Ⅰ 簡述光柵掃描式圖形顯示器的基本原理
光柵掃描式圖形顯示器是畫點設備。可看作是點陣單元發生器,並可控制每個點陣單元的亮度。
工作原理:在這種顯示器中,電子束的運動軌跡是固定的。即從左到右、自上而下掃描熒光屏,來產生一幅光柵。
特點:由於圖形是以點陣的形式存儲在幀緩沖器中。所以光柵掃描顯示器的電子束按從上到下、從左到右的順序依次掃描屏幕,來建立圖形。
優缺點:可以顯示色彩豐富的靜態和動態影像,製造成本低,但線條的質量不高。
Ⅱ 計算機圖形學復習
第一章
1. 計算機圖形:用數學方法描述,通過計算機生成、處理、存儲和顯示的對象。
2. 圖形和圖像的主要區別是表示方法不同:圖形是用矢量表示;圖像是用點陣表示的。圖形和圖像也可以通過光柵顯示器(或經過識別處理)可相互轉化。
3. 於計算機圖形學緊密相關的學科主要包括 圖像處理、計算幾何和計算機視覺模式識別。它們的共同點是 以圖形/圖像在計算機中的表示方法為基礎。
4. 互動式計算機圖形系統的發展可概括為以下4個階段:字元、矢量、二維光柵圖形、三維圖形。
5. 圖形學研究的主要內容有:①幾何造型技術 ②圖形生成技術 ③圖形處理技術 ④圖形信息的存儲、檢索與交換技術 ⑤人機交互技術 ⑥動畫技術 ⑦圖形輸入輸出技術 ⑧圖形標准與圖形軟體包的研發。
6. 計算機輔助設計和計算機輔助製造 是計算機圖形學最廣泛最活躍的應用領域。
7. 計算機圖形學的基本任務:一是如何利用計算機硬體來實現圖形處理功能;二是如何利用好的圖形軟體;三是如何利用數學方法及演算法解決實際應用中的圖行處理問題。
8. 計算機圖形系統是由硬體系統和軟體系統組成的。
9. 計算機圖形系統包括處理、存儲、交互、輸入和輸出五種基本功能。
10. 鍵盤和滑鼠是最常用的圖形輸入設備。滑鼠根據測量位移部件的不同,分為光電式、光機式和機械式3種。
11. 數字化儀分為電子式、超聲波式、磁伸縮式、電磁感應式等。小型的數字化儀也稱為圖形輸入板。
12. 觸摸屏是一種 定位設備,它是一種對於觸摸能產生反應的屏幕。
13. 掃描儀由3部分組成:掃描頭、控制電路和移動掃描機構。掃描頭由光源發射和光鮮接收組成。按移動機構的不同,掃描儀可分為平板式和滾筒式2種。
14. 顯示器是計算機的標准輸出設備。彩色CRT的顯示技術有2種:電子穿透法和蔭罩法。
15. 隨機掃描是指電子束的定位及偏轉具有隨意性,電子束根據需要可以在熒光屏任意方向上連續掃描,沒有固定掃描線和掃描順序限制。它具有局部修改性和動態性能。
16. 光柵掃描顯示器是畫點設備。
17. 點距是指相鄰像素點間的距離,與分辨指標相關。
18. 等離子顯示器一般有三層玻璃板組成,通常稱為等離子顯示器的三層結構。
19. 用以輸出圖形的計算機外部設備稱為硬拷貝設備。
20. 列印機是廉價的硬拷貝設備,從機械動作上常為撞擊式和非撞擊式2種。
21. 常用的噴墨頭有:壓電式、氣泡式、靜電式、固體式。
22. 繪圖儀分為靜電繪圖儀和筆式繪圖儀。
23. 圖形軟體的分層。由下到上分別是:①圖形設備指令、命令集、計算機操作系統 ②零級圖形軟體 ③一級圖形軟體 ④二級圖形軟體 ⑤三級圖形軟體。
24. 零級圖形軟體是面向系統的、最底層的軟體,主要解決圖形設備與主機的通信與介面問題,又稱設備驅動程序。
25. 一級圖形軟體即面向系統又面向用戶,又稱基本子系統。
