『壹』 汽車電瓶檢測儀的汽車電瓶測試儀的測試方法
汽車電瓶測試儀通常有傳統測試和電導儀測試兩種方法。 1、傳統汽車電瓶測試的依據
目前,世界上幾乎所有的汽車所用的電瓶都是鉛酸蓄電池,鉛酸蓄電池最大的特點就是隨著電瓶的使用,極板逐漸老化,當容量降低到他額定容量的80%的時候,可能呈「跳水式」下降,這時盡管該汽車電瓶可能仍然能夠提供一定的能量,但隨時可能報廢。在國際國內的汽車電瓶行業,都把80%的汽車電瓶容量作為汽車電瓶的一個臨界點,因此當汽車電瓶容量降低到其原額定容量的80%的時候,這個汽車電瓶就需要更換了。
2、傳統辦法健康的判定
判定汽車電瓶健康狀況的傳統辦法就是放電,通過放電來測試汽車電瓶目前的實際容量,從而判定汽車電瓶的健康狀況。對於電瓶來說,國際汽車電瓶協會(BCI)規定,在常溫下以1/2的額定冷起動電流值進行放電15秒,如果汽車電瓶電壓為9.6V以上,這個汽車電瓶就通過了放電實驗,是個健康的汽車電瓶。
3、傳統的方法以外加負載來測試汽車電瓶,其手段不足有以下表現:
A、被測試的汽車電瓶必須滿充,至少有12.4V,由於測試原理是放電,如果測試對象已經部分放電,必然導致測量的結果電壓值偏低而造成誤判;
B、對於同一個汽車電瓶,無法連續重復測量,得到相同的的結果。由於測試過程就是放電過程,被測試的汽車電瓶在測試後,必須重新充電,才能再次測量;
C、測試過程發出大量的熱,無法連續測試多個的汽車電瓶;
D、測試過程要求測試者訓練有素,由於必須在放電15秒的瞬間讀出汽車電瓶的電壓值,操作者的水平和責任心都會對測試結論產生影響。
4、傳統檢測造成的影響
正是由於傳統測試汽車電瓶手段不足的原因,汽車電瓶經銷商以及汽車維修站、汽車經銷商常常將好的汽車電瓶作為壞汽車電瓶退回給廠家,據美國最大的汽車汽車電瓶經銷商INTERSTATE統計,在退回來的所謂的壞電瓶中,50%實際上是好的,這些電瓶需要的是充電,而不是更換,這部分好電瓶,只是因為失誤的判斷,無謂地往返於廠家和經銷商之間,白白造成彼此的耗費。 由於許多的汽車維修網點缺乏高效的測試工具,未能在車主遇上問題前及時發現已經衰弱的電瓶,從而喪失了潛在的銷售汽電瓶的機會。傳統使用的比重指示、端電壓等測試手段反映的都是電瓶的充電情況(SOC),而非健康情況(SOH),無法作為檢驗汽車電瓶是否需要更換的有效方法。 1、電導測試儀的技術原理
經過國際上大量的實驗數據表明,電導值與汽車電瓶容量呈很好的線形關系。對於同一種電瓶,隨著使用後電瓶容量的下降,該電瓶的電導值也會下降,這樣的一個線形關系正是電導儀能夠正確判定電瓶健康情況的基礎。正因為如此,國際電氣和電子工程師協會(IEEE)正式把電導測試法作為測試汽車電瓶的測試標准之一,在IEEE標准1118-1996的第15頁,明確指出,汽車電瓶電導的測量是將已知頻率和振幅的交流電壓加到電瓶的兩端,然後測量所產生的電流。交流電導值就是與交流電壓同相的交流電流分量與交流電壓的比值,明顯的電導值的變化(下降大於20%)就意味著汽車電瓶性能的變化。
2、電導檢測儀的工作原理
汽車電瓶隨著使用時間的增加,會逐漸老化,其老化的主要原因正是汽車極表面發生硫化、腐蝕,活性材料脫落,無法再進行有效的化學反應,這是絕大部分電瓶無法繼續使用的主要原因。電導儀的工作原理就是通過測量極板表面的情況,判定其化學反應能力,並通過極板的變化來推斷汽車電瓶容量的變化,從而判定汽車電瓶的健康狀況。電導儀所進行的測試工作就是以汽車電瓶目前測得的實際電導值與汽車電瓶完好時的標准電導值進行比較,如果差異大到一定程度,就可以判定該汽車電瓶需要更換了。實踐證明,電導儀的測試結果與用1/2的CCA值放電的測試結果是吻合的,充分說明了電導測試儀測試的科學性、准確性。

『貳』 要做電動汽車電池soc估計需要怎麼開始
