導航:首頁 > 器材知識 > 航空構件有哪些需要哪些切削技術和設備

航空構件有哪些需要哪些切削技術和設備

發布時間:2021-02-17 02:43:19

A. 製造飛機需要哪些材料和技術

飛機是一種非常復雜的抄設備,製造飛機需要的技術和知識實在太多了。
起碼應該有空氣動力學、飛行原理、飛行力學、飛機結構、材料學、機械制圖、結構力學、發動機原理與結構、航空儀表、電器、無線電、導航、可靠性設計、可維修性設計……等方面的知識;
起碼需要有機械設計、機械加工(車鉗鉚焊)、飛機結構設計、飛行控制、飛機機載設備的選型、飛機設備的裝配、飛機地面試驗和飛行試驗……等技術。
現代飛機可以說包括了現代幾乎大多數的先進技術,是現代先進技術的集中體現。

B. 天津都有那些航空航天企業啊航空航天領域的企業生產,都涉及那些工業設備和原料呢

先進復合材料具有輕質、高強度、高模量、抗疲勞、耐腐蝕、可設計、成型工藝性好和成本低等特點,是理想的航空結構材料,在航空產品上得到了廣泛應用,已成為新一代飛機機體的主體結構材料。復合材料先進技術的成熟使其性能最優和低成本成為可能,從而大大推動了復合材料在飛機上的應用。一些大的飛機製造商在飛機設計製造中,正逐步減少傳統金屬加工的比例,優先發展復合材料製造。本文旨在介紹在復合材料製造過程中所涉及到的主要工藝和先進專用設備。
復合材料在飛機上的應用
        隨著復合材料製造技術的發展,復合材料在飛機上的用量和應用部位已經成為衡量飛機結構先進性的重要標志之一。復合材料在飛機上的應用趨勢有如下幾點:
(1)復合材料在飛機上的用量日益增多。
       復合材料的用量通常用其所佔飛機機體結構重量的百分比來表示,世界上各大航空製造公司在復合材料用量方面都呈現增長的趨勢。最有代表性的是空客公司的A380客機和後續的A350飛機以及波音公司的B787飛機。A380上復合材料用量約30t。B787復合材料用量達到50%。而A350飛機復合材料用量更是達到了創紀錄的52%。復合材料在軍機和直升機上的用量也有同樣的增長趨勢,近幾年得到迅速發展的無人機更是將復合材料用量推向更高水平。
(2)應用部位由次承力結構向主承力結構發展。
        最初採用復合材料製造的是飛機的艙門、整流罩、安定面等次承力結構。目前,復合材料已經廣泛應用於機身、機翼等主承力結構。主承載部位大量應用復合材料使飛機的性能得到大幅度提升,由此帶來的經濟效益非常顯著,也推動了復合材料的發展。
(3)在復雜外形結構上的應用愈來愈廣泛。
       飛機上用復合材料製造的復雜曲面製件也越來越多,如A380和B787飛機上的機身段,球面後壓力隔框等,均採用纖維鋪放技術和樹脂膜滲透(RFI)工藝製造。
(4)復合材料構件的復雜性大幅度增加,大型整體、共固化成型成為主流。
        在飛機上大量採用復合材料的最直接的效果是減重,復合材料製件採用共固化、整體成型技術,能夠成型大型整體部件,明顯減少零件、緊固件和模具的數量,減少零件裝配,從而有效地降低製造成本。
(5)復合材料的製造手段和先進專用設備得到迅速發展和廣泛應用。
        傳統的復合材料製造技術自動化程度低,復合材料製件的質量不穩定,分散性大,可靠性差,生產成本居高不下,無法生產大型和復雜的復合材料製件。飛機結構尺寸的不斷增加使大尺寸復合材料製件的製造工藝變得極為重要。

        近年來,出現了各種各樣的自動化程度較高的製造技術,如纖維鋪放、樹脂膜轉移成型/滲透成型、電子束固化等技術。隨之研製並得以工業化應用的先進、高效、低成本專用設備也層出不窮,如三維編織機、全自動鋪帶設備和絲束鋪放設備等。這些高效自動化設備顯著提高了復合材料生產效率和製件內部質量,降低了成本,使復合材料性能最優化和低成本並存成為可能。
復合材料製造工藝及主要設備
        復合材料成型是一個比較復雜的過程。隨著各種新工藝、新技術的涌現,復合材料製造工藝已成為復合材料加工製造的關鍵,涵蓋的技術面廣、技術含量高,涉及的成本份額占總成本的80%以上。
      根據用途、批量、市場等要求的不同,航空航天用復合材料產品的成型工藝採用了手工鋪層、半自動成型、全自動成型以及液體成型等技術。下面就生產中主要涉及的工藝方法和主要設備加以重點說明。

(1)手工鋪層。
      目前,手工鋪層仍是被廣泛使用的傳統成型方法,甚至像B-2轟炸機以及一些通用飛機的製造也採用了大量的手工鋪層工序。因為這些產品的定貨量往往是一位數,而質量要求很高。手工鋪貼方法的優點是可使蒙皮厚度有大的變化,進行局部加強,嵌入接頭用的金屬加強片,形成加強筋和蜂窩夾芯區等。
目前,手工鋪層使用了許多專用設備來控制和保證鋪層的質量,如復合材料預浸料自動剪裁下料系統和鋪層激光定位系統等,即採用專門的數控切割設備來進行預浸料和輔助材料的平面切割,從而將依賴於樣板的製造過程轉變為可根據復合材料設計軟體產生的數據文件進行全面運作的製造過程。
       手工鋪層的缺點是要求鋪層人員有很高的技藝和施工經驗,手工鋪貼費工費時,因此效率低、成本高(占總成本的1/4),難以適應大批量生產和大型復雜復合材料製件的生產要求。因此,在60年代初,在手工鋪層復合材料實施幾年之後,就開發了自動鋪帶(ATL)技術。
[viewimg]
即使在美國,人工鋪帶也仍然採用,這是美國 Liberty Aerospace的工人正在操作