26. 圖形應用軟體是系統的核心部分。
27. 從物理學角度,顏色以主波長、色純度和輝度來描述;從視覺角度來看,顏色以色彩、飽和度和亮度來描述。
28. 用適當比列的3種顏色混合,可以獲得白色,而且這3種顏色中的任意2種的組合都不能生成第三種顏色,稱為三原色理論。
29. RGB模型的匹配表達式是:c=rR+gG+bB。
30. 常用顏色模型
顏色模型名稱 使用范圍
RGB 圖形顯示設備(彩色CRT和光柵顯示器)
CMY 圖形列印、繪制設備
HSV 對應畫家本色原理、直觀的顏色描述
HSL 基於顏色參數的模型
用基色青、品紅、黃定義的CMY顏色模型用來描述硬拷貝設備的輸出顏色。它從白光中濾去某種顏色,故稱為減色性原色系統。
第二章
31. 直線生成的3個常用演算法:數值微分法(DDA)、中點劃線法和Bresenham演算法。
32. DDA演算法的C語言實現:
DDA演算法生成直線,起點(x0,y0),終點(x1,y1).
Void CMy View ::OnDdaline()
{
CDC *pDC=GetDC(); //獲得設備指針
int x0=100,y0=100,x1=300,y1=200,c=RGB(250,0,0);//定義直線兩端點和直線顏色
int x,y,i;
float dx,dy,k;
dx=(float)(x1-x0);
dy=(float)(y1-y0);
k=dy/dx;
x=x0;
y=y0;
if(abs(k)<1)
{ for(;x<=x1;x++)
{pDC—>SetPixel(x,int(y+0.5),c);
y=y+k;}
}
if(abs(k)>=1)
{ for(;y<=y1;y++)
{pDC—>SetPixel(int(x+0.5),y,c);
x=x+1/k;}
}
ReleaseDC(pDC); //釋放設備指針
}
33. 任何影響圖元顯示方法的參數稱為屬性參數。圖元的基本表現是線段,其基本屬性包括線型、線寬和色彩。
34. 最常見的線型包括實線、虛線、細線和點劃線等,通常默認的線型是實線。
35. 線寬控制的實線方法:垂直線刷子、水平線刷子、方形線刷子。生成具有寬度的線條還可以採用區域填充演算法。
36. 用離散量表示連續量時引起的失真現象稱為走樣。為了提高圖形顯示質量,減少或消除走樣現象的技術稱為反走樣。
37. 反走樣技術有:提高解析度(硬體方法和軟體方法)、簡單區域取樣、加權區域取樣。
38. 區域連通情況分為四連通區域和八連通區域。四連通區域是指從區域上某一點出發,可通過上下左右4個方向移動,在不越出區域的前提下到達區域內的任意像素;八連通區域是指從區域內某一像素出發,可通過上下左右、左上左下、右上右下8個方向的移動,在不越出區域的前提下到達區域內的任意像素。
39. 字元的圖形表示可以分為點陣式和矢量式兩種形式。
40. 在圖形軟體中,除了要求能生成直線、圓等基本圖形元素外,還要求能生成其他曲線圖元、多邊形及符號等多種圖元。
41. 在掃描線填充演算法中,對水平邊忽略而不予處理的原因是實際處理時不計其交點。
42. 關於直線生成演算法的敘述中,正確的是:Bresenham演算法是對中點畫線演算法的改進。
43. 在中點畫圓演算法中敘述錯誤的是:為了減輕畫圓的工作量,中點畫圓利用了圓的四對稱性性質。