正確估計蓄電池的SOC,就能夠在實現整車能量管理時,避免對電動汽車蓄電池造成損害,合理利用蓄電池提供的電能,提高電池的利用率,延長電池組的使用壽命。SOC估計有其特殊性,溫度不同、倍率不同、SOC點不同,充放電效率也不同;電池放電倍率越大,放出電量越少;電池工作的溫度過高或過低,可用容量降低;由於有老化和自放電因素的存在,SOC值需要不斷修正。 1.放電實驗法 放電實驗法是最可靠的SOC估計方法,採用恆定電流進行連續放電,放電電流與時間的乘積即為剩餘電量。放電實驗法在實驗室中經常使用,適用於所有電池。但它有兩個顯著缺點:一是需要大量時間;二是電池進行的工作要被迫中斷。放電實驗法不適合行駛中的電動汽車,可用於電動汽車電池的檢修。 2.安時計量法 安時計量法是最常用的SOC估計方法。如果充放電起始狀態為SOCO,那麼當前狀態的SOC為
(5-3) 式中,CN為額定容量;I為電池電流;η為充放電效率,不是常數。 安時計量法應用中的問題:電流測量不準,將造成SOC計算誤差,長期積累,誤差越來越大;要考慮電池充放電效率;在高溫狀態和電流波動劇烈的情況下,誤差較大。電流測量可通過使用高性能電流感測器解決,但成本增加。解決電池充放電效率要通過事前大量實驗,建立電池充放電效率經驗公式。安時計量法可用於所有電動汽車電池,若電流測量准確,有足夠的估計起始狀態的數據.則它就是一種簡單、可靠的SOC估計方法。 3.開路電壓法 電池的開路電壓在數值上接近電池電動勢。電池電動勢是電解液濃度的函數,電解液密度隨電池放電成比例降低,用開路電壓可估計SOC。鎳氫電池和鋰離子電池的開路電壓與SOC關系的線性度不如鉛蓄電池好,但根據其對應關系也可以估計SOC,尤其在充電初期和末期效果較好。 開路電壓法的顯著缺點是需要電池長時靜置,以達到電壓穩定。電池狀態從工作恢復到穩定,需要幾個小時甚至十幾個小時,這給測量造成困難;靜置時間如何確定也是一個問題,所以該方法單獨使用只適於電動汽車駐車狀態。開路電壓法在充電初期和末期SOC估計效果好,常與安時計量法結合使用。 4.負載電壓法 電池放電開始瞬間,電壓迅速從開路電壓狀態進入負載電壓狀態,在電池負載電流保持不變時,負載電壓隨SOC變化的規律與開路電壓隨SOC的變化規律相似。 負載電壓法的優點:能夠實時估計電池組的SOC,尤其在恆流放電時,具有較好的效果。在實際應用中,劇烈波動的電池電壓給負載電壓法應用帶來困難。解決該問題,要儲存大量電壓數據,建立動態負載電壓和SOC的數學模型。負載電壓法很少應用到實車上,但常用來作為電池充放電截止的判據。 5.內阻法 電池內阻有交流內阻(impedance,常稱交流阻抗)和直流內阻(resistance)之分,它們都與SOC有密切關系。電池交流阻抗是電池電壓與電流之間的傳遞函數,是一個復數變數,表示電池對交流電的反抗能力,要用交流阻抗儀來測量。電池交流阻抗受溫度影響大,是在電池處於靜置後的開路狀態還是在電池充放電過程中進行交流阻抗測量,存在爭議,所以很少用於實車上。直流內阻表示電池對直流電的反抗能力,等於在同一很短的時間段內,電池電壓變化量與電流變化量的比值。在實際測量中,將電池從開路狀態開始恆流充電或放電,相同時間內負載電壓和開路電壓的差值除以電流值就是直流內阻。鉛蓄電池在放電後期,直流內阻明顯增大,可用來估計電池SOC;鎳氫電池和鋰離子電池直流內阻變化規律與鉛蓄電池不同,應用較少。直流內阻的大小受計算時間段影響,若時間段短於10ms,只有歐姆內阻能夠檢測到;若時間段較長,內阻將變得復雜。准確測量單體電池內阻比較困難,這是直流內阻法的缺點。內阻法適用於放電後期電動汽車電池SOC的估計,可與安時計量法組合使用。 6.線性模型法 C.Ehret等人提出用線性模型法估計電池SOC,該方法是根據SOC變化量、電流、電壓和上一個時間點SOC值計算,建立的線性方程為 (5-4) (5-5) 式中,SOC(i)為當前時刻的SOC值;SOC(i-1)為當前一時刻的SOC值;△SOC(i)為SOC的變化量;U和I為當前時刻的電壓與電流。