(2)自動鋪帶(ATL)。
      自動鋪帶技術採用有隔離襯紙的單向預浸帶,其裁剪、定位、鋪疊、輥壓均採用數控技術自動完成,由自動鋪帶機實現。多軸龍門式機械臂完成鋪帶位置的自動控制,鋪帶頭上裝有預浸帶輸送和切割系統,根據待鋪放工件邊界輪廓自動完成預浸帶的鋪放和特定形狀位置的切割。預浸帶在加熱狀態時,在壓輥的壓力作用下鋪疊到模具表面。
      自動鋪帶機根據鋪放製件的幾何特徵可分為平面鋪帶和曲面鋪帶兩類。隨著自動鋪帶設備、編程、計算機軟體、鋪帶技術以及材料的進一步發展,自動鋪帶的效率變得更高,性能更可靠,操作性更友好。與手工相比,先進鋪帶技術可降低製造成本的30%~50%,可成型超大尺寸和形狀復雜的復合材料製件,而且質量穩定,縮短了鋪層及裝配時間,工件近凈成型,切削加工及原材料耗費減少。目前,最先進的第五代鋪帶機是帶有雙超聲切割刀和縫隙光學探測器的十軸鋪帶機,鋪帶寬度最大可達到300mm,生產效率可達到手工鋪疊的數十倍。
      自動鋪帶機要成型復雜雙曲率型面,需採用窄帶,工作效率會降低,而一台鋪帶機的價格需要3~5百萬美元,成本太高。由此,Hercules率先開發了自動絲束鋪放(ATP)設備。
(3)自動絲束鋪放(ATP)。
      自動絲束鋪放技術結合了自動鋪帶和纖維纏繞技術的優點,鋪束頭把纏繞技術所用的不同預浸紗束獨立輸送和鋪帶技術所用的壓實、切割、重送功能結合在一起,由鋪束頭將數根預浸紗束在壓輥下集束成為一條寬度可變的預浸帶,然後鋪放在芯模表面,鋪放過程中加熱軟化預浸紗束並壓實定型。
       與自動鋪帶相比,自動鋪絲束技術可以成型更復雜的結構件,材料消耗率低,是自動化製造技術的頂峰,ATP設備對復合材料的重要性相當於銑床對金屬材料結構的重要性。它是介於自動纏繞與自動鋪帶之間的一種鋪層方法,特別適於復雜構件的製造。自動鋪放技術的基礎是鋪放機的設計與開發。
       以美國辛辛那提機床公司Viper纖維鋪放機系統為例。Viper纖維鋪放系統將纏繞、特型鋪帶及計算機控制結合起來,自動生產需要大量手工鋪層的復雜零件,從而縮短鋪層及裝配時間,由於工件近凈成型,切削加工及原材料耗費減少。
沃特公司製造波音787的23%的機身,其中包括5.8m×7m的47段及4.3m×4.6m的48段,採用了來自辛辛那提公司的自動鋪放機Viper6000。製造時,將東麗的3900系碳/環氧無緯帶鋪疊在大的筒形旋轉模具上,模具由互鎖的芯軸組成,筒形件鋪成後放在23.2m×9.1m的、世界上體積最大的熱壓罐中固化。目前,自動絲束鋪放機已可鋪放窄帶及寬頻絲束。
預浸絲束/帶的機器人自動鋪放已成為高性能纖維增強復合材料結構的一種強力高效技術。它是機電裝備技術、CAD/CAM軟體技術和材料工藝技術的綜合集成,包括:自動鋪放裝備技術、預浸絲束/帶切割技術、鋪放CAD技術、鋪放CAM技術、預浸絲束/帶技術、自動鋪放工藝技術、鋪放質量控制、模具技術、成本分析及控制和一體化協同數字化設計技術等,具有高效率、高質量、高重復性和低成本等優點。
[viewimg]
Viper6000大型ATP機,代表了當今自動絲束鋪放最高水平

(4)熱壓罐固化成型。
       熱壓罐固化成型是航空航天復合材料結構件傳統的製造工藝,它有產品重復性好、纖維體積含量高、孔隙率低或無孔隙、力學性能可靠等優點。熱壓罐固化的缺點主要是耗能高以及運行成本高等。而目前大型復合材料構件必需在大型或超大型熱壓罐內固化,以保證製件的內部質量,因此熱壓罐的三維尺寸也在不斷加大,以適應大尺寸復合材料製件的加工要求。目前,熱壓罐都採用先進的加熱控溫系統和計算機控制系統,能夠有效地保證在罐內工作區域的溫度分布均勻,保證復合材料製件的內部質量和批次穩定性,如准確的樹脂含量、低或無空隙率和無內部其他缺陷。這也是熱壓罐一直沿用至今的主要原因。

(5)復合材料液體成型。
       復合材料液體成型已是十分普及的工藝,它是以樹脂轉移成型(RTM)為主體,包括各種派生的RTM技術,大約有25~30種之多,其中,RTM、真空輔助RTM(VARTM)、真空輔助樹脂注射成型(VARI)、樹脂膜熔浸成型(RFI)和樹脂浸漬成形(SCRIMP)被稱為RTM的5大主要成型工藝,也是目前應用最多的RTM工藝。
       RTM的優點是成品的損傷容限高,可成型精度高、孔隙率小的復雜構件及大型整體件。RTM成型的關鍵是,要有適當的增強預形件以及適當黏度的樹脂或樹脂膜。RTM要求樹脂在注射溫度下的黏度值低,第一代環氧樹脂的粘度要求在500cps(0.5Pa·s)以下,以前對於較大尺寸的構件要求樹脂黏度低於250cps(0.25Pa·s),RTM工藝的主要設備是各種樹脂注射機和整體密閉型模具。
       隨著新型增強材料結構的不斷創新,編織技術和預成形體技術與RTM技術相結合,形成了新的工藝發展和應用方向。如採用三維編織技術將增強材料預製成3D結構,然後再與RTM工藝復合,也可將纖維織物通過縫紉或粘結的方法,直接預製成製件形狀,再採用RTM工藝成型復合材料。
       例如,EADS軍用飛機公司為B787後機身段製造的後壓力隔框,它是一個半球形的整體隔框,插在增壓的機身47段及非增壓的48段及尾段之間,它是用VARTM製造的,尺寸大約為4.3m×4.6m,波音787是首架具有復合材料後壓力隔框的飛機。該隔框的製造得益於Cytec公司的樹脂熔滲膜系統。韌化的復合材料有頂級阻燃/煙/毒性能,可以取消防火層,從而比傳統的樹脂熔滲法製得的結構輕。而波音787機身的大部分隔框則採用了碳纖維樹脂膜熔滲RFI技術製造,復合材料隔框用碳纖維復合材料抗剪箍連接在機身蒙皮上,由於設計及成本上的原因,少數部位仍採用鈦合金及鋁合金隔框。