44. 多邊形填充時,下列論述錯誤的是:在判斷點是否在多邊形內時,一般通過在多變形外找一點,然後根據該線段與多邊形的交點數目為偶數即可認為在多邊形內部,若為奇數則在多邊形外部,且不考慮任何特殊情況。
第三章
1. Cohen-Sutherland演算法,也稱編碼裁剪法。其基本思想是:對於每條待裁剪的線段P1P2分三種情況處理:①若P1P2完全在窗口內,則顯示該線段,簡稱「取」之;②若P1P2完全在窗口外,則丟棄該線段,簡稱「舍」之;③若線段既不滿足「取」的條件也不滿足「舍」的條件,則求線段與窗口邊界的交點,在交點處把線段分為兩段,其中一段 完全在窗口外,可舍棄之,然後對另一段重復上述處理。
2. Sutherland-Hodgman演算法,又稱逐邊裁剪演算法。其基本思想是用窗口的四條邊所在的直線依次來裁剪多邊形。多邊形的每條邊與裁剪線的位置關系有4種情況(假設當前處理的多邊形的邊為SP):a>端點S在外側,P在內側,則從外到內輸出P和I;b>端點S和P都在內側,則從內到內輸出P;c>端點S在內側,而P在外側,則從內到外輸出I;d>端點S和P都在外側,無輸出。
3. 按裁剪精度的不同,字元裁剪可分為三種情況:字元串裁剪、字元裁剪和筆畫裁剪。
4. 在線段AB的編碼裁剪演算法中,如A、B兩點的碼邏輯或運算全為0,則該線段位於窗口內;如AB兩點的碼邏輯與運算結果不為0,則該線段在窗口外。
5. n邊多邊形關於矩形窗口進行裁剪,結果多邊形最多有2n個頂點,最少有n個頂點。
6. 對一條等長的直線段裁剪,編碼裁剪演算法的速度和中點分割演算法的裁剪速度哪一個快,無法確定。(√)
7. 多邊形裁剪可以看做是線段裁剪的組合。(X)
8. 對於線段來說,中點分割演算法要比其他線段裁剪演算法的裁剪速度快。(X)
9. 多邊形的Weiler-Atherton裁剪演算法可以實現對任意多邊形的裁剪。(√)
第四章
1. 幾何變換是指改變幾何形狀和位置,非幾何變換是指改變圖形的顏色、線型等屬性。變換方法有對象變換(坐標系不動)和坐標變換(坐標系變化)兩種。
2. 坐標系可以分為以下幾種:世界坐標系(是對計算機圖形場景中所有圖形對象的空間定位和定義,是其他坐標系的參照)、模型坐標系(用於設計物體的局部坐標系)、用戶坐標系(為了方便交互繪圖操作,可以變換角度、方向)、設備坐標系(是繪制或輸出圖形的設備所用的坐標系,採用左手系統)。
3. 將用戶坐標系中需要進行觀察和處理的一個坐標區域稱為窗口,將窗口映射到顯示設備上的坐標區域稱為視區。從窗口到視區的變換,稱為規格化變換。(eg.4-1)
4. 所謂體素,是指可以用有限個尺寸參數定位和定形的體,如長方體、圓錐體。
5. 所謂齊次坐標表示,就是用n+1維向量表示n維的向量。
6. 二維點(x,y)的齊次坐標可以表示為:(hx hy h),其中h≠0。當h=1時稱為規范化的齊次坐標,它能保證點集表示的唯一性。
7. 旋轉變換公式的推導、對稱變換
第五章
1. 交互繪圖技術是一種處理用戶輸入圖形數據的技術,是設計交互繪圖系統的基礎。常見的交互繪圖技術有:定位技術、橡皮筋技術、拖曳技術、定值技術、拾取技術、網格與吸附技術。
2. 常用的橡皮筋技術有:橡皮筋直線、橡皮筋矩形、橡皮筋圓。
3. 拖曳技術是將形體在空間移動的過程動態地、連續地表示出來,直到用戶滿意。
4. 定值技術有2種:一種是鍵入數值,另一種是改變電位計阻值產生要求的數量,可以用模擬的方式實現電位計功能。
5. 拾取一個基本的對象可以通過:指定名稱法、特徵點發、外界矩陣法、分類法、直接法。
第六章
1. 點、線、面是形成三維圖形的基礎,三維變換是從點開始。
2. 三維圖形變換分類:三維圖形變換包括三維幾何變換和平面幾何變換,三維幾何變換包括基本幾何變換和復合變換;平面幾何變換包括平行投影和透視投影,平行投影包括正投影和軸測投影,透視投影包括一點透視、二點透視、三點透視。
3. 投影中心與投影面之間的距離是無限的投影叫做平行投影,它包括正投影和軸測投影。
4. 正投影形成的視圖包括:主視圖、俯視圖和左視圖。軸測投影形成的視圖為軸測圖。
5. 透視投影也稱為中心投影,其投影中心與投影面之間的距離是有限的。其特點是產生近大遠小的視覺效果
6. 對於透視投影,不平行於投影面的平行線的投影會匯聚到一個點,這個點稱為滅點。透視投影的滅點有無限多個,與坐標軸平行的平行線在投影面上形成的滅點稱為主滅點。主滅點最多有3個,其對應的透視投影分別稱為一點透視、二點透視、三點透視。
第七章
1. 型值點是曲面或曲線上的點,而控制點不一定在曲線曲面上,控制點的主要目的是用來控制曲線曲面的形狀。
2. 插值和逼近是曲線曲面設計中的兩種不同方法。插值—生成的曲線曲面經過每一個型值點,逼近—生成的曲線曲面靠近每一個控制點。
3. 曲線曲面的表示要求:唯一性、統一性、幾何不變性、幾何直觀、易於界定、易於光滑連接。
4. 曲線曲面有參數和非參數表示,但參數表示較好。非參數表示又分為顯式和隱式兩種。
5. 對於一個平面曲線,顯式表示的一般形式是:y=f(x)。一個x與一個y對應,因此顯式方程不能表示封閉或多值曲線。例不能用顯式方程表示一個圓。
6. 如果一個曲線方程表示為f(x,y)=0的形式,我們稱之為隱式表示。其優點是易於判斷函數f(x,y)是否大於、小於或等於零,即易於判斷是落在所表示曲線上還是在曲線的哪一側。
7. 參數連續與幾何連續的區別:參數連續性是傳統意義上的、嚴格的連續,而幾何連續性只需限定兩個曲線段在交點處的參數導數成比例,不必完全相等,是一種更直觀、易於交互控制的連續性。
8. 在曲線曲面造型中,一般只用到C1(1階參數連續)、C2(2階參數連續)、G1(1階幾何連續)、G2(2階幾何連續)。切矢量(一階導數)反映了曲線對參數t的變化速遞,曲率(二階導數)反映了曲線對參數t變化的加速度。
9. 通常C1連續必能保證G1的連續,但G1的連續並不能保證C1連續。
10. 對於三次Hermite曲線,用於描述曲線的可供選擇的條件有:端點坐標、切矢量和曲率。
11. 三次Hermite曲線特點:①可局部調整,因為每個曲線段僅依賴於端點約束;②基於Hermite樣條的變化形式有Cardinal樣條和Kochanek-Bartels樣條;③具有幾何不變性。
12. Bezier曲線的性質:①端點性質②端點切矢量③端點的曲率④對稱性⑤幾何不變性⑥凸包性⑦變差縮減性。
13. 一次Bezier曲線是連接起點P0和終點P1的直線段,二次Bezier曲線對應一條起點P0終點在P2處的拋物線。
14. B樣條曲線的性質:①局部性②連續性或可微性③幾何不變性④嚴格凸包性⑤近似性⑥變差縮減性。