β0、β1、β2、β3為根據參考數據,利用最小二乘法擬合得到的系數,沒有具體的物理含義。上述模型適用於低電流、SOC緩變的情況,對測量誤差和錯誤的初始條件,有很高的魯棒性。線性模型理論上可應用於各種類型和在不同老化階段的電池,目前只查到在鉛蓄電池上的應用,在其他電池上的適用性及變電流情況的估計效果要進一步研究。 7.神經網路法 電池是高度非線性的系統,在它充放電過程中很難建立准確的數學模型。神經網路具有非線性的基本特性,具有並行結構和學習能力,對於外部激勵,能給出相應的輸出,能夠模擬電池動態特性,來估計SOC。估計電池SOC常採用三層典型神經網路率:輸入、輸出層神經元個數由實際問題的需要來確定,一般為線性函數;中間層神經元個數取決於問題的復雜程度及分析精度。估計電動汽車電池SOC,常用的輸入變數有電壓、電流、累積放出電量、溫度、內阻、環境溫度等。神經網路輸入變數的選擇是否合適,變數數量是否恰當,直接影響模型的准確性和計算量。神經網路法適用於各種電池,缺點是需要大量的參考數據進行訓練,估計誤差受訓練數據和訓練方法的影響很大。 8.卡爾曼濾波法 卡爾曼濾波理論的核心思想,是對動力系統的狀態做出最小方差意義上的最優估計。應用於電池SOC估計,電池被看成動力系統,SOC是系統的一個內部狀態。估計SOC演算法的核心,是一套包括SOC估計值和反映估計誤差的、協方差矩陣的遞歸方程,協方差矩陣用來給出估計誤差范圍。該方法 適用於各種電池,與其他方法相比,尤SOC於電流波動比較劇烈的混合動力電動汽車電池SOC的估計,它不僅給出了SOC的估計值,還給出了SOC的估計誤差。 對各種估算方法的優缺點、適用場合進行比較分析,比較分析結果見表5-5。
『叄』 標題EV160的電動汽車的電池SOC是通過什麼的測量計算出來的
估算方法如下:
1、安時積分法:經典的SOC估算一般採用安時積分法(也叫電流積分法或者庫侖計數法)。即電池充放電時,通過累積充進和放出的電量來估算SOC。
2、開路電壓法:一般校準方法採用開路電壓法。其原理是利用電池在長時間靜置的條件下,開路電壓與SOC存在相對固定的函數關系,從而根據開路電壓來估算SOC。
3、卡曼濾波法:卡爾曼濾波已廣泛應用於航天、通信、導航、控制、圖像處理等領域。對於動力電池採用卡爾曼濾波進行SOC估算,是當前非常主流的一個方向。
4、神經網路:神經網路法是模擬人腦及神經元來處理非線性系統的新型演算法。無需深入研究電池的內部結構,只需提前從電池中提取出符合工作特性的輸入與輸出樣本,並將其輸入到建立系統中,就能獲得運行中的SOC 值。
『肆』 鋰電池電量怎麼測試
可以用精密電池測試系統來測試(其他容量測試設備也可):測試方法----為先橫流充電至4.2(單節鋰電池)8.4(雙節鋰電池),再恆壓充電,用截止電池控制。然後用0.2C放電至3V
(單節鋰電池)6V(雙節鋰電池)。此時的放電容量即為電池的電量。
『伍』 電池的soc什麼意思
EN表示歐洲標准,SOC表示荷電狀態,即剩餘電量。soc代表的是電池剩餘容量情況,其取值范圍為0~1,當SOC=0時表示電池放電完全,當SOC=1時表示電池完全充滿。在車輛蓄電池使用一段時間之後,要使用蓄電池檢測儀來檢測蓄電池的使用情況,不滿足使用需要及時更換。
SOC是BMS系統中最重要的參數,因為其他一切都是以SOC為基礎的,所以它的精度和健壯性極其重要。如果沒有精確的SOC,加再多的保護功能也無法使BMS正常工作,因為電池會經常處於被保護狀態,更無法延長電池的壽命。SOC的估算精度也是十分重要的。精度越高,對於相同容量的電池,可以有更高的續航里程。所以,高精度的SOC估算可以有效地降低所需要的電池成本。