(6)隔膜成型。
       隔膜成型原是一種為熱塑性復合材料開發的成型工藝,後發現用於熱固性復合材料具有很廣泛的用途。它具有成型過程中纖維不易滑動、不易產生皺褶的特殊功效,非常適用於加工大型飛機機翼前梁的C形截面。在近年推出的A400M等大型飛機前梁C形截面中,已廣泛採用了這種工藝方法。
       為成型出C形截面,預形件從鋪帶機上卸下送到由英國Aeroform公司提供的熱包膜成型機設備上成型。為便於抽真空,預形件應夾在兩個由俄亥俄州的杜邦電子技術公司提供的Kapton聚醯亞胺薄膜之間。薄膜之間抽真空,然後從零件上面進行紅外加熱,直到1h內將溫度升到60℃。這樣可以保證即使在梁根部的最厚截面中心,也可均勻加熱到同一溫度。然後緩緩對兩薄膜間層合板加壓,而在輕質模具上形成梁的內表面。這個C形截面可在30min內緩慢成型之後,去掉Kapton薄膜。
在歐洲推出的ALCAS計劃中,這種成型方法已成為加工飛機前梁的一種典型工藝方法。
(7)復合材料製件加工、裝配及無損檢測。
       復合材料製件成型後,需要進行機械加工,包括外形尺寸加工、鑽孔等,要求具有很高的加工質量。復合材料製件屬於脆性各向異性材料,常規的加工方法不能滿足復合材料加工質量要求。傳統切割方式在加工纖維材料時具有以下缺點:切割速度慢、效率低;復合材料製件屬於易變形材料,切割精度難以保證;在切割高韌性材料時,刀具和鑽頭等磨損快、損耗大;加工復合材料層合板時易發生分層破壞等。因此要求復合材料生產需配備大型自動化高壓水切割機、超聲切割設備和數控自動化鑽孔系統等專用設備,以滿足復合材料製件經加工後無分層磨損且符合裝配尺寸精度的要求。
       大型機翼蒙皮層合板一般採用大型高壓水切割機進行凈形切割,世界上最大切割機的床身為36m×6.5m,由Flow International公司製造。這種磨粒噴水切割機可以快速切割厚的層合板而不致產生層合板過熱,25mm厚的層合板可以0.67m/min速度切割,對6mm薄的層合板,切割速度可以高達3m/min,厚的蒙皮可以0.39m/min速度切割。
[viewimg]

       超聲切割設備將超聲振動能量載入在切割刀具上,可有效地分離纖維材料的邊界,從而有效解決上述傳統切割方法帶來的問題。超聲切割技術的切割質量優良,具有無毛刺、無刀具磨損、無碳化材料、切割力小、不易造成分層,切割速度快、精度高等特點。已經在國外航空企業內得到廣泛的應用。
       隨著飛機的金屬結構逐漸向復合材料結構轉移,復合材料製造的自動化顯得日益重要。而自動化程度較高的裝配技術尤其顯得重要。復合材料的使用使飛機機體有可能採用大型整體結構件製造,如787最後總裝只進行六大部件的對接,即前機身、中機身、後機身、機翼、水平安定面和垂直尾翼。這些整體大部件使裝配過程中避免使用傳統巨型工裝,而更多地採用攜帶型工具。飛機結構件的移動不採用龍門吊車。

       柔性裝配、自動鑽鉚等先進技術集成應用於復合材料大型部件的自動裝配中。飛機柔性裝配技術考慮作為裝配對象的航空產品本身特徵,基於飛機產品數字化定義,通過飛機柔性裝配流程、數字化裝配技術、裝配工裝設計、裝配工藝優化、自動定位與控制技術、測量、精密鑽孔、伺服控制、夾持等實現飛機零部件快速精確的定位和裝配,可減少裝配工裝的種類和數量,提高裝配效率和裝配准確度,提高快速響應能力,縮短飛機裝配周期,增強飛機快速研製能力。它是一種能適應快速研製、生產及低成本製造要求、滿足設備和工裝模塊化可重組的先進裝配技術。如B787的復合材料機翼結構件的移動採用了自動化導引車等柔性裝配技術。
       自動鑽鉚機廣泛應用於復合材料大型部件的自動裝配,如A380機翼裝配採用了自動化可移動鑽孔設備。這些鑽削設備與傳統金屬材料鑽削設備的本質區別在於,為保持鉚釘孔周圍的結構完整性,要求鑽孔時無分層,因此制孔一般要用硬質切削刀具,採用多步鑽孔法。鑒於復合材料的製造方法不同,其可切削加工性也各異。例如,編織結構為「十」字形花樣的織物,比單向排列的織物帶易切削,後者的磨損力更大且易產生分層、鑽孔時有纖維未切到的問題。因此,根據復合材料構件不同的成型方式,應選擇不同的鑽削參數、材料及形狀的鑽頭。
義大利自動鑽鉚機
      