15. NURRS曲線具有以下性質:①局部性②可微性③仿射不變性④嚴格保凸性⑤一般性⑥變差縮減性⑦端點性質。
第八章
1. 要把三維物體的信息顯示在二維顯示設備中,必須通過投影變換。由於投影變換失去了深度信息,往往會導致二義性,要消除二義性,就必須在繪制時消除實際不可見的線和面,稱作消除隱藏線和隱藏面,簡稱消隱。
2. 面消隱常用演算法有:深度緩沖區(Z-buffer)演算法和深度排序演算法(畫家演算法)。
3. 深度緩沖區演算法和深度排序演算法的區別:
Ⅲ 隨機掃描顯示器的工作原理
再由控制電路使電子束以所需的亮度偏轉到所需的位置。為了得到穩定的圖形,還需不斷地重復掃描顯示檔案,即所謂的刷新。刷新頻率通常為25Hz-50Hz,在掃描顯示器中,電子束根據需要可在熒光屏的任意方向上連續掃描,沒有固定掃描線和規定掃描順序。

Ⅳ 隨機掃描顯示器的介紹
隨機掃描顯示器顯示的由計算機加工成為顯示器的顯示指令,即所謂有顯示檔案或顯示文件。顯示指令經介面電路送到顯示器的緩沖存儲器,而固定存儲器中則存放各種常用字元、數字等顯示指令。圖形控制器取出緩沖存儲器或固定存儲器中的顯示指令,依次執行。顯示指令中的亮度、位移量等數字信息經線產生器化為控制電子束偏轉和明暗的物理量,即電壓或電流。

Ⅳ 急!!!光柵掃描與隨機掃描的區別
隨機掃描顯示器顯示圖形時,電子束的移動方式是隨機的,電子束可以在任意方向上自由移動,按照顯示命令用畫線的方式繪出圖形,因此也稱矢量顯示器。而光柵掃描顯示器顯示圖形時,電子束依照固定的掃描線和規定的掃描順序進行掃描。電子束先從熒光屏左上角開始,向右掃一條水平線,然後迅速地回掃到左邊偏下一點的位置,再掃第二條水平線,照此固定的路徑及順序掃下去,直到最後一條水平線,即完成了整個屏幕的掃描。
隨機掃描顯示器依靠顯示文件對屏幕圖形進行刷新;光柵掃描顯示器則依靠幀緩存實現對屏幕圖形的刷新。
光柵掃描顯示器最突出的優點是:它不僅可以顯示物體的輪廓線,而且由於能對每一象素的灰度或色彩控制,因而可以進行實面積填充,這就使得輸出真實感圖形成為可能。此外,它可以和電視兼容,價格遠低於隨機掃描顯示器。
Ⅵ 什麼叫隨機掃描
按系統默認設置進行掃描。
早期的CAD圖形顯示使用隨機掃描顯示器。這種顯示器通常用於顯示線框圖,電子束隨著線條的顯示位置而移動,按亮度要求轟擊熒光而發光。這種顯示器的工作方式和示波器的顯示方式是一致的。到了80年代,隨機掃描顯示器在CAD中基本淘汰,代之而起的是光柵掃描(Raster Scanning)顯示設備。光柵掃描顯示設備有單色的,也有彩色的。它由三部分組成:顯示器、圖形控制器和緩存寄存器。它的顯示方式類似於電視機,熒光屏上的圖形由熒光習的點矩陣組成,電子束按行列次序掃描點矩陣,並由顯示內容來控制所掃描的點是否發亮,每掃描一遍稱為一幀。但是,和電視機非常不同的是,它的顯示內容不來自天線所接收的信號,而是來自一個專門的內存,稱為幀緩存寄存器(Frame Buffer)。
Ⅶ 光柵掃描顯示器和隨機掃描顯示器在圖形顯示上有何不同為什麼二者都需要刷新#計算機圖形學#地理信息科
摘要 隨機掃描顯示器顯示圖形時,電子束的移動方式是隨機的,電子束可以在任意方向上自由移動,按照顯示命令用畫線的方式繪出圖形,因此也稱矢量顯示器。而光柵掃描顯示器顯示圖形時,電子束依照固定的掃描線和規定的掃描順序進行掃描。電子束先從熒光屏左上角開始,向右掃一條水平線,然後迅速地回掃到左邊偏下一點的位置,再掃第二條水平線,照此固定的路徑及順序掃下去,直到最後一條水平線,即完成了整個屏幕的掃描。
