A. 數控車床伺服系統振盪的原因及處理方法是什麼
數控機床的振盪故障通常發生在機械部分和進給伺服系統。產生故障的原因有很多方面,陳了機械方面存在不可消除的傳動間隙、彈性變形、摩擦阻力等諸多因素外,伺服系統的有關參數的影響也是重要的一方面。伺服系統有交流和直流之分,下面我們來說說直流伺服系統因參數影響引起的振盪。
大部分數控機床採用的是全閉環方式, 經過試驗與分析,引起伺服系統振動的原因大致有四種情況:1)位置環不良又引起輸出電壓不穩;2)速度環不良引起的振動;3)伺服系統可調定位器太大引起電壓輸出失真;4)傳動機械裝如絲杠間隙太大。這些控制環的輸出參數失真或機械傳動裝置間隙太大都是引起振動的主要因素。它們都可以通過伺服控制系統進行參數優化。
如何處理伺服控制系統振盪問題?
1、有些數控伺服系統採用的是半閉環裝置,而全閉環伺服系統必須是在其局部半閉環系統不發生振盪的前提下進行參數調整,所以兩者大同小異,本文只討論全閉環情況下的參數優化方法。
2、在伺服系統中有參考的標准值,例如FANUC0-C系列為3000,西門子3系統為1666,出現振盪可適當降低增益,但不能降太多,因為要保證系統的穩態誤差。
3、負載慣量比一般設置在發生振動時所示參數的70%左右,如不能消除故障,不宜繼續降低該參數值。
4、比例微積分器是一個多功能控制器,它不僅能有效地對電流電壓信號進行比例增益,同時可調節輸出信號滯後成超前的問題,振盪故障有時因輸出電流電壓發生滯後成超前情況而產生,這時可通過PID來調節輸出電流電壓相位。
5、以上討論的是有關低頻振盪時參數優化方法,而有時數控系統會因機械上某些振盪原因產生反饋信號中含有高頻諧波,這使輸出轉矩里不恆定,從而產生振動。對於這種高頻振盪情況,可在速度環上加入一階低通濾波環節,即為轉矩濾波器。
速度指令與速度反饋信號經速度控制器轉化為轉矩信號,轉矩信號通過一階濾波環節將高頻成分截止,從而得到有效的轉矩控制信號。通過調節參數可將機械產生的100Hz以上的頻率截止,從而達到消除高頻振盪的效果。
所以利用雙位反饋可使系統在全閉環和半閉環兩種方式下進行,從而大大提高了系統的調節范圍,也增加了系統的調節參數。
雙位反饋功能是一種比較靈活的誤差修正方式,在系統調試過程中能夠很好的參數優化和保證系統的穩定性。具體的操作根據每台數控機床的不同,在設置時需要進行差別處理。
B. 數控機床系統振盪故障怎麼進行消除
機床的振盪故障通常發生在機械部分和進給伺服系統。產生振盪的原因有很多,陳了機械方面存在不可消除的傳動間隙、彈性變形、摩擦阻力等諸多因素外,伺服系統的有關參數的影響也是重要的一方面。伺服系統有交流和直流之分,本文主要討論直流伺服系統因參數影響引起的振盪。大部分數控機床採用的是全閉環方式。
引起伺服系統振動的原因大致有四種情況:1、位置環不良又引起輸出電壓不穩;2、速度環不良引起的振動;3、伺服系統可調定位器太大引起電壓輸出失真;4、傳動機械裝如絲杠間隙太大。這些控制環的輸出參數失真或機械傳動裝置間隙太大都是引起振動的主要因素。它們都可以通過伺服控制系統進行參數優化。
數控機床系統應該如何進行消除振盪?