       復合材料製件無損檢測設備主要需要配置大型超聲C掃描設備和X光無損檢測設備。此外,激光剪切攝影及激光超聲檢測也是主要發展方向。
       在超聲檢驗技術方面最重要的進展之一是相控陣檢驗的開發。相控陣超聲檢驗與傳統超聲檢驗相比,改進了探測的概率,並明顯加快了檢驗速度。
       傳統的超聲檢驗要用許多個不同的探頭來作綜合性的體積分析,而相控陣檢驗用一個多元探頭即可完成同樣的結果。這是由於每一個元素探頭可以進行電子掃描和電子聚焦,每一元素探頭的啟動有一個時間上的延遲。其結果是合成的超聲束的入射角可加以變化,焦點深度也可以變化,這就是說體積檢驗的速度可以比傳統法快得多。因為用傳統法時,探頭必須適時更換,而且必需多路傳輸才能得出不同的入射角和焦點深度。此外,相控陣探頭可提供更寬的覆蓋范圍,從而比傳統探頭有更高的生產效率。
(8)復合材料數字化設計製造一體化。
       復合材料零件成型獨特的工藝特點決定了它在設計製造方面與金屬零件有很大差異,而且更加復雜。
復合材料構件數字化設計製造以復合材料設計/製造平台和附和材料數字化製造設備為軟硬體基礎。改變了傳統復合材料的設計/製造方式,採用數字量形式對產品進行全面描述和數據傳遞,實現了設計與製造之間的無縫集成。
復合材料設計軟體與現有CAD系統的集成為設計/製造復合材料構件提供了有力平台。包括初步設計、工程詳細設計、製造詳細設計和製造輸出4個階段。
       復合材料構件數字化製造過程包括預浸料下料、鋪層鋪放、固化等工序,目前復合材料構件數字化製造主要體現在預浸料自動下料、激光鋪層定位和纖維自動鋪放等方面。
       例如,在B787項目中復合材料構件均採用了FiberSIM軟體進行數字化設計,將設計數據向全球夥伴發放,從而保證了復合材料構件數據的唯一性和准確性。由於B787大量採用數字化設計,因此其研發周期比B777縮短了3年。
復合材料構件數字化設計製造使實施並行工程成為可能,在設計早期階段解決製造問題,大大減少了車間修改和重復工作。設  計和製造數據的無縫集成縮短了製造時間,減少了人工編程帶來的誤差,提高了構件質量。
結束語
       綜上所述,隨著復合材料在飛機上用量的遞增,使復合材料製造業迅速成為飛機製造業的主要組成部分。今後飛機50%以上的結構件將由金屬轉為復合材料,復合材料製造將成為飛機製造的基本手段。復合材料製造工藝和專用設備是先進復合材料關鍵技術之一,值得我們投入大量的人力物力加以研發和應用。掌握了先進復合材料製造技術,就掌握了未來飛機的先進製造技術。

C. 簡述高速切削技術的關鍵技術,並說明高速切削技術在航空製造中的應用

高速切削是指,高轉速,高進給速度。表面光潔度非常高。
在航空領域,制回作航空設備外表面的加工要答求高光潔度。因此要採用高速切削。
而且,航空設備大多採用鈦合金。超高硬度。因此需採用高速切削進行加工才能達到加工要求!!

D. 加工航空機械部件需要哪些設備

這個,加工部件需要的設備跟是否是航空件無關,跟零件的精度、質量要求有回關;五六十年代,答我們沒有數控設備,也能生產出導彈的零部件;當然,有條件是可以買先進設備的,但是設備的投資是無止境的,沒有最好,只有更好,具體還是看你做哪個部分的零件,根據具體零件的尺寸、形狀、規格、等級、質量等要求進行選擇設備。

