⑴ libsvm工具箱和lssvm工具箱有什么区别
1、这两个意义完全不一样,lssvm是最小二乘支持向量机,是一种算法 libsvm是一个支持版向量机的工具集合,权一个库;
2、LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;
3、而LSSVM是支持向量机算法的一种改进版本——即最小二乘支持向量机(Least Squares Support Vector Machine)。
⑵ Tent-PSO-SVM分类方法
通过改进Tent映射的复PSO算法用于高光谱影制像SVM分类时,最佳特征波段选取的关键问题包括:粒子的初始化、粒子速度、位置更新以及与后面参数设置相匹配的Tent映射表达式。
(1)粒子群的初始化处理
假设粒子群由M个粒子(xi,1,…,xi,N)组成,如式(8.6)所示,每个粒子是N个0和1组成的二维序列,N对应高光谱影像波段总数,0表示对应位置的波段没有被选择,1表示对应的波段被选择。那么粒子群就被初始化为二进制矩阵。
高光谱遥感影像信息提取技术
相应的粒子速度初始化为0~1之间的随机实数矩阵,如式(8.7)所示。
高光谱遥感影像信息提取技术
(2)粒子适应度的计算
粒子适应度起到评价粒子好坏的作用,它控制着粒子更新的方向,粒子适应度值的计算函数如式(8.8)所示。式(8.8)为Tent-PSO-SVM分类时通过CV(交叉验证)方式得到分类精度的函数,具体实现时调用工具箱LIBSVM的matlab版本(Chang和Lin)。
高光谱遥感影像信息提取技术
式中:(xi,1,…,xi,N)表示一个粒子,在本章中相当于PSO算法寻优的一个特征波段组合。
⑶ 请问SVM工具箱里的trainlssvm函数的输入参数model,和输出参数X,Y分别代表什么意思呢
你编程也要先把他定义出来,最后才能训练出来啊
⑷ 为什么PSO优化SVM没有交叉验证法效果好
题目就错了吧?还是说你要的效果是负面效果?
⑸ 可以使用的支持向量机(SVM)MATLAB程序,最好是和粒子群算法(PSO)或者遗传算法(GA)耦联的程序,谢谢
拉格朗日
function y=lagrange(x0,y0,x)
n=length(x0);m=length(x);
for i=1:m
z=x(i);
s=0.0;
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end
SOR迭代法的Matlab程序
function [x]=SOR_iterative(A,b)
% 用SOR迭代求解线性方程组,矩阵A是方阵
x0=zeros(1,length(b)); % 赋初值
tol=10^(-2); % 给定误差界
N=1000; % 给定最大迭代次数
[n,n]=size(A); % 确定矩阵A的阶
w=1; % 给定松弛因子
k=1;
% 迭代过程
while k=N
x(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);
for i=2:n
x(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i);
end
if max(abs(x-x0))=tol
fid = fopen('SOR_iter_result.txt', 'wt');
fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');
fprintf(fid,'迭代次数: %d次\n\n',k);
fprintf(fid,'x的值\n\n');
fprintf(fid, '%12.8f \n', x);
break;
end
k=k+1;
x0=x;
end
if k==N+1
fid = fopen('SOR_iter_result.txt', 'wt');
fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');
fprintf(fid,'迭代次数: %d次\n\n',k);
fprintf(fid,'超过最大迭代次数,求解失败!');
fclose(fid);
end
Matlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。一阶常微分方程可以写作:y'=f(x,y),使用差分概念。
(Yn+1-Yn)/h= f(Xn,Yn)推出(近似等于,极限为Yn')
Yn+1=Yn+h*f(Xn,Yn)
另外根据微分中值定理,存在0t1,使得
Yn+1=Yn+h*f(Xn+th,Y(Xn+th))
这里K=f(Xn+th,Y(Xn+th))称为平均斜率,龙格库塔方法就是求得K的一种算法。
利用这样的原理,经过复杂的数学推导(过于繁琐省略),可以得出截断误差为O(h^5)的四阶龙格库塔公式:
K1=f(Xn,Yn);
K2=f(Xn+h/2,Yn+(h/2)*K1);
K3=f(Xn+h/2,Yn+(h/2)*K2);
K4=f(Xn+h,Yn+h*K3);
Yn+1=Yn+h*(K1+2K2+2K3+K4)*(1/6);
所以,为了更好更准确地把握时间关系,应自己在理解龙格库塔原理的基础上,编写定步长的龙格库塔函数,经过学习其原理,已经完成了一维的龙格库塔函数。
仔细思考之后,发现其实如果是需要解多个微分方程组,可以想象成多个微分方程并行进行求解,时间,步长都是共同的,首先把预定的初始值给每个微分方程的第一步,然后每走一步,对多个微分方程共同求解。想通之后发现,整个过程其实很直观,只是不停的逼近计算罢了。编写的定步长的龙格库塔计算函数:
function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数)
n=floor((b-a)/h);%求步数
x(1)=a;%时间起点