1、閉環伺服系統造成的振盪:有些數控伺服系統採用的是半閉環裝置,而全閉環伺服系統必須是在其局部半閉環系統不發生振盪的前提下進行參數調整,所以兩者大同小異,本文只討論全閉環情況下的參數優化方法。
2、降低位置環增益:在伺服系統中有參考的標准值,例如FANUC0-C系列為3000,西門子3系統為1666,出現振盪可適當降低增益,但不能降太多,因為要保證系統的穩態誤差。
3、降低負載慣量比:負載慣量比一般設置在發生振動時所示參數的70%左右,如不能消除故障,不宜繼續降低該參數值。
4、加入比例微積分器(PID):比例微積分器是一個多功能控制器,它不僅能有效地對電流電壓信號進行比例增益,同時可調節輸出信號滯後成超前的問題,振盪故障有時因輸出電流電壓發生滯後成超前情況而產生,這時可通過PID來調節輸出電流電壓相位。
5、採用高頻抑制功能:以上討論的是有關低頻振盪時參數優化方法,而有時數控系統會因機械上某些振盪原因產生反饋信號中含有高頻諧波,這使輸出轉矩里不恆定,從而產生振動。對於這種高頻振盪情況,可在速度環上加入一階低通濾波環節,即為轉矩濾波器。
速度指令與速度反饋信號經速度控制器轉化為轉矩信號,轉矩信號通過一階濾波環節將高頻成分截止,從而得到有效的轉矩控制信號。通過調節參數可將機械產生的100Hz以上的頻率截止,從而達到消除高頻振盪的效果。綜上所述,利用雙位反饋可使系統在全閉環和半閉環兩種方式下進行,從而大大提高了系統的調節范圍,也增加了系統的調節參數。從時間常數上可知,該系統可在停止狀態下進行全閉環誤差調整,在過渡狀態下可進行半閉環調整。現以FANUC0-C為例,將具體參數調整過程進行簡單介紹。首先設參數P8411#(DPFB)為1,即為選擇雙位置反饋功能;P8499為位置反饋的zui大振幅,一般設置為0;P8478(分子)和P8479(分母)為中位轉換環節的常數設置,可根據要求設置;P8480為一階延時環節的參數設置代號,其設置范圍為:10~300mS,一般設定為100mS左右;P8481為零點幅度,一般情況下為0,但因振盪可適當調高一點。雙位反饋功能是一種比較靈活的誤差修正方式,在系統調試過程中有很好的參數優化和保證系統穩定性的功能。
數控系統的振盪現象已成為數控全閉環系統的共同性問題。系統振盪時會造成機床產生爬行與振動故障,尤其在卧式帶立柱的軸和旋轉數控工作台軸其系統出現振盪的頻率較高。該問題已成為影響數控設備正常使用的重要因素之一。
C. 機械加工中產生的振動該怎麼去消除
機械加工時發生震刀現象,是由於下列原因引起的:1.主軸軸承間隙大了,造成主軸跳動;調整軸承間隙或換新軸承。2.工件太毛糙,表面高低不平,切削量時大時小,切削力就時大時小,因而震動;先打磨工件或先加工一次。3.機床轉速、吃刀量、走刀量、切削力、這些因素共同的作用,正好與機床的固有振動平頻率吻合。這時整個機床都會有較大振動,刀震的也很兇;改變切削用量。4.刀具彈性、刀具刀架的夾緊力、與切削力正好構成產生振動的頻率,也會引起局部的振動;改變其中一個就可消除。
D. 數控銑床怎麼減小切削振動
數控銑床減小切削振動的12種方法:
(1)使用鋒利的刀片來降低數控銑床的切削力。機夾刀片分為塗層與非塗層刀片,非塗層刀片通常比塗層刀片要鋒利,因為刀片如果要塗層,就一定要進行刃口的鈍化處理(ER處理).因為鋒利的刃口將影響塗層在刃口部位的粘結強度。
(2〕當切深一定時,使用小的刀尖圓弧半徑無疑可以降低切削力,特別是徑向切削力,而徑向切削力是使細長桿類刀具或工件產生振動的主要因索。無論是撞削還是銑削。在相同的切削深度時,刀尖圓弧半徑越大.細長刀桿發生振動的傾向越大。
(3)在切深可選擇時.要避免切深等於刀尖圓弧半徑。