SOC是BMS系統中最重要的參數,因為其他一切都是以SOC為基礎的,所以它的精度和健壯性極其重要。如果沒有精確的SOC,加再多的保護功能也無法使BMS正常工作,因為電池會經常處於被保護狀態,更無法延長電池的壽命。SOC的估算精度也是十分重要的。精度越高,對於相同容量的電池,可以有更高的續航里程。所以,高精度的SOC估算可以有效地降低所需要的電池成本。
內阻SOC計算公式方法:內阻測量法是用不同頻率的交流電知激勵電池,測量電池內部交流電阻,並通過建立的計算模型得到 SOC 估計值。該方法測量得到的電池荷電狀態反映道了電池在某特定恆流放電條件下的SOC值。
安時積分SOC計算公式方法:實時測量電池包主迴路電流,並將其對時間積分,充電為負放電為正。放電過程,用初始電量減去積分結果,得到當前電量;充電過程,用初始電量加上積分結果,得到當前電量。安時積分法的一個問題是,初始電量的判斷,無法直接得到。另外,由於系統電流的波動性很大,而電流采樣是間隔一定時間進行一次,使得采樣值與一段時間的
平均值並不一定近似,長時間累積下來,造成比較明顯的誤差,並且誤差不是安時積分法自己能夠消除的。因此,安時積分的實際應用必須與其他方法相結合,解決初值和累積誤差的問題。
『陸』 蓄電池檢測儀檢測的數據中「soc」和「soh」是什麼意思
soc是說充滿電使用一段時間還剩多少電;soh是充電倍率,電池充電的電流值。
蓄電池檢測儀具有蓄電池在線檢測產品的檢測功能,有強大的軟體分析功能、數據處理功能、存儲功能,是人工維護電源的專業檢測儀表。
可以用於電力、通信、交通、金融、蓄電池生產企業、電動車生產廠、玩具廠、汽車修理的蓄電池質量檢驗,為蓄電池配組提供依據。
使用方法:
直流測試:利用蓄電池放電給測試儀器,測量出加在蓄電池內阻上的壓降,然後除以放電電流得出蓄電池內阻,一般的測試電流都很大,達到50A-80A左右。
優點:測試准確、一致性好。
缺點:測試電流大,必須把探頭與蓄電池極柱穩定連接,如果接觸不好會打出電弧,存在安全隱患。

(6)電池測試設備怎麼測soc擴展閱讀
內阻測試
傳統的蓄電池容量檢測方法是進行整組核對性放電,即把蓄電池組連接到負載箱,然後進行放電,一直放到截止電壓(沒電)為止,來驗證蓄電池的容量,但是這種方法有很多隱患和缺點:
1、放電時間長,風險大,電池組須脫離系統,蓄電池組所存儲的化學能全部以熱能形式消耗掉,既浪費了電能又費時費力,效率低。
2 進行核對性放電試驗,必須具備一定條件,首先,盡可能在市電基本保障的條件下進行;其次 ,必須有備用電池組 。
3、核對放電只能測試整組電池容量,不能測試每一節單體電池容量,以容量最低的一節作為整組容量,而其他部分電池由於放電深度不夠,其劣化或落後程度還不能完全充分暴露出來。
4、有損蓄電池的容量。由於蓄電池的內部化學反應不是完全可逆的。全深度循環放電的次數是有限的,所以,不適宜對鉛酸蓄電池頻繁進行深放電。
但是間隔時間過長,兩次核對之間的蓄電池的狀態是不確定的。蓄電池的容量下降到80%以下後,蓄電池便進入急劇的衰退狀況,衰退期很短,可能在一次核對放電後幾個月就失效,而在剩下的時間內電池組已存在極大的事故隱患。
『柒』 soc 功能驗證的方法主要有哪些
SoC的定義多種多樣,由於其內涵豐富、應用范圍廣,很難給出准確定義。一般說來, SoC稱為系統級晶元,也有稱片上系統,意指它是一個產品,是一個有專用目標的集成電路,其中包含完整系統並有嵌入軟體的全部內容。同時它又是一種技術,用以實現從確定系統功能開始,到軟/硬體劃分,並完成設計的整個過程。
