⑴ cpk值大小
合格以上為:0.33到2
⑵ CPK值如何計算
Cpk計算公式:
Min {(USL-X bar)/3s, (X bar-LSL)/3s}
USL:規格上限
LSL:規格下限
X bar:樣本平均值
s:樣本標准差
Cpk是Ca及Cp兩者的中和反應,Ca反應的是位置關系(集中趨勢),Cp反應的是散布關系(離散趨勢),當選擇製程站別用Cpk來作管控時,應以成本做考量的首要因素,還有是其品質特性對後製程的影響度。

CPK= Min[ (USL- Mu)/3σ, (Mu - LSL)/3σ]
雙側規格情形的過程能力指數,這時,過程能力指數CP的計算公式如下:式中,T為過程統計量的技術規格的公差幅度;TU、TL分別為上、下公差界限;σ為過程統計量的總體標准差,可以在過程處於穩態時得到。
以上內容參考:網路-過程能力指數
⑶ 什麼是CPK
CPK指的是信息安全領域。它的定義:CPK是Combined Public Key英文的縮寫,中文意思為:組合公鑰。是一種加密的演算法,以很小的資源,生成大規模的密鑰。
⑷ 請問Cmk值(設備能力指數)怎麼測算啊
這是一個以SMT(電子行業貼片作業的過程):
當今產品的普遍趨勢是小型化,同時又要增加性能和降低成本,這不可避免地導致在SMT所有領域中的更大的工藝開發。例如,高性能貼裝系統的用戶希望供應商有新的發展,從而可以大大增加貼裝產量,同時又提高貼裝精度。就貼裝的最重要方面:貼裝精度而言,用戶都希望所規定的設備參數值可以維持幾年不變。這些規定的值通常作為機器能力測試(MCT, machine capability test)的一部分,在供應商自己的地方為貼裝機器的客戶進行檢驗。
MCT工藝
貼裝系統的標准偏差和標稱值的平均值偏差,是貼裝精度的兩個核心變數,作為MCT的一部分進行測量。MCT是以下列步驟進行的:首先,將某個最少數量的玻璃元件貼裝在一塊玻璃板上的粘性薄膜上。然後使用一部高精度測量機器來測定所有貼裝的玻璃元件在X,Y和θ上的貼裝偏差。測量機器然後計算在有關位置軸X,Y和θ上的貼裝偏移(標稱值的平均值偏差)。
在圖一中以圖形代表的MCT結果得到如下的核心貼裝精度值:
標准偏差 = 8 µm
貼裝偏移 = 6 µm
圖一、MCT結果的圖形表示
通常,我們可以預計貼裝偏差符合正態高斯分布,允許變換到更寬的統計基數,如3或4σ。對於經常使用的統計基數,上述指定的貼裝系統具有32µm的精度。
將導出的精度與所要求的公差極限相比較,則可評估機器對於一個特殊要求的可適用性。機器能力指數(cmk, machine capability index)已經被證明是最適合這一點的。它通常用來評估機器的工藝能力(process capability)。
一旦上限(USL, upper specification limit)與下限(LSL, lower specification limit)已經定義,cmk可用來計算貼裝精度。
由於極限值一般是對稱的,我們可以用簡化的規格極限SL=USL=-LSL進行計算,如圖一所示。
cmk= 規格極限-貼裝偏移 3x標准偏差 = 3SL-µ 3σ
以下的cmk結果是針對圖一所提出的條件和客戶所定義的50µm規格極限。
cmk= SL-µ 3σ = (50-6)µm 24µm =1.83
因此,cmk評估貼裝位置相對於三倍的標准偏差值的分散與平均偏差(貼裝偏移)。
在實際中,我們怎樣處理統計變數σ、cmk和百萬缺陷率(DPM, defects per million)?在今天的電子製造中,希望cmk要大於1.33,甚至還大得多。1.33的cmk也顯示已經達到4σ工藝能力。6σ的工藝能力,是今天經常看到的一個要求,意味著cmk必須至少為2.66。在電子生產中,DPM的使用是有實際理由的,因為每一個缺陷都產生成本。統計基數3、4、5、6σ和相應的百萬缺陷率(DPM)之間的關系如下:
3σ = 2,700 DPM4σ = 60 DPM5σ = 0.6 DPM6σ = 0.002DPM
這里是其使用的一個實際例子:在一個要求最大封裝密度的應用中(如,行動電話),對於0201元件的貼裝精度要求可能是75µm。
第一種情況:我們依靠供應商所規定的75µm/4σ的貼裝精度。在這種情況中,我們希望在一百萬個貼裝中,不多於60個將超出±75µm的窗口。
第二種情況:MCT基於某一規格極限產生1.45的cmk。因為1.33的cmk准確地定義一個4σ工藝,我們可以預計得到由於貼裝偏差產生的缺陷率低於60 DPM。
貼裝偏移的優化