(4)對於細長刀桿的銳刀的鍵削,或者細長軸的外圓車削,使用90。主偏角的刀具有利於消振。無論是外圓車刀車削細長軸,還是細長刀桿的鍵刀幢孔,總是90。,主偏角的刀具產生的徑向切削力最小.同時刀片刃口產生的軸向力最大。
(5)對於細長桿的銑刀,圓刀片銑刀最有利於消振。銑刀與攪刀相反,主偏角越接近90。,徑向切削力越大幾刀桿振動越大。所以數控銑床在模具深孔型腔的面銑削加工中,通常選用45。主偏角銑刀,如果切深小於Imm.常採用圓刀片銑刀或球刀。
(6)數控銑床使用細長桿立銑刀銑削深型腔時。常採用插銑方式。插銑就是刀具像鑽頭一樣軸向進刀,當銑削深的型腔時.通常長桿的懸仲大於3倍的刀桿直徑.我們推薦使用軸向進刀的插銑方式。但是立銑刀刀片刃口有一定寬度的徑向切削刃,刀具供應商有技術資料證明該刀其在插銑時的最大吃刀寬度。
(7)在薄壁工件的銑削加工中。發生振動的原因完全來自於工件,這種工件被稱為箱式或者碗式零件()。由於振動來自於工件本身.那麼在處理這類零件的銑削加工時,主要是以改善工件的夾持為主。
(8)在內孔鏜削時,刀片刃形角越小越好。這樣副主偏角很大,副刃口與被加工面的顫動接觸區小,顫動很難轉為振動,副切削刃擠屑的機會也小。
(9)若面銑刀採用疏齒不等距銑刀,則可減小銑削振動。這里「齒」是指刀片。同樣直徑的面銑刀(比如100mm)。如果它們的切削三要素相等,那麼5個刀片的刀盤肯定比10個刀片的刀盤產生的銑削力小50%。
(10)使用正前角和大後角的刀片。並配以輕快的斷屑槽。這樣的刀片在銼削或銑削中的切削楔人角最小,切削當然輕快。
(11)調整切削參數。調整切削參數只對切削振動不嚴重的情況可能有效。一般的調整方法如下:降低刀具或者工件的回轉速度,減小切深並提高刀具每轉或者銑刀辱齒走刀量。在內螺紋的車削過程中若產生振動,可將完成螺紋車削的進刀步驟減少1一2刀。
(12)合理安排走刀的工藝路徑。合理安排走刀的工藝路徑,對於銑削加工非常重要。銑削有順銑和逆銑之分.傳統的銑削理論中描述,使用逆銑有利於減少銑削振動,其實是指有利於抑制絲杠的間隙產生的振動。如今的銑削設備大都安裝了滾珠或滾柱絲杠。所以逆銑消振的意義不大。無論是順銑還是逆銑.只要銑削力的方向與工件的夾持方向一致,就有利於消除彎板類零件的振動。
E. 數控機床振動怎麼調整
數控機床振動原因有很多,針對不同的因素,調整方法也不同,例如:
人的因素:
提高業務水平,豐富實踐經驗,加強責任心,提高設備維護水平,正確使用和保養數控機床設備,保證良好的潤滑和正常運行。
機器的因素
(1)提高數控機床自身的抗振性:可以從改善數控機床剛性,提高數控機床零件加工和裝配質量方面合理保養數控機床,使其處於最佳工作狀態。
(2)合理提高系統剛度:車削細長軸(L/D>12)採用彈性頂尖及輔助支承(中心架或跟刀架)來提高工件抗振性能的同時,用冷卻液冷卻以減小工件的熱膨脹變形,減小刀具懸伸長度;刀具高速自振時,宜提高轉速和切削速度,以提高切削溫度,消除刀具後刀面摩擦力下降特性和由此引起的自振,但切削速度不宜高於1.33m/s(80m/min);對數控機床主軸系統,要適當減小軸承間隙,滾動軸承應施加適當的預應力以增加接觸剛度,提高數控機床的抗振性能;合理安捧刀具和工件的相對位景。
材料的因素
提高毛坯材料的質量:要求上道工序的毛坯內部質量好,避免氣孔、砂眼、疏鬆等缺陷,同時外觀形狀規則、均勻,可以減小工件在切削加工過程中的振動。
方法的因素
(1)工件要正確裝夾
工件夾緊時,夾緊點要選在工件剛性好,且變形小的部位,以減小接觸變形,並且距工件承受切削力的位置越近越好,以減小工件受到力矩作用引起變形而產生振動。
(2)合理選擇刀具的材料