SOC,或者SoC,是一個縮寫,包括的意思有: 1)SoC: System on Chip的縮寫,稱為系統級晶元,也有稱片上系統,意指它是一個產品,是一個有專用目標的集成電路,其中包含完整系統並有嵌入軟體的全部內容。 2)SOC: Security Operations Center的縮寫,稱為安全運行中心,或者安全管理平台,屬於信息安全領域的詞彙。一般指以資產為核心,以安全事件管理為關鍵流程,採用安全域劃分的思想,建立一套實時的資產風險模型,協助管理員進行事件分析、風險分析、預警管理和應急響應處理的集中安全管理系統。 3)民航SOC:System Operations Center的縮寫,指民航領域的指揮控制系統。 4)SOC:state of charge的縮寫,指荷電狀態。當蓄電池使用一段時間或長期擱置不用後的剩餘容量與其完全充電狀態的容量的比值,常用百分數表示。SOC=1即表示為電池充滿狀態。控制蓄電池運行時必須考慮其荷電狀態。 5)一個是Service-Oriented Computing,「面向服務的計算」 6)SOC(Signal Operation Control) 中文名為信號操作控制器,它不是創造概念的發明,而是針對工業自動化現狀提出的一種融合性產品。它採用的技術是正在工業現場大量使用的成熟技術,但又不是對現有技術的簡單堆砌,是對眾多實用技術進行封裝、介面、集成,形成全新的一體化的控制器。以前需要一個集成商來做的工作,現在由一個控制器就可以完成,這就是SOC。 7)SOC(state of charge) 在電池行業,SOC指的是充電狀態,又稱剩餘容量,表示電池繼續工作的能力。 8)SOC(start-of-conversion ),啟動轉換 9)short-open calibration
編輯本段社會組織資本
綠色經濟特別提出的社會組織資本(SOC),指的是地方小區,商業團體、工會乃至國家的法律、政治組織,到國際的環保條約(如海洋法、蒙特婁公約)等。無論那一種層級的組織,會衍生出其個別的習慣、規范、情操、傳統、程序、記憶與文化,從而培養出相異的效率、活力、動機及創造力,投身於人類福祉的創造。 片上系統
基本概念
System on Chip,簡稱Soc,也即片上系統。從狹義角度講,它是信息系統核心的晶元集成,是將系統關鍵部件集成在一塊晶元上;從廣義角度講, SoC是一個微小型系統,如果說中央處理器(CPU)是大腦,那麼SoC就是包括大腦、心臟、眼睛和手的系統。國內外學術界一般傾向將SoC定義為將微處理器、模擬IP核、數字IP核和存儲器(或片外存儲控制介面)集成在單一晶元上,它通常是客戶定製的,或是面向特定用途的標准產品。 SoC定義的基本內容主要表現在兩方面:其一是它的構成,其二是它形成過程。系統級晶元的構成可以是系統級晶元控制邏輯模塊、微處理器/微控制器CPU 內核模塊、數字信號處理器DSP模塊、嵌入的存儲器模塊、和外部進行通訊的介面模塊、含有ADC /DAC 的模擬前端模塊、電源提供和功耗管理模塊,對於一個無線SoC還有射頻前端模塊、用戶定義邏輯(它可以由FPGA 或ASIC實現)以及微電子機械模塊,更重要的是一個SoC 晶元內嵌有基本軟體(RDOS或COS以及其他應用軟體)模塊或可載入的用戶軟體等。系統級晶元形成或產生過程包含以下三個方面: 1) 基於單片集成系統的軟硬體協同設計和驗證; 2) 再利用邏輯面積技術使用和產能佔有比例有效提高即開發和研究IP核生成及復用技術,特別是大容量的存儲模塊嵌入的重復應用等; 3) 超深亞微米(VDSM) 、納米集成電路的設計理論和技術。 SoC設計的關鍵技術 具體地說, SoC設計的關鍵技術主要包括匯流排架構技術、IP核可復用技術、軟硬體協同設計技術、SoC驗證技術、可測性設計技術、低功耗設計技術、超深亞微米電路實現技術等,此外還要做嵌入式軟體移植、開發研究,是一門跨學科的新興研究領域。圖1是SoC設計流程的一個簡單示意圖。 (圖一)
技術發展