在SMT生產工藝中,如果懷疑在印刷電路板上的整個貼裝特性由於外部機械的影響而已經在一個特定方向移動太多,那麼貼裝設備必須重新校正。因此這個貼裝偏移必須盡可能地減少。有大量貼裝系統的表面貼裝元件(SMD)電子製造商以類似於MCT的方法進行貼裝偏移的優化,並使用其它的測量機器。在相關位置軸X、Y和θ上得到的貼裝偏移結果手工地輸入到貼裝系統,用於補償的目的。
下面描述的是結合在貼裝機器內的一種貼裝偏移優化方法。
這里想法是要在貼裝系統上允許運行一個類似的測量程序,該程序通常是MCT的一部分。目的是,機器找出在X、Y和θ上的貼裝偏移,然後以一種不再發生偏移的方式使用。
整個過程是按如下進行的:盡可能最大數量(如48)的玻璃元件使用雙面膠帶貼裝在玻璃板上。每一個玻璃元件在其外邊緣上都有參考標記。在板上也有參考標記,緊鄰元件的參考標記(圖二)。
[img]
圖二、找出貼裝偏移的原理
在貼裝之後,用PCB相機馬上拍出板上和元件上相應的參考標記的四張連續的照片。然後把通過評估程序計算出的和用戶接受的X、Y和θ貼裝偏移傳送到有關的機器數據存儲區域。再沒有必要使用傳統的手工位移輸入。由於該集成的方法使用了相對測量而不是絕對測量,位置精度與貼裝系統的動態反應不會反過來影響結果的質量。只有PCB相機的圖象解析度和質量才是重要的。因此這個所描述的專利方法具有測量機器的特性。
下面的例子顯示1.33的cmk可以怎樣使用集成的貼裝偏移優化來提高至1.92。
假設如下初始條件:
SL = 50 µm
標准偏差 = 8 µm
貼裝偏移 = 18 µm
原始 cmk:
cmk= SL-µm 3σ = (50-18)µm 24µm =1.33
[img]http://www3.6sq.net/cdb/pic/UXNz_zrTDMP7Mw==.bmp[/img]
將貼裝偏移減少到,比如說,4µm如圖三所示,那麼cmk的值將有很大改善。
貼裝偏移優化之後的cmk:
cmk= SL-µm 3σ = (50-4)µm 24µm =1.92
安裝在生產線中的貼片機可以升級到盡可能最高的貼裝精度,而不需要復雜的、昂貴的和通常難買到的測量機器。或多或少通過簡單按下優化過程的按鈕,該貼裝系統就轉換成一部高精度測量機器。
⑸ cpk值是什麼意思
過程能力指數,表示過程能力滿足技術標准(例如規格、公差)的程度,記為CPK。也稱工序能力指數,指工序在一定時間里,處於控制狀態(穩定狀態)下的實際加工能力。
它是工序固有的能力,或者說它是工序保證質量的能力。這里所指的工序,是指操作者、機器、原材料、工藝方法和生產環境等五個基本質量因素綜合作用的過程,也就是產品質量的生產過程。

(5)如何評估設備CPK擴展閱讀
過程能力指數CP、CPK以及單側過程能力指數CPU、CPL中要使用過程的總體參數:均值μ和標准差σ,總體參數要通過尋找過程的穩態來得到,因此,過程能力指數的前提條件是過程處於穩態,即只有偶因沒有異常的狀態。
只有當過程處於穩態時,才可以計算過程能力指數。過程能力指數反映了過程的固有能力滿足標准與規范的程度,是描述過程固有能力的指標。
過程能力指數的值越大,表明產品的離散程度相對於技術標準的公差范圍越小,因而過程能力就越高;過程能力指數的值越小,表明產品的離散程度相對公差范圍越大,因而過程能力就越低。因此,可以從過程能力指數的數值大小來判斷能力的高低。
從經濟和質量兩方面的要求來看,過程能力指數值並非越大越好,而應在一個適當的范圍內取值。
⑹ 在驗收機床的時候,CMK和CPK有什麼區別
Cmk是德國汽車行業常採用的參數,稱為臨界機器能力指數,它僅考慮設備本身的影響,同時考慮分布的平均值與規范中心值的偏移;由於僅考慮設備本身的影響,因此在采樣時對其他因素要嚴加控制,盡量避免其他因素的干擾,計算公式與Ppk相同,只是取樣不同。
CP(或Cpk)工序能力指數,是指工序在一定時間里,處於控制狀態(穩定狀態)下的實際加工能力。它是工序固有的能力,或者說它是工序保證質量的能力。
這里所指的工序,是指操作者、機器、原材料、工藝方法和生產環境等五個基本質量因素綜合作用的過程,也就是產品質量的生產過程。產品質量就是工序中的各個質量因素所起作用的綜合表現
所以,一般有如下具體區別,
CPK:強調的是過程固有變差和實際固有的能力;
CMK:考慮短期離散,強調設備本身因素對質量的影響;
CPK:分析前提是數據服從正態分布,且過程受控;(基於該前提,CPK一定>0)
CMK:用於新機驗收時、新產品試制時、設備大修後等情況;
CPK:至少1.33
CMK:至少1.67
CMK一般在機器生產穩定後約一小時內抽樣10組50樣本
CPK在過程穩定受控情況下適當頻率抽25組至少100個樣本