加工脆性材料可選用鎢鈷類硬質合金刀具,加工塑性材料可選用鎢鈷鈦類硬質合金刀具。如鎢鈷類YG8和鎢鈷鈦類YT5,抗振性強,分別適用於鑄鐵、有色金屬和鋼件的粗加工;而YG3和YT15則適用於精加工。
(3)合理選擇刀具的幾何角度
刀具在切削過程中,對產生振動影響最大的幾何角度是主偏角和前角。選擇刀具的幾何角度時,一般注意以下幾個方面:
工件系統剛性較弱時,應採用較大的主偏角,在75~90時,可有效減小徑向切削分力。
適當增大前角,使切削刃光滑銳利,降低表面粗糙度值,減小切削和刀具前面的摩擦力,可同時抑制和排除切削瘤產生,降低徑向切削分力。
盡量不採用負前角,盡量選用較小的刀尖圓弧半徑。
合理選用切削用量。
F. 普通車床震刀怎麼調整
普通車床震刀的原因及調整
1.主軸軸承間隙大了,造成主軸跳動;措施:調整軸承間隙或換新軸承。
2.工件太毛糙,表面高低不平,切削量時大時小,切削力就時大時小,因而震動; 措施:先打磨工件或先加工一次。
3.機床轉速、吃刀量、走刀量、切削力、這些因素共同的作用,正好與機床的固 有振動平頻率吻合。這時整個機床都會有較大振動,刀震的也很兇;措施:改變切削用 量。
4.刀具彈性、刀具刀架的夾緊力、與切削力正好構成產生振動的頻率,也會引起 局部的振動;措施:改變其中一個就可消除。
G. 數控機床震動的原因及控制方法
1:機床振動,因你是簡式數控,傳動箱相對復雜,齒輪傳遞較多,且主軸軸承精度肯定不如數控機床,故高速切削有振動;
2:另,如果不是標準的軸類零件,夾具配重很關鍵,如果不能保證主軸(夾具)的動平衡,再好的機床也會有振動
3:機床在快速移動時震動或沖 擊,原因是伺服電機內的檢測接觸不良
4:機床以低速運行時,機床工作台是蠕動著向前運動;機床要以高速運行時,就出現震動。
5:除了我們上面討論過這些引起振動的原因外,還可能是系統本身的參數引起的振盪。眾所周知;一個閉環系統也可能由於參數設定不好,而引起系統振盪,但最佳的消除這個振盪方法就是減少它的放大倍數,在FANUC的系統中調節RV1,逆時鍾方向轉動,這時可以看出立即會明顯變好,但由於RV1調節電位器的范圍比較小,有時調不過來,只能改變短路棒,也就是切除反饋電阻值,降低整個調節器的放大倍數。
解決辦法:
機床爬行和振動問題是屬於速度的問題。既然是速度的問題就要去找速度環,我們知道機床的速度的整個調節過程是由速度調節器來完成的。特別應該著重指出,速度調節器的時間常數,也就是速度調節器積分時間常數是以毫秒計的,因此,整個機床的伺服運動是一個過渡過程,是一個調節過程。 凡是與速度有關的問題,只能去查找速度調節器。因此,機床振動問題也要去查找速度調節器。可以從以下這些地方去查找速度調節器故障:一個是給定信號,一個是反饋信號,再一個就是速度調節器的本身。 第一個是由位置偏差計數器出來經D/A轉換給速度調節器送來的模擬是VCMD,這個信號是否有振動分量,可以通過伺服板上的插腳(FANUC6系統的伺服板是X18腳)來看一看它是否在那裡振動。如果它就是有一個周期的振動信號,那毫無疑問機床振動是正確的,速度調節器這一部分沒有問題,而是前級有問題,向D/A轉換器或偏差計數器去查找問題。如果我們測量結果沒有任何振動的周期性的波形。那麼問題肯定出在其他兩個部分。 我們可以去觀察測速發電機的波形,由於機床在振動,說明機床的速度在激烈的振盪中,當然測速發電機反饋回來的波形一定也是動盪不已的。但是我們可以看到,測速發電機反饋的波形中是否出現規律的大起大落,十分混亂現象。這時,我們最好能測一下機床的振動頻率與電機旋轉的速度是否存在一個准確的比率關系,譬如振動的頻率是電機轉速的四倍頻率。這時我們就要考慮電機或測速發電機有故障的問題。 