Ⅷ 計算機圖形圖像處理的目錄
第1章計算機圖形圖像處理基礎知識
1.1初識圖形圖像處理
1.1.1計算機圖形圖像處理的研究內容
1.1.2計算機圖形圖像處理的發展
1.1.3計算機圖形圖像處理的應用
1.2圖形圖像的基本要素、類型及文件格式
1.2.1基本要素
1.2.2圖形圖像類型
1.2.3圖形圖像文件格式
1.3圖形圖像處理的硬體和軟體環境
1.3.1硬體環境
1.3.2軟體環境
1.4基本圖形生成演算法簡介
1.4.1畫線演算法—數值微分法
1.4.2畫圓演算法—中點畫圓法
1.4.3區域填充演算法—遞歸演算法
1.4.4線寬和線型處理
1.4.5裁剪演算法
小結
習題
第2章計算機圖形硬體系統綜述
2.1視頻顯示設備
2.1.1CRT
2.1.2光柵掃描顯示器
2.1.3隨機掃描顯示器
2.1.4彩色CRT顯示器
2.2光柵掃描系統
2.2.1視頻控制器
2.2.2光柵掃描顯示處理器
2.3隨機掃描系統
2.4圖形顯示器與工作站
2.5輸入設備
2.5.1鍵盤
2.5.2滑鼠
2.5.3光筆
2.5.4觸摸屏
2.5.5數字化儀
2.5.6圖像掃描儀
2.5.7數碼攝像機和數碼相機
2.6輸出設備
2.6.1列印機
2.6.2繪圖儀
小結
習題
第3章圖形圖像的採集與輸出
3.1屏幕採集
3.1.1用鍵盤直接抓圖
3.1.2用工具軟體抓圖
3.2網上下載
3.2.1網上下載的准備
3.2.2網上下載實例
3.3用掃描儀採集圖像
3.4用數碼相機及數碼攝像機採集圖像
3.4.1用數碼相機採集圖像
3.4.2用數碼攝像機採集圖像
3.5視頻採集
3.5.1視頻基礎知識簡介
3.5.2視頻採集圖像實例
3.6圖形圖像的輸出
……
第4章計算機平面設計
第5章計算機立體設計
第6章網頁圖形圖像處理
參考文獻

Ⅸ 圖形系統的圖形硬體設備
一、顯示設備
顯示設備是最終產生圖形顯示效果的部件,已有多種類型和技術的顯示設備出現,但占統治地位的仍是陰極射線管(CRT)。
1、CRT
(1)單色CRT
原理:利用電場產生高速的聚焦電子束,偏轉到屏幕表面的不同部位,以產生可見圖形。
組成:電子槍、偏轉系統和熒光屏。
電子槍:電流通過燈絲產生熱量,即對陰極加熱而發出電子束,在聚焦極上加一定的正電壓,使之聚焦成電子束,再由加速極(可能是多個)加上正電壓對電子束加速,使之有足夠的能量射向熒光屏;靠近陰極有一控制極,加上負電壓後可控制電子束的強弱,也可截止電子束。
偏轉系統:可用靜電場或磁場控制偏轉(多數使用磁偏轉系統)。
使用靜電場時,垂直和水平兩套平板放在陰極射線管的管頸內部。
磁偏轉系統是外部偏轉系統,它有兩個線圈繞在管頸上,當電子束通過線圈時,一個線圈的磁場使電子束產生水平偏轉,另一使之產生垂直偏轉。
偏轉系統最重要的特性是靈敏度,它反映了偏轉信號所能產生的偏轉角度的大小。
熒光屏:熒光屏上塗有熒光粉,電子束轟擊熒光層某點產生熒光亮點,當電子束離開該點後,其亮度值隨時間按指數規律衰減。余輝時間就是指光亮值衰減到初始值的1/10所需的時間。用於圖形設備的熒光物質的余輝時間一般是幾十到幾百毫秒。為得到穩定、不閃爍的畫面,需不斷進行刷新。