E. 飛機都有哪些零件

結構件是飛機零件中最大的一種零件。這類零件主要用鋁合金製造。基於製造工藝和零件重量考慮,以前主要採用鋁板經鉚而成(至今仍有部分零件採用此種方法製造)。現在采了全然不同的設計技術,需要將多種不同功能集成到一個結構件上。這就是集成設計技術。這種零件是用一塊實體鋁坯經銑削加工而成。這類零件很復雜,通常包含極小的底面和薄壁(0.6~2mm),呈蜂巢狀。這類零件的幾何形狀由不同的表面及規定的曲面構成。接近飛機外部輪廓的表面也是必須是自由曲面。 圖1 整體結構的Pilatus PC 9飛機主梁(圖片提供:StarragHeckert公司) 例如,Pilatus PC 9飛機的主梁,在以前的設計中是由156個不同零件構成的。這樣,就需要各種折彎設備和裝配夾具。在Pilatus PC 12飛機上,這類部件採用了集成設計技術。 零件的數量減少到3個,而且是採用簡單的螺栓連接(圖1)。 在25年前,這家飛機公司在開發飛機時,由於沒有復雜的軟體工具,NC技術還處於初期階段,只能用繁瑣的編程語言,如APT、Fortran等等定義復雜的幾何形狀;NC機床還是採用21/rD控制,從而嚴重聘用制了復雜形面和幾何形狀的生成。 由於某種原因上述原因,為控制鋁件的重量,用鋁板構成機架,即將20餘種不同形狀的板材成型件組裝和連接在一起構成一個大的結構件。零件成型過程極為復雜。工件材料要經過12次機械加工和4次熱處理,由於幾何形狀的不一致、拉伸/斷裂等,致使廢品率極高。這種機架的裝配需要6道工序,而且必須考慮到材料的拉伸問題。 如今,編程系統和CNC機床已經能使我們銑削加工出以前無法生成的形狀。以前,採用傳統技術,需要20多個板材成型件才能構成的部件,現在只用2個零件。幾何形狀極為復雜,必須完全滿足零件的所有要求。用一塊實體鋁坯銑制一個零件,其中98%的材料都變成了廢屑。 三步完成產品加工 NC編程過程需要的專業知識要求最高,要求集成各種不同生產工藝:CAD/CAM、切削刀具、夾具設計和銑削技術。現在只需三道貌岸然工序就可以製造出這樣一個機架部件:1)獲取經過預切削並帶有夾持用孔的原材料,2)銑削零件,3)手動鑽出鉚釘孔(利用夾具)。 零件毛刺在加工過程中完成。首件檢驗合格後,銑削加工過程自動進行,無需操作員干預。這樣就大大簡化了尺寸和裂紋的檢測,與以前的製造方法相比,降低了生產成本。集成結構還對零件裝配具有重大影響。整個模塊(部件)可以直接裝配。所製造的零件公差極為嚴格,具有很好的互換性。裝配精度得到保證,且過程穩定,大幅度縮短了所需的裝配時間。 圖2 特別適合於五軸聯動加工的StarragHeckert公司的STC 1000/130機床,功率為70kW時,主軸轉速為24,000r/min 適用於高速銑削的機床與刀具 坯料是用水刀將厚127mm或76mm的鋁板切切割到近似形狀。坯料尺寸為840×665mm,重90kg或60kg。 夾具包括角度板和標准孔系及加工工件第二面的真空接合適配板。機床採用特別適用於五軸聯動加工的斯達拉格海科特STC 1000/130型機床:主軸功率為70kW,在100%負載運行時最高轉速達24000r/min (圖2);主軸錐孔:HSK63A;機床X/Y/Z軸行程為:1700mm/1600mm1950mm;主軸可傾范圍:-60/+100°;工作台是B軸。該機床採用鋼板焊接結構,具有較高的剛度。 整個加工過程需要7把切削刀具和4把鑽頭。刀具為整體刀體,最大直徑為32mm,形狀配合的刀片能防止其在以高達24000r/min的轉速切削時離心力可能造成的損壞。全部刀具直徑都在25mm以上,中空冷卻,油霧潤滑。起先直徑小於25mm的刀具為整體硬質合金刀,採用收縮式刀柄。刀具長度為90和220mm.。 全部切削刀具連同刀柄都經過平衡,在24000r/min轉時平衡質量為Q2.5。為保證加工過程的安全,精確定義了每把刀具的切削參數,即採用專用軟體,對刀具組件進行了知識臨界速度(自振)檢測。零件經二次裝夾完成全部加工(包括鉚接孔)。為防止薄壁件在加工中的應力變形和保證嚴格控制的公差,面銑和周邊銑削採用了高速銑削加工工藝。在總的銑削加工時間內,約60%的時間需要五軸聯動加工,粗加工占總加工時間的40%,手動加工主要是去毛刺和鑽部分鉚釘孔。 圖3 二次裝夾時,利用一專用工件適配夾具夾持零件已加工面上的工藝搭子 結果超過預期 首先將工件用螺栓固定在夾具上,用雷尼紹測頭識別零件。第一道貌岸然工序是用直徑63mm 的刀頭,沿Z面運動,將工件粗銑至接近最終形狀。粗銑時的進給速度可達17m/min ,金屬切除率達6500mm 3 /min。 第二道工序是用25mm整體硬質合金立銑刀粗銑出零件外形。由於這一輪廓面是曲面,要採用五軸聯動加工才能獲得一致的精加工允差。隨後用直徑16mm 整體硬質合金立銑刀,以9m/min的進給出量對此外形進行精加工(五軸聯動)。零件的二次裝夾加工也採用同一夾具。 二次裝夾時,利用專用工件適配夾具夾持零件已加工面上的工藝搭子(圖3)。其第一道工序仍是用63mm 的銑刀,沿Z面粗銑出零件輪廓,以下工序亦與上述第一次裝夾的加工方法相同。隨後的精加工極為關鍵。此時,零件已經變得極薄,在振動下極易損壞。為防止損壞零件,精加工時要先加工零件輪廓,再加工凹槽。最後一道工序還包括使用一把直徑10mm 立銑刀將零件與工藝搭子分離。 就零件加工情況來看,對於這種新型飛機,各項結果均遠遠超出預期要求。所加工出的零件精度完全位於要求的嚴格公差范圍內,具有完全的互換性。整個生產周期縮短了75%並減少了生產人員。由於采連續加工鏈,可以實現快速變換並簡化了物流鏈。

F. 常見的金屬切削工藝設備有哪些

從零件的設計圖紙到零件成品合格交付,考慮到諸如金屬零件工藝路線的安排、機床的選擇、切削刀具的選擇、零件定位裝夾等一系列因素的影響,這樣才能避免由於工藝方案考慮不周而可能出現的質量問題。金屬切削機床就具有廣泛的工藝性能,可用於直線圓柱、斜線圓柱、圓弧和各種螺紋、蝸桿等復雜工件,具有直線插補、圓弧插補各種功能,並在復雜零件中發揮了良好的經濟效果。下面簡單介紹下常見的金屬切削機床設備有哪些:
一、車床設備
車床主要用於各種回轉表面和回轉體的端面。如車削內外圓柱面、圓錐面、環槽及成形回轉表面,車削端面及各種常用的螺紋,配有工藝裝備還可用於各種特形面。在車床上還能做鑽孔、擴孔、鉸孔、滾花等。
二、銑床設備
銑床一種用途廣泛的機床,在銑床上可以用於平面(水平面、垂直面)、分齒零件(齒輪、花鍵軸、鏈輪乖、螺旋形表面螺紋、螺旋槽)及各種曲面。此外還可用於對回轉體表面、內孔及進行切斷等工藝。工件裝在操作台上或分度頭等附件上,銑刀旋轉為主運動,輔以操作台或銑頭的進給運動,工件即可獲得所需的表面。由於是多刀斷續切削,因而銑床的效率較高。
三、刨床設備
刨床主要分為牛頭刨床、龍門刨床、單臂刨床及專門化刨床(如刨削大鋼板邊緣部分的刨邊機、刨削沖頭和復雜形狀工件的刨模機)等。龍門刨床因有一個由頂梁和立柱組成的龍門式框架結構而得名,操作台帶著工件通過龍門框架作直線往復運動,多用於大平面(尤其是長而窄的平面),也用來溝槽或同時完成數個中小零件的平面。大型龍門刨床往往附有銑頭和磨頭等部件,這樣就可以使工件在一次安裝後完成刨、銑及磨平面等。單臂刨床具有單立柱和懸臂,操作台沿床身導軌作縱嚮往復運動,多用於寬度較大而又不需要在整個寬度上的工件。
四、插床設備
插床主要用於各種平面(如水平面、垂直面和斜面及各種形槽、燕尾槽等)、直線成型表面。假如配有仿形裝置,還可用於空間曲面,如汽輪機葉輪,螺旋槽等。這類機床的刀具結構簡單,回程時不切削,一般用於單件小批量工件。
五、鏜床設備
鏜床適用於機械車間對單件或小批量的零件進行平面銑削和孔系工藝,主軸箱端部設計有平旋盤徑向刀架,能精確鏜削尺寸較大的孔和平面。此外還可進行鑽、鉸孔及螺紋。
六、磨床設備
磨床用磨料磨具(砂輪、砂帶、油石或研磨料等)作為工具對工件表面進行切削的機床,統稱為磨床。磨床可用於各種表面,如內外圓柱面和圓錐面、平面、齒輪齒廊面、螺旋面及各種成型面等,還可以刃磨刀具和進行切斷等,工藝范圍十分廣泛。由於磨削輕易得到高的精度和好的表面質量,所以磨床主要用於零件精工,尤其是淬硬鋼件和高硬度非凡材料的精工。
七、鑽床設備
鑽床具有廣泛用途的通用性機床,可對零件進行鑽孔、擴孔、鉸孔、鍃平面和攻螺紋等。在搖臂鑽床上配有工藝裝備時還可以進行鏜孔;在台鑽上配上萬能操作台還可銑鍵槽。
八、齒形設備
齒形切削機床齒輪是最常用的傳動件,有直齒、斜齒和人字齒的圓柱齒輪,直齒和弧齒的圓錐齒輪,蝸輪以及非圓形齒輪等。用於齒輪輪齒切削表面的機床稱為齒輪機床。