因為振動頻率與電機轉速成一定比率,首先就要檢查一下電動機是否有故障,檢查它的碳刷,整流子表面狀況,以及機械振動的情況,並要檢查滾珠軸承的潤滑的情況,整個這個檢查,可不必全部拆卸下來,可通過視察官進行觀察就可以了,軸承可以用耳去聽聲音來檢查。如果沒有什麼問題,就要檢查測速發電機。測速發電機一般是直流的。 測速發電機就是一台小型的永磁式直流發電機,它的輸出電壓應正比於轉速,也就是輸出電壓與轉速是線性關系。只要轉速一定,它的輸出電壓波形應當是一條直線,但由於齒槽的影響及整流子換向的影響,在這直線上附著一個微小的交變數。為此,測速反饋電路上都加了濾波電路,這個濾波電路就是削弱這個附在電壓上的交流分量。 測速發電機中常常出現的一個毛病就是炭刷磨下來的炭粉積存在換向片之間的槽內,造成測速發電機片間短路,一旦出現這樣的問題就避免不了這個振動的問題。 這是因為這個被短路的元件一會在上面支路,一會在下面支路,一會正好處於換向狀態,這3種情況就會出現3種不同的測速反饋的電壓。在上面支路時,上面支路由於少了一個元件,電壓必然要小,而當它這個元件又轉到了下面支路時,下面的電壓也小,這時不論在上面支路,還是在下面支路中,都必然使這兩條支路的端電壓下降,且有一個平衡電流流過這兩條並聯的支路,又造成一定的電壓降。當這個元件處於換向,正好它也處於短路,這時上下兩個支路沒有短路元件,電壓得以恢復,且也無環流。這樣,與正常測速發電機狀態一樣。為此,三種不同情況下電壓做了一個周期地變化,這個電壓反饋到調節器上時,勢必引起調節器的輸出也做出相應地,周期地變化。這是僅僅說了一個元件被短路。特別嚴重時有一遍換向片全部被碳粉給填平了,全部短路,這樣就會更為嚴重的電壓波動。 反饋信號與給定信號對於調節器來說是完全相同的。所以,出現了反饋信號的波動,必然引起速度調節器的反方向調節,這樣就引起機床的振動。 這種情況發生時,非常容易處理,只要把電機後蓋拆下,就露出測速發電機的整流子。這時不必做任何拆卸,只要用尖銳的勾子,小心地把每個槽子勾一下,然後用細砂紙光一下勾起的毛刺,把整流片表面再用無水酒精擦一下,再放上炭刷就可以了。這里特別要注意的是用尖銳的勾子去勾換向片間槽口時,別碰到繞組,因為繞組線很細,一旦碰破就無法修復,只有重新更換繞組。再一個千萬不要用含水酒精去擦,這樣弄完了絕緣電阻下降無法進行烘乾,這樣就會拖延修理期限。
採用這些方法後,還做不到完全消除振動,甚至是無效的,就要考慮對速度調節器板更換或換下後徹底檢查各處波形。
請樓主看此貼板凳一樓:
http://club.china.alibaba.com/forum/thread/view/151_9491384_.html
H. 數控車床車削時振動怎麼辦,求高手解答
你查一下 卡盤中心軸線 和 頂尖軸線 是否在同一水平面???
1 是不是 細長軸工件,這肯定是會 振動的,沒有辦法可以解決
2 車削工件時,吃刀深度要合適,不然也會振動;
3 在振動時,試著降低主軸轉速,效果會好點
4 走刀速度也可以用倍率調節;
1 振動
車削加工過程中,工件和刀具之間常常發生強烈的振動,破壞和干擾了正常的切削加工,是一種極其有害的現象。當車床發生震動時,工件表面質量惡化,產生明顯的表面振紋,工件的粗糙度增大,這時必須降低切削用量,使車床的工作效率大大降低。強烈振動時,會時車床產生崩刃現象,使切削加工過程無法進行下去。由於振動,將使車床和刀具磨損加劇,從而縮短車床和刀具的使用壽命;振動並伴隨有噪音,危害工人身心健康,使工作環境惡化。車床振動可公為自由振動、強迫振動和自系振動,據測算,這三類振動分別5%,30%,65%。