單色CRT顯示圖像的質量取決於:設備固有的單個光點直徑的大小以及「可定址能力」。可定址能力可以理解為單位長度內能夠利用的單個光點的數目。通常希望點的直徑大於點間距。一個CRT在水平或垂直方向上能夠識別出的最大光點數稱為分辯率。
(2)彩色CRT
產生彩色顯示的基本方法有兩種:射線穿透法、影孔板法。
射線穿透法:用於隨機掃描顯示器中,它是在屏幕上塗有兩層熒光粉(紅和綠),顯示的顏色取決於射線穿透熒光層的深淺:低速電子只能激勵外層紅粉、中速電子可以激勵綠粉和紅粉產生兩種附加顏色:橙和黃、高速的電子可以穿透紅色層而激勵綠色粉。這是一種廉價的方法,但圖形質量較低。
影孔板法:廣泛用於光柵掃描系統,這種CRT屏幕內部塗有很多組呈三角形的熒光粉,每一組有三個熒光點,當某組熒光粉被激勵時,分別發出三原色。與之對應的三個電子槍。屏幕後面有影孔板柵網,上面有很多小孔,與屏幕上的三元組對應,三束電子聚焦成一組射線,穿過小孔,激活屏幕上的一個三元組,出現色點,通過控制電子束的強弱,就可使激發出來的三原色混合成很寬的色彩等級。影孔板的徑距對CRT的解析度影響較大,徑距小,圖形質量好,但成本高難度大。
(3)直視型存儲管DVST
這種存儲管的寫電子槍與普通的CRT沒有區別,但電子束不是直接寫在熒光屏上,而是寫在熒光屏前的存儲柵上,這是一個很細的金屬網,上面有介質,由寫電子槍射出的高能電子束將柵網上的介質的電子轟擊出來,柵網上被轟擊的地方呈正電荷,即形成正電荷軌跡。第二電子槍(讀出電子槍)發出的低能電子向收集極流去,收集極使這些電子均勻散開,流向存儲柵,存儲柵上呈正電荷的地方吸引電子,使之通過轟擊熒光屏而發光,其它位置不通過電子,即存儲柵起存儲圖形和控制電子通過的作用。優點:價格低、不需高刷新;缺點:不能做選擇性修改。
2、其它類型顯示器件
A、等離子板顯示器
優點:重量輕、不需要刷新緩存;缺點:解析度低、價格高。
B、液晶顯示器件LCD
優點:低價、重量輕、尺寸小且耗低;缺點:被動顯示。
C、電子發光顯示器
優點:亮度高、通斷迅速;缺點:價格高、功耗大。
3、隨機掃描顯示器
顯示的圖形由計算機加工成顯示器的顯示指令,即顯示檔案或顯示文件,顯示指令經介面電路送到顯示器的緩沖存儲器,固定存儲器中存放常用字元、數字等顯示指令。圖形控制器取出緩存或固定存儲器中的顯示指令,依次執行。顯示指令中的亮度、位移量等數字信息經線產生器化為控制電子束偏轉和明暗的物理量,即電壓和電流。再由管頭控制電路使電子束以所需亮度偏轉到所需的位置。並不斷進行刷新,使之穩定顯示。由於電子束的定位及偏轉具有隨機性,故稱隨機掃描。
優點:解析度高、對比明顯、軟體豐富;缺點:價格貴。
4、光柵掃描顯示器
光柵掃描CRT的屏幕可分為m行掃描線,每行分為n個小點,每個小點稱為象素,每個象素都對應幀緩沖存儲器中的若干位,黑白圖象只需一位;若每個象素用i位表示其灰度,則可產生2i級灰度或顏色。即光柵掃描顯示器的幀緩存中,存放的不是顯示指令,而是對應象素的亮度或色彩信息,這種信息稱為點陣圖。
計算機將要顯示的圖形、圖象轉化為點陣圖,經介面電路送入幀緩存,圖形控制器控制電子束按照固定的掃描線和掃描順序,按從幀緩存中讀出象素值對整個屏幕進行掃描。掃描完成後,顯示控制器向計算機申請中斷,使計算機能利用幀回掃的時間修改幀緩存中的內容,以實現畫面的修改。