G. 航空母艦製造中需要哪些技術支持

1、從技術難度分析,設計和建造航母必須具備五大能力:大功率計算機輔助工程設計、大型試驗水池和風洞、航母特殊鋼、配套電子設備、艦載機技術。
2、建造航母必具大功率計算機輔助工程設計能力。冷戰當年,美國依靠大功率計算機的幫助,僅在一年半內就繪制出「尼米茲」級核動力航母建造所需的10萬余張圖紙。而蘇聯沒有這些條件,只好發動各設計局的精兵強將「土法上馬」,大量運用人工運算和繪制,結果用了比美國多兩倍的時間才勉強拿出大噸位航母的設計圖紙。
3、擁有大型風洞和試驗水池能力,是航母設計的重要手段。目前世界上只有美俄英法幾個屈指可數的國家能夠擁有這些研究和試驗設施。製造真正意義上的航母,前期對設計、製造、材料等相關領域的研究和試驗要求很高。
4、航母用鋼也是眾多國家心中永遠的痛。由於航母船體必須承受住9級以上風浪,對船板要求很高。目前最具有代表性的莫過於美國研製的HY-100特種鋼,它被美國政府視為戰略物資,不允許擅自出口。
5、配套電子設備能否跟上航母建造周期也是重要制約因素。美國航母使用的電子配套系統,一般在船體建造前幾年便已著手研製和生產,避免在總裝時出現「艦等設備」局面。蘇聯在這方面卻交足了學費。以「庫茲涅佐夫」號為例,該艦原定於1985年12月底下水,但海軍在1984年底提出改換艦上的無線電對抗系統型號,造艦計劃頓時陷於忙亂之中。新的型號設計變化致使12個系統訂貨脫期和方案被迫修改;造成報廢電纜400公里,新增電纜1200公里。
6、此外,建造航母,最關鍵的武器——艦載機也不是誰都能製造的。現今艦載機製造技術控制在極少數國家手裡。俄羅斯倚仗其雄厚的航空工業力量在艦載機製造上尚可與美國比肩。印度就是從俄購買的航母配屬艦載機。艦載機與常規陸基戰機相比,強調機體結構強度更高,必須具有短距離起飛能力,能夠抗海洋性氣候的腐蝕,機翼能夠折疊。這些苛刻要求,常使得那些有心造艦,卻無力造機的國家陷於窘境。

H. 飛機有幾個構件

大多數飛機由五個主要部分組成:機翼、機身、尾翼、起落裝置和動力裝置。 機翼 機翼的主要功用是為飛機提供升力,以支持飛機在空中飛行,也起一定的穩定和操縱作用。在機翼上一般安裝有副翼和襟翼。操縱副翼可使飛機滾轉;放下襟翼能使機翼升力系數增大。另外,機翼上還可安裝發動機、起落架和油箱等。機翼有各種形狀,數目也有不同。在航空技術不發達的早期為了提供更大的升力,飛機以雙翼機甚至多翼機為主,但現代飛機一般是單翼機。 在機翼設計的過程當中,經常提到的一個矛盾是飛機的穩定性和操作性兩個方面,上單翼飛機好像提起來的塑料袋,他非常的穩定,但是操作性稍微差一點;下單翼飛機好像托起來的花瓶,操作性很靈活,但是穩定性就稍微遜色一點。所以民用飛機一般採用上單翼設計,而表演用途或者其他對操作性要求高的的飛機都採用下單翼設計。 機身 機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備;還可將飛機的其它部件如尾翼、機翼及發動機等連接成一個整體。但是飛翼是將機身隱藏在機翼內的。 尾翼 尾翼包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可動的升降舵組成(某些型號的民用機和軍用機整個平尾都是可動的控制面,沒有專門的升降舵)。垂直尾翼則包括固定的垂直安定面和可動的方向舵。尾翼的主要功用是用來操縱飛機俯仰和偏轉,以及保證飛機能平穩地飛行。 起落架 起落裝置又稱起落架,是用來支撐飛機並使它能在地面和其他水平面起落和停放。陸上飛機的起落裝置,一般由減震支柱和機輪組成,此外還有專供水上飛機起降的帶有浮筒裝置的起落架和雪地起飛用的滑橇式起落架。它是用於起飛與著陸滑跑、地面滑行和停放時支撐飛機。 一般的飛機起落架有3個支撐點,根據這三個支撐點的排列方式,往往分為前三角起落架和後三角起落架。其中,前三角起落架指前面一個支撐點,後面兩個支撐點的起落架形式,使用此類起落架的飛機往往靜止時仰角較小,在起飛時很快就可以達到很高的速度,當速度達到一定的值時,向後拉起操縱桿,壓低水平尾翼,這時前起落架會稍稍抬起,瞬間機翼的兩面風速差達到臨界,飛機得到足夠的升力後即可起飛;後三角起落架採用的是前面兩個支撐點,後面一個支撐點的形式,使用此類起落架的飛機往往靜止時仰角較大,當飛機在跑道上達到一定的速度的時候,機翼兩面的風速差即可達到一個臨界,此時後起落架會被抬起,駕駛員繼續推油門桿,同時向後拉操作桿以控制飛機平衡,當速度達到一定的值時,飛機即可起飛。 動力 動力裝置主要用來產生拉力或推力,使飛機前進。其次還可以為飛機上的用電設備提供電力,為空調設備等用氣設備提供氣源。 現代飛機的動力裝置主要包括渦輪發動機和活塞發動機兩種,應用較廣泛的動力裝置有四種:航空活塞式發動機加螺旋槳推進器;渦輪噴射發動機;渦輪螺旋槳發動機;渦輪風扇發動機。隨著航空技術的發展,火箭發動機、沖壓發動機、原子能航空發動機等,也有可能會逐漸被採用。動力裝置除發動機外,還包括一系列保證發動機正常工作的系統,如燃油供應系統等。 講到飛機的動力裝置,就不得不講一下飛機的推重比。推重比就是飛機的推力與飛機所受到的重力的比值。目前,一般的民用飛機的推力是小於飛機的重力的,因為每增加一個KN的推力,都要增加飛機的製造成本。所以很多飛機都有一定的爬升速度和爬升角度。而當飛機的推力大於飛機的重力的時候,飛機可以實現高速爬升甚至垂直爬升,很多需要高機動性能的飛機,比如戰斗機等都有很大的推力和很小的重力。 另外,等同重力的要求下,飛機的推力越大,機翼面積就越小,飛機巡航阻力就越小,速度就越快,滑跑距離就越長。反之亦然。 飛機除了上述五個主要部分之外,還裝有各種儀表、通訊設備、領航設備、安全設備和其它設備等。

I. 製造飛機需要哪些材料和技術

目前在飛機上應用的主要有樹脂基復合材料。碳纖維復合材料等。樹脂基復合材料可分為「熱固性」與「熱塑性」兩大類。由於熱塑性復合材料具有工作溫度高、韌性好和可重復成形等優點,故美國F-22飛機早期設想主要採用熱塑性復合材料,而生產型F-22上卻完全相反,熱塑性復合材料只有1%的用量,熱固性復合材料用量卻高達23%,這是因為熱塑性復合材料的成本較高、預浸料硬挺和缺乏粘性而難以鋪貼成工件等。「環氧」和「雙馬來酷亞胺」都屬於熱固性樹脂,通常「環氧」應用較多,而F-22的全部蒙皮以及大量的肋、梁及水平安定面等都選用了「雙馬來」,「環氧」則只用於一些工作溫度較低的進氣道和框架等。

復合材料主要分布在飛機的哪些部位?

主要用於雷達罩、進氣道、機翼(含整體油箱等)、襟翼、副翼、垂尾、平尾、減速板及機身蒙皮等。例如美國的F-22機身蒙皮全都是高強度、耐高溫的樹脂基復合材料,法國的「陣風」機翼大部分部件和機身的一半都採用了碳纖維復合材料。

隱形材料

美國擁有大量的隱形飛機,像F-l17A、B-IB、B-2、F-22等,它們的隱形效果除採用外形設計(如B-2採用翼身融合、圓滑過渡的外形; F— 117A採用多面體外形)外,再就是取決於其隱形材料。

1991年的海灣戰爭中美國的隱形戰斗機F-117A出動1000多架次而無一受損,在國際上引起了極大的反響。目前世界各國都很重視對隱形飛機的研究。隱形材料堪稱隱形飛機的一大法寶。隱形材料可分為塗敷型和結構型兩種,前者指塗料、膠膜一類的材料,後者指功能與結構一體化的纖維增強樹脂基復合材料。F-117A只少量採用了復合材料,基本上是金屬半硬殼式結構,因此機身。機翼和尾翼均塗覆了鐵氧體吸波材料,而F-22的機身和機翼蒙皮基本上都由復合材料製成,只需要在一些金屬蒙皮上塗覆吸波材料,該塗料大概含磷基鐵。聯合攻擊戰斗機JSF為了適應海上環境,有可能採用不含談基鐵塗料,以防止鹽霧腐蝕。JSF還將同時採用有機聚合物膠膜以減少污染、降低成本和改善可維護性。

俄羅斯的l.44飛機採用了等離子體隱形技術,訪問這種隱形技術會不會對隱形材料的發展帶來危機?

俄羅斯的一些飛機設計師的思路確實與美國不同,他們認為美國採用的「外形設計+隱形材料」的隱形方案將影響飛機的機動性和戰鬥力,於是另闢溪徑,開發了等離子體隱形技術,即在飛機的某些部位裝上一些等離子發生器,在飛行過程中釋放等離子流,在飛機周圍形成等離子層,將飛機屏蔽起來,使雷達無法發現。現在的問題是尚不清楚這~技術的成熟程度和實際效果,預計在未來相當長的一段時間里人們不會放鬆對隱形材料的研究開發。

今後飛機上還會採用哪些新材料?

智能結構是今後飛機發展的一大趨勢、因此智能材料成為當前研究的新熱點。飛機上採用的智能結構是由各種智能材料製成的感測元件、處理元件和驅動元件組成的,而這三個組成部分相當於人的神經、大腦和肌肉、美國先進研究計劃局與格魯曼公司簽訂了一個合向,發展和驗證智能自適應機翼以提高飛機效率。例如對強擊機而言,智能自適應機翼可使它從航母上起飛的有效載荷提高20%。格魯曼公司的設計方案是將光導纖維埋入樹脂基復合材料製成機翼,這些光導纖維能像神經那樣感知機翼上因氣動條件變化而引起的壓力變化,根據光傳輸信號進行處理後發出指令,通過驅動元件驅動機翼前緣和後線自行彎曲。驅動可通過電流讓電陶瓷變形來實現,也可通過磁場讓磁致伸縮材料變形來實現。或通過加熱讓形狀記憶合金發生位移來實現,例如有一種形狀記憶合金驅動器可產生9噸推力和150毫米位移。格魯曼公司已決定以縮比為1/6的F/A-18飛機自適應機翼模型進行開發研究,還打算應用於無人機上。智能材料壓電陶瓷製成的感測器和驅動器可解決機翼和尾翼的顫振問題,例如F/A-JSE/F(美國海軍計劃未來10年內采購548架)垂尾的振動試驗表明,振動減少了80%。智能材料還將在其他領域發揮它的聰明才智,例如美國正在製造一種小型智能炸彈,可使一架重型轟炸機同時精確攻擊數百個獨立目標,還准備給這種炸彈裝上智能引信,巧妙地做到『不見目標不拉弦」。新的智能材料正在不斷開發出來,例如美國開發成功一種磁致形狀記憶合金、比熱致形狀記憶合金的性能更好人如美國一家公司發展了一種改進型磁致伸縮金屬材料(由俄、鎬、鐵線錢的合金), 比以往的磁致伸縮材料的伸長大40倍,可直接把電能轉換為機械能《即做驅動器),也可把機械能輟換為電能(即做感測器)。總之,智一能材料雖然尚處於早期開發階段,但正孕育著新的突破和大的發展。

在未來的先進發動機中,哪些新型材料將獲得應用或擴大用量?

主要有樹脂基復合材料、金屬基復合材料、陶瓷基復合材料和金屬間化合物等。樹脂基復合材料因其綜合性能(特別是耐熱性能)不斷提高,故從20世紀90年代初開始逐漸「進駐」發動機,當前已初露鋒芒,未來的用量將不斷擴大 。F119發動機正在執行用樹脂基復合材料取代鈦合金製造風扇送氣機區的計劃,可節省結構重量6.7公斤,並正在考慮用樹脂基復合材料風扇葉片取代現在的鈦合金空心風扇葉片,以期減輕結構重量30%。金屬基復合材料因其誘人的高比強度而已研究多年,但直到最近才有極少量的應用,世界上第一個在航空上應用的鈦基復合材料(屬於金屬基復合材料)零件就是F119發動機矢量噴管驅動器活塞。目前鈦基復合材料的價格仍很昂貴,今後其用量的拓展將主要取決於成本的降低程度。陶瓷基復合材料因其很高的使用溫度(140℃甚至更高)和很低的密度(2-4g/cm3),頗受發動機設計師和材料工作者的重視,是未來高推重比(l5-20)發動機渦輪及燃燒系統的首選材料,目前在使用可靠性方面還有些擔心,因此只限用於少量非關鍵受力部件,如用於Fll9發動機矢量噴管的內壁板等。金屬間化合物是世界各國廣泛研究的材料科學前沿命題,近期已把熱點集中於密度很小(3.7-3.9g/cm3)和長期使用溫度較高(700- 850C)的鈦鋁基合金,它將取代部分鎳基合金而顯著減輕發動機結構重量,具有良好的潛在應用前景。目前,鈦鋁基合金製成的第6級壓氣機轉子葉片正在Fll9發動機上進行驗證試驗。

J. 飛機各部位構件的材料組成有哪些

機翼材料 機翼是飛機的主要部件,早期的低速飛機的機翼為木結構,用布作蒙皮。這種機翼的結構強度低,氣動效率差,早已被金屬機翼所取代。機翼內部的梁是機翼的主要受力件,一般採用超硬鋁和鋼或鈦合金;翼梁與機身的接頭部分採用高強度結構鋼。機翼蒙皮因上下翼面的受力情況不同,分別採用抗壓性能好的超硬鋁及抗拉和疲勞性能好的硬鋁。為了減輕重量,機翼的前後緣常採用玻璃纖維增強塑料(玻璃鋼)或鋁蜂窩夾層(芯)結構。尾翼結構材料一般採用超硬鋁。有時殲擊機選用硼(碳)纖維-環氧復合材料,以減輕尾部重量,提高作戰性能。尾翼上的方向舵和升降舵採用硬鋁。 機身材料 飛機在高空飛行時,機身增壓座艙承受內壓力,需要採用抗拉強度高、耐疲勞的硬鋁作蒙皮材料。機身隔框一般採用超硬鋁,承受較大載荷的加強框採用高強度結構鋼或鈦合金。很多飛機的機載雷達裝在機身頭部,一般採用玻璃纖維增強塑料做成的頭錐將它罩住以便能透過電磁波。駕駛艙的座艙蓋和風擋玻璃採用丙烯酸酯透明塑料(有機玻璃)。飛機在著陸時主起落架要在一瞬間承受幾百千牛乃至幾兆牛(幾十噸力至幾百噸力)的撞擊力,因此必須採用沖擊韌性好的超高強度結構鋼。前起落架受力較小,通常採用普通合金鋼或超硬鋁.從60年代末期開始,在飛機上使用的復合材料,已由當初只應用於口蓋和艙門等非承力構件,逐步擴大應用到減速板和尾翼等次承力構件,而且正向用於機翼甚至前機身等主承力構件的方向發展。另外,為提高突防攻擊能力、不被敵方雷達捕獲,已在飛機上採用吸波材料

閱讀全文

與航空構件有哪些需要哪些切削技術和設備相關的資料

熱點內容
steam令牌換設備了怎麼辦 瀏覽:246
新生測聽力儀器怎麼看結果 瀏覽:224
化學試驗排水集氣法的實驗裝置 瀏覽:156
家用水泵軸承位置漏水怎麼回事 瀏覽:131
羊水鏡設備多少錢一台 瀏覽:125
機械制圖里型鋼如何表示 瀏覽:19
測定空氣中氧氣含量實驗裝置如圖所示 瀏覽:718
超聲波換能器等級怎麼分 瀏覽:800
3萬軸承是什麼意思 瀏覽:110
鑫旺五金製品廠 瀏覽:861
蘇州四通閥製冷配件一般加多少 瀏覽:153
江北全套健身器材哪裡有 瀏覽:106
水表閥門不開怎麼辦 瀏覽:109
花冠儀表盤怎麼顯示時速 瀏覽:106
洗砂機多少錢一台18沃力機械 瀏覽:489
超聲波碎石用什麼材料 瀏覽:607
組裝實驗室製取二氧化碳的簡易裝置的方法 瀏覽:165
怎麼知道天然氣充不了閥門關閉 瀏覽:902
公司賣舊設備掛什麼科目 瀏覽:544
尚葉五金機電 瀏覽:59