集成電路的發展已有40年的歷史,它一直遵循摩爾所指示的規律推進,現已進入深亞微米階段。由於信息市場的需求和微電子自身的發展,引發了以微細加工(集成電路特徵尺寸不斷縮小)為主要特徵的多種工藝集成技術和面向應用的系統級晶元的發展。隨著半導體產業進入超深亞微米乃至納米加工時代,在單一集成電路晶元上就可以實現一個復雜的電子系統,諸如手機晶元、數字電視晶元、DVD 晶元等。在未來幾年內,上億個晶體管、幾千萬個邏輯門都可望在單一晶元上實現。 SoC (System - on - Chip)設計技術始於20世紀90年代中期,隨著半導體工藝技術的發展,IC設計者能夠將愈來愈復雜的功能集成到單矽片上, SoC正是在集成電路( IC)向集成系統( IS)轉變的大方向下產生的。1994年Motorola發布的FlexCore系統(用來製作基於68000和PowerPC的定製微處理器)和1995年LSILogic公司為Sony公司設計的SoC,可能是基於IP( IntellectualProperty)核完成SoC設計的最早報導。由於SoC可以充分利用已有的設計積累,顯著地提高了ASIC的設計能力,因此發展非常迅速,引起了工業界和學術界的關注。 SOC是集成電路發展的必然趨勢,1. 技術發展的必然2. IC 產業未來的發展。
技術特點
半導體工藝技術的系統集成 軟體系統和硬體系統的集成 SoC具有以下幾方面的優勢,因而創造其產品價值與市場需求: 降低耗電量 減少體積 增加系統功能 提高速度 節省成本
設計的關鍵技術
具體地說, SoC設計的關鍵技術主要包括匯流排架構技術、IP核可復用技術、軟硬體協同設計技術、SoC驗證技術、可測性設計技術、低功耗設計技術、超深亞微米電路實現技術等,此外還要做嵌入式軟體移植、開發研究,是一門跨學科的新興研究領域。
發展趨勢及存在問題
當前晶元設計業正面臨著一系列的挑戰,系統晶元SoC已經成為IC設計業界的焦點, SoC性能越來越強,規模越來越大。SoC晶元的規模一般遠大於普通的ASIC,同時由於深亞微米工藝帶來的設計困難等,使得SoC設計的復雜度大大提高。在SoC設計中,模擬與驗證是SoC設計流程中最復雜、最耗時的環節,約占整個晶元開發周期的50%~80% ,採用先進的設計與模擬驗證方法成為SoC設計成功的關鍵。SoC技術的發展趨勢是基於SoC開發平台,基於平台的設計是一種可以達到最大程度系統重用的面向集成的設計方法,分享IP核開發與系統集成成果,不斷重整價值鏈,在關注面積、延遲、功耗的基礎上,向成品率、可靠性、電磁干擾(EMI) 雜訊、成本、易用性等轉移,使系統級集成能力快速發展。 所謂SoC技術,是一種高度集成化、固件化的系統集成技術。使用SoC技術設計系統的核心思想,就是要把整個應用電子系統全部集成在一個晶元中。在使用SoC技術設計應用系統,除了那些無法集成的外部電路或機械部分以外,其他所有的系統電路全部集成在一起。
與應用概念
1.系統功能集成是SoC的核心技術 在傳統的應用電子系統設計中,需要根據設計要求的功能模塊對整個系統進行綜合,即根據設計要求的功能,尋找相應的集成電路,再根據設計要求的技術指標設計所選電路的連接形式和參數。這種設計的結果是一個以功能集成電路為基礎,器件分布式的應用電子系統結構。設計結果能否滿足設計要求不僅取決於電路晶元的技術參數,而且與整個系統PCB版圖的電磁兼容特性有關。同時,對於需要實現數字化的系統,往往還需要有單片機等參與,所以還必須考慮分布式系統對電路固件特性的影響。很明顯,傳統應用電子系統的實現採用的是分布功能綜合技術。 對於SoC來說,應用電子系統的設計也是根據功能和參數要求設計系統,但與傳統方法有著本質的差別。SoC不是以功能電路為基礎的分布式系統綜合技術。而是以功能IP為基礎的系統固件和電路綜合技術。首先,功能的實現不再針對功能電路進行綜合,而是針對系統整體固件實現進行電路綜合,也就是利用IP技術對系統整體進行電路結合。