要得到穩定的畫面,需進行刷新;需高速大容量存儲器;掃描分為隔行、逐行。
光柵掃描顯示器的優點:線、面圖形,圖感真實;價格低;缺點:轉換費時、軟體復雜。
5、顯示處理機(DPU)
圖形系統中,為減輕主機負擔,一般除CPU外,還有一個專用的顯示處理機(DPU),用來與CPU交互和控制顯示設備的操作。
(1)隨機掃描系統的DPU
隨機掃描系統的DPU差別很大,復雜度各有不同。
這種DPU可以設有緩存,也可不設(藉助主存),不設緩存時,由主機CPU運行程序,形成DPU的顯示文件,並由主機CPU把顯示文件的起始地址送入DPU的指令計數器。DPU按這個起始地址從內存中依次讀出顯示指令,並送入指令寄存器,然後對操作碼解碼,在控制邏輯的參與下執行指令,這種DPU較簡單。而具有緩存的則較復雜,功能也較強。
(2)光柵掃描系統的DPU
簡單的光柵掃描系統是由CPU先計算出每個象素點坐標所對應的幀緩存地址,並賦以亮度或顏色值,但功能弱、效率低。具有獨立DPU的光柵掃描系統可以克服上述缺陷。
這種DPU專門用來將輸出圖素掃描轉換成象素點陣圖,同時執行一些如象素或象素塊的移位、拷貝、修改等光柵操作。具有獨立DPU的光柵掃描系統有三個存儲器:系統存儲器、顯示處理機存儲器、幀緩沖存儲器。
簡單的DPU只執行某些有可能實現的與圖形有關的操作;而較強的則可以實現裁剪、窗口視圖變換,還有與拾取有關的邏輯及反饋等交互操作。有的DPU還具有顯示表存儲器按段存放顯示指令,通過這些段可進行變換重畫等操作。
(3)DPU的發展階段
第一代單片圖形處理器:1984年日立公司的HD-63484;1986年德克薩斯公司的TMS34010;Intel公司的82786。
第二代單片圖形處理器:日本電氣公司的72120;1988年德克薩斯公司的TMS34020;日立公司的GDP。
多片圖形處理器:AMD公司的9560四象點數據流管理器;美國國家半導體公司的高級圖形晶元組(ADCS)。
通用微處理器用作圖形處理器:福蘭第公司VARS。
流水線多處理器結構的圖形機:每個高級圖示命令都需要經過逐步進行幾何變換的過程,最後才形成點陣圖形式的輸出。典型的流水線結構包括三個獨立的處理器:顯示表或命令處理器、幾何處理器以及顯示控制器或顯示處理器,實際比三個要細得多。其性能要比單片圖形處理器高得多,德克薩斯儀器公司的88XX。
陣列結構的圖示系統:因莫斯公司的T800。
二、硬拷貝設備
1、點陣式列印機
2、筆式繪圖儀
3、靜電繪圖儀
4、激光列印機
5、噴墨繪圖儀
6、熱轉換列印機
7、攝象機
三、輸入設備
圖形輸入設備可將用戶的圖形數據及各種命令等轉換為電信號,並傳遞給計算機。從邏輯上看,可分為六種功能,即定位、筆劃、送值、選擇、拾取及字元串,也稱六種邏輯設備。所謂邏輯設備,是指按邏輯功能定義的設備,並非具體的物理設備,實際的物理設備往往是某些邏輯設備的組合。
1、定位器:用於指示一個位置,其輸入量是x,y。常見的定位器有:坐標數字化儀、圖形輸入板、滑鼠器、跟蹤球、操縱桿、接觸控制板、聲學輸入板等。
2、拾取器:用於拾取顯示屏上的一個形體、圖組或圖素。典型的拾取器有光筆、圖形輸入板。
3、定值器:是提供標量值的物理設備。
4、鍵盤:用來輸入字元或字元串等。
5、按鍵:用於從一組動作或功能中作出選擇,如已編程的功能鍵盤。
6、其它設備:如語音識別器等。