當振動系統的平衡被破壞,彈性力來維持系統的振動,稱為自由振動(如圖1),在外界周期性干擾力持續作用下,被迫產生的振動稱為強迫振動(如圖2),由振動過程本身引起切削力周期性變化,又由這個周期性變化的切削力反過來加強和維持的振動稱為自激振動(如圖3)。
圖1 圖2
圖3
2 車床振動的振源
尋找振動的來源,並加以排除或限制,是有效控制振動的途徑。振源來自車床內部的,稱為機內振源;來自車床外部的,稱為機外振源。
由於自由振動是由切削力的突然變化或其它外力沖擊引起的,可快速衰減,對車床加工過程影響非常小,可以忽略不計。
強迫振動的振源
機內振源:車床上各個電動機的振動,包括電動機轉子旋轉不平衡及電磁力不平衡引起的振動;機床回轉零件的不平衡,如皮帶輪、卡盤、刀盤和工件不平衡引起的振動;運動傳遞過程中引起的振動,如變速操縱機機構中的齒輪嚙合時的沖擊力,卸荷帶輪把徑向載荷卸給箱體時的振動,三角皮帶的厚度不均勻,皮帶輪質量偏心,雙向多片摩擦離合器,滑動軸承和滾動軸承尺寸及形位誤差引起的振動;往復部件運動的慣性力,如離和器控制箱體的正反轉引起的慣性力振動;切削時的沖擊振動,如切削帶有鍵槽的工件表面時循環沖擊載荷引起的振動;車床液壓傳動系統的壓力脈動。
機外振源:其它機床、鍛壓設備、火車、汽車等通過地基傳給車床的振動。
自激振動的振源
引起自激振動的振源主要有車削時切削量過大、主切削力的方向、車刀的幾何角度的選擇不當等。
3 振源分析
1)查找車床振動振源的框圖,見圖4。
圖4 查找車床振動振源的框圖
2)車床主軸箱內振源分析
一方面主軸箱中齒輪、軸承等零部件設計、製造及裝配過程中存在某些不足之處,另一方面長期工作過程中使得某些零件失效,導致主軸箱在工作過程中產生了振動。齒輪在嚙合時引起沖擊產生頻率為嚙合頻率的振動,主軸安裝偏心所引起周期性振動;軸承的損傷所引起周期性沖擊或者激發自身的各個元件以固有頻率振動;以及其它因素所引起的振動。現以CA6140車床為例。對CA6140主軸箱傳動系統中軸的回轉頻率和齒輪嚙合頻率進行計算和實際測量(計算過程從略)。由於主軸轉速檔位較多,故僅選取主軸轉速為200rpm時計算主軸箱內各軸的回轉頻率和齒輪嚙合頻率,計算結論數據如表1所示;主軸前端D3182121雙列向心短圓柱滾子軸的有關元件脈動頻率計算結論數據如表2所示。
表1
回轉
軸號理論頻率(HZ)實際頻率(HZ)回轉頻率嚙合頻率回轉頻率嚙合頻率ⅠfⅠ=13f56=760fⅠ=14.15f56=792ⅡfⅡ=19f38=730fⅡ=20.8f38=792f22=423f22=459ⅢfⅢ=7.29f58=423fⅢ=7.9f50=364.5f50=364.5f50=395ⅣfⅣ=7.29f50=364.5fⅣ=7.9f51=371.8f50=395f51=403.8ⅤfⅤ=7.44f50=371.8fⅤ=8f50=403.8f26=193.3f26=210ⅥfⅥ=3.333f58=193.3fⅥ=3.6f58=210
表2
內圈滾道波度172.8HZ滾珠通過內圈的頻率60.5HZ外圈的頻率47.5HZ滾珠自轉頻率29.4HZ
3)數據分析
經過大量實踐分析對比,發現主軸箱內頻率為f=173HZ、f=790HZ對切削力影響很大,f=173HZ頻率的振動主要是通過工件直接傳輸給刀架的,而f=790HZ一部分能量通過車床床身傳遞給刀架,一部分能量通過工件傳遞給刀架。
進一步對f=173HZ,f=790HZ頻率所產生振動原因進行分析=計算並與表1、表2對比。得出如下結果:f=173HZ是由主軸前端的雙列向心短圓柱滾子軸承的內圈滾道表面粗糙度很大所引起的,f=790HZ為軸承上齒輪(Z=56)的嚙合頻率,由摩擦片離合器在嚙合處剛性不足造成齒輪嚙合時不平穩所引起的。
通過以上分析可知,在切削過程中,f=173HZ和f=790HZ振動頻率對切削力影響很大。f=173HZ是由主軸前端的雙列向心短圓柱滾子軸承所引起的;f=790HZ是由軸承上的齒輪嚙合時不平穩所引起的。
4 車床振動的控制
1)對強迫振動的控制
·將振源與車床隔離。設置隔振裝置,將振源所產生的振動由隔振裝置大部分吸收,減少振源對車削加工的干擾。挖防振溝,將車床安置在防振地基上,設置彈簧或橡皮墊減少振動。
·減少激振力。如精確平衡回轉零部件,將電動機轉子、皮帶輪和卡盤作靜平衡和動平衡試驗,提高軸承裝配精度。
·提高車床傳動的製造精度。如將變速操縱機構中齒輪嚙合的製造精度提高,可以減少因齒輪嚙合傳動而引起的振動。
·提高工藝系統的剛度及阻尼。車床系統剛度增加,對振動的抵抗能力提高,亦可減少振動。
·調節系統的固有頻率,避免共振現象發生。
·採用減振器和阻尼器。
2)對自激振動的控制
·合理選擇與切削有關的系數;
·合理選擇車刀的幾何參數;
·合理安排刀尖高低、潤滑;
·提高工藝系統的抗振性
I. 防止和消除機床振動的工藝有哪些
防止和消除機床振動的方法如下:
一,首先檢查地平,常說大樓穩不穩要看根基下得回好不好?機床也一樣,地腳答螺絲水平如果沒調好,就會引起機床的共振。因為有時加工場地地面平整度不是很好,所以要通過調節水平螺絲來讓機床達到一個不平的高度,首先要檢查地腳每個螺絲是否落實到位到地腳墊里。用水平儀打下前後,左右是否水平了,鎖緊螺絲。
二,如果停止了上述的動作,震動仍未消除,應檢查是否由於地面地板太空虛所至,如果地面是水磨石或者鋪的地板塊就相對堅固,如果是水泥地平,地面就很虛會引起共振,碰到這種情況如何處理呢?不要著急,去橡膠五金店買幾塊黑色橡皮膠墊,厚度6-10毫米左右,大小10公分和地腳墊尺寸稍大點就行,松開地腳螺絲,把橡皮膠墊墊在水平地腳墊下面,就可以起到很大的減震功能了。
J. 精密交叉滾子軸承生產中機床砂輪出現振動如何調整
精密交叉滾子軸承一般用於精密數控轉台、醫療器械、測量儀器等設備,對軸承精度和壽命要求極高,洛陽佰納軸承專業生產各種型號精密交叉滾子軸承,在交叉滾子軸承生產方面積累了大量的經驗,技術精湛。軸承生產過程中砂輪震動問題是影響零件加工精度的一個特重要因素,所以了解如何克服磨床砂輪震動問題非常必要,下面佰納工程師就此問題做以下詳述:
軸承磨削屬於精加工,磨削時砂輪與零件接觸部分將進行高速磨削,所產生的磨削熱及機械力相當大,如果砂輪或軸承安裝不到位,固定不穩將造成砂輪和零件間震動增大,產生砂輪花甚至燒傷,因此避免砂輪震動的首要問題點就是:
1、電磁吸盤與工件的接觸是否良好;
2、工件支撐是否良好;
3、砂輪是否平衡。前兩點不難理解,這也是一個熟練磨工必須掌握的技能。調整工件和支撐十分重要,在此不再贅述;
砂輪平衡,主要可分為以下步驟:調平衡→安裝砂輪→試轉→修圓→拆卸→調平衡→安裝砂輪→試轉→修圓(至無振動為止,否則繼續調平),在設計生產中,新砂輪往往需要反復平衡3次以上才可用於工件磨削,對於直徑600mm以上的砂輪,振動量將增加,必須用專用水平儀調至穩定才能使用。以交叉滾子軸承為例,其滾道為90度直角形狀(如左圖),磨削時砂輪還必須注意角度問題,佰納軸承為測量滾道角度,專門設計了九十度直角樣板,調整砂輪平衡後必須實際磨削並用樣板比對,才能避免磨削過程中振動發生,保證軸承加工的精度。
綜上所述,影響交叉滾子軸承生產中機床砂輪震動的主要問題可概括為:安裝問題和修整問題,只有保證安裝才有一個好的開始,只有不斷修整才可彌補磨削損耗造成的精度喪失,當然,造成此類問題的原因還有好多,希望專業人士批評指點。