其次,電路設計的最終結果與IP功能模塊和固件特性有關,而與PCB板上電路分塊的方式和連線技術基本無關。因此,使設計結果的電磁兼容特性得到極大提高。換句話說,就是所設計的結果十分接近理想設計目標。 2.固件集成是SoC的基礎設計思想 在傳統分布式綜合設計技術中,系統的固件特性往往難以達到最優,原因是所使用的是分布式功能綜合技術。一般情況下,功能集成電路為了滿足盡可能多的使用面,必須考慮兩個設計目標:一個是能滿足多種應用領域的功能控制要求目標;另一個是要考慮滿足較大范圍應用功能和技術指標。因此,功能集成電路(也就是定製式集成電路)必須在I/O和控制方面附加若干電路,以使一般用戶能得到盡可能多的開發性能。但是,定製式電路設計的應用電子系統不易達到最佳,特別是固件特性更是具有相當大的分散性。 對於SoC來說,從SoC的核心技術可以看出,使用SoC技術設計應用電子系統的基本設計思想就是實現全系統的固件集成。用戶只須根據需要選擇並改進各部分模塊和嵌入結構,就能實現充分優化的固件特性,而不必花時間熟悉定製電路的開發技術。固件基礎的突發優點就是系統能更接近理想系統,更容易實現設計要求。 3.嵌入式系統是SoC的基本結構 在使用SoC技術設計的應用電子系統中,可以十分方便地實現嵌入式結構。各種嵌入結構的實現十分簡單,只要根據系統需要選擇相應的內核,再根據設計要求選擇之相配合的IP模塊,就可以完成整個系統硬體結構。尤其是採用智能化電路綜合技術時,可以更充分地實現整個系統的固件特性,使系統更加接近理想設計要求。必須指出,SoC的這種嵌入式結構可以大大地縮短應用系統設計開發周期。 4.IP是SoC的設計基礎 傳統應用電子設計工程師面對的是各種定製式集成電路,而使用SoC技術的電子系統設計工程師所面對的是一個巨大的IP庫,所有設計工作都是以IP模塊為基礎。SoC技術使應用電子系統設計工程師變成了一個面向應用的電子器件設計工程師西叉歐。由此可見,SoC是以IP模塊為基礎的設計技術,IP是SoC應用的基礎。 5.SoC技術中的不同階段 用SoC技術設計應用電子系統的幾個階段如圖1所示。在功能設計階段,設計者必須充分考慮系統的固件特性,並利用固件特性進行綜合功能設計。當功能設計完成後,就可以進入IP綜合階段。IP綜合階段的任務利用強大的IP庫實現系統的功能IP結合結束後,首先進行功能模擬,以檢查是否實現了系統的設計功能要求。功能模擬通過後,就是電路模擬,目的是檢查IP模塊組成的電路能否實現設計功能並達到相應的設計技術指標。設計的最後階段是對製造好的SoC產品進行相應的測試,以便調整各種技術參數,確定應用參數。
『捌』 動力電池SOC是什麼
SOC(Stateofcharge),即荷電狀態,用來反映電池的剩餘容量,其數值上定義為剩餘容量占電池容量的比值,常用百分數表示。其取值范圍為0~1,當SOC=0時表示電池放電完全,當SOC=1時表示電池完全充滿。
電池SOC不能直接測量,只能通過電池端電壓、充放電電流及內阻等參數來估算其大小。而這些參數還會受到電池老化、環境溫度變化及汽車行駛狀態等多種不確定因素的影響,因此准確的SOC估計已成為電動汽車發展中亟待解決的問題。

(8)電池測試設備怎麼測soc擴展閱讀:
無論哪種電池,SOC的測試都要分兩部分進行:
第一部分就是充電過程:可以根據電池充電特性曲線(充電電流、電壓變化曲線與電池容量的關系),模擬計算出,電池被充足電的狀態。
第二部分就是放電過程:可以根據電池放電特性曲線,模擬出電池的剩餘容量。
根據這些數據可以設計出對應數據,用晶元來顯示電池的當前剩餘容量情況(SOC)
『玖』 蓄電池檢測儀檢測的數據中soc,soh是什麼意思
soc是說充滿電使用一段時間還剩多少電;
SOH是充電倍率,電池充電的電流值。