y(:,1)=y0;%赋初值,可以是向量,但是要注意维数
for ii=1:n
x(ii+1)=x(ii)+h;
k1=ufunc(x(ii),y(:,ii));
k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2);
k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2);
k4=ufunc(x(ii)+h,y(:,ii)+h*k3);
y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6;
%按照龙格库塔方法进行数值求解
end
调用的子函数以及其调用语句:
function dy=test_fun(x,y)
dy = zeros(3,1);%初始化列向量
dy(1) = y(2) * y(3);
dy(2) = -y(1) + y(3);
dy(3) = -0.51 * y(1) * y(2);
对该微分方程组用ode45和自编的龙格库塔函数进行比较,调用如下:
[T,F] = ode45(@test_fun,[0 15],[1 1 3]);
subplot(121)
plot(T,F)%Matlab自带的ode45函数效果
title('ode45函数效果')
[T1,F1]=runge_kutta1(@test_fun,[1 1 3],0.25,0,15);%测试时改变test_fun的函数维数,别忘记改变初始值的维数
subplot(122)
plot(T1,F1)%自编的龙格库塔函数效果
title('自编的 龙格库塔函数')
⑹ statlssvm工具箱中怎样求预测值的置信区间
回复 xiezhh 的帖子就是回归拟合时,求在指定置信度条件下的点预测的预测区间,有没版有专门的函权数?谢谢了!用regress 可以求系数的置信区间,能不能求预测点的置信区间。数理统计书上有专门的公式,不过有点麻烦!
⑺ pso lssvm工具箱怎么调用
LS-SVM是什么,题主随便搜索一下就应该知道了埃。。 LS-SVM 是 Least Squares Support Vector Machines 的缩写
⑻ PSO优化SVM参数的问题
Elapsed time is 64.799304 seconds.
bestc =
45.3915
bestg =
0.0100
bestCVaccuarcy =
97.7528
Accuracy = 97.7528% (87/89) (classification)
trainacc =
97.7528
0.0225
0.9633
Accuracy = 93.2584% (83/89) (classification)
testacc =
93.2584
0.0674
0.9007
代码:
%% 清空环境
clc
clear
load wine;
train = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];
train_label = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
test = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];
test_label = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];
[train,pstrain] = mapminmax(train');
pstrain.ymin = 0;
pstrain.ymax = 1;
[train,pstrain] = mapminmax(train,pstrain);
[test,pstest] = mapminmax(test');
pstest.ymin = 0;
pstest.ymax = 1;
[test,pstest] = mapminmax(test,pstest);
train = train';
test = test';
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.6; % c1 belongs to [0,2]
c2 = 1.5; % c2 belongs to [0,2]
maxgen=300; % 进化次数
sizepop=30; % 种群规模
popcmax=10^(2);
popcmin=10^(-1);
popgmax=10^(3);
popgmin=10^(-2);
k = 0.6; % k belongs to [0.1,1.0];
Vcmax = k*popcmax;
Vcmin = -Vcmax ;
Vgmax = k*popgmax;
Vgmin = -Vgmax ;
% SVM参数初始化
v = 3;
%% 产生初始粒子和速度
for i=1:sizepop
% 随机产生种群
pop(i,1) = (popcmax-popcmin)*rand+popcmin; % 初始种群
pop(i,2) = (popgmax-popgmin)*rand+popgmin;
V(i,1)=Vcmax*rands(1); % 初始化速度
V(i,2)=Vgmax*rands(1);
% 计算初始适应度
cmd = ['-v ',num2str(v),' -c ',num2str( pop(i,1) ),' -g ',num2str( pop(i,2) )];
fitness(i) = svmtrain(train_label, train, cmd);
fitness(i) = -fitness(i);
end
% 找极值和极值点
[global_fitness bestindex]=min(fitness); % 全局极值
local_fitness=fitness; