產生的。
3.物質的分子、原子、離子等都具有不連續的量子化能級,只有當某波長光波的能量與物質的基態和激發態的能量差相等時,才發生物質對某光波的吸收,也就是說物質對光的吸收是有選擇性的。
4.紅外光譜儀用能斯特燈與硅碳棒做光源。
5.在光譜法中,通常需要測定試樣的光譜,根據其特徵光譜的波長可以進行定性分析;而光譜的強度與物質含量有關,所以測量其強度可以進行定量分析。
6.根據光譜產生的機理,光學光譜通常可分為:原子光譜、分子光譜。
7.紫外可見分光光度計用鎢絲燈、氫燈或元燈做光源。
『捌』 常見的儀器分析方法有哪些
現代儀器分析主要分析方法有:1、光學分析法:1)原子光譜法(原子發射光譜法;原子吸收光譜法;原子熒光光譜法);2)分子光譜法(紫外分光光度法;可見分光光度法;紅外分光光度法);2、電化學分析法:1)電導分析法;2)電位分析法;
『玖』 儀器分析技術有哪些
根據分析的原理,常用的儀器分析方法通常可以分為以下三大類:
1.電化學分析法(electrochemicalanalysis)是利用待測組分在溶液中的電化學性質進行分析測定的一類儀器分析方法,其理論基礎是電化學與化學熱力學。通常是將分析試樣溶液構成一個化學電池,然後根據所組成電池的某些物理量與其化學量之間的內在聯系進行定性分析或定量分析。根據所測量的電信號不同可分為:電位分析法、伏安分析法、電導分析法與電解分析法(庫侖分析法)。
2.光學分析法 (optical method of analysis)是利用待測組分的光學性質進行分析測定的一類儀器分析方法,其理論基礎是物理光學、幾何光學和量子力學。通常分為光譜法和非光譜法兩類:
①光譜法是基於物質吸收外界能量時,物質的原子或分子內部發生能級之間的躍遷,產生發射光譜或吸收光譜,再根據其中的發射光或吸收光的波長與強度,進行定性分析、定量分析、結構分析等;
②非光譜法一般包括旋光(偏振光)分析法、折射光分析法、比濁分析法、光導纖維感測分析法、光及電子衍射分析法等。
3.色譜分析法(chromatography)是利用物質中的各組分在互不相溶的兩相(固定相與流動相)中的吸附、分配、離子交換、排斥滲透等性能方面的差異進行分離分析測定的一類儀器分析方法。其主要理論基礎是化學熱力學和化學動力學。色譜分析法分為氣相色譜法、高效液相色譜法、薄層色譜法和離子色譜法等。儀器分析的方法和分類
『拾』 現代儀器分析技術及應用的介紹
《現代儀器分析技術及應用》重點介紹了9種儀器分析方法的現代分析技術,即紫外-可見吸收光譜分析、紅外吸收光譜分析、原子發射光譜分析、原子吸收光譜分析、氣相色譜分析、高效液相色譜分析、質譜及聯用技術、總有機碳分析、物性分析。書中結合島津公司最新產品,簡要介紹了儀器分析方法的原理、儀器結構、對儀器的硬體、軟體進行了較詳細的描述。主要介紹了每類分析方法的最新技術及最新進展。每種新技術在各個領域的應用都有最新的應用實例可供廣大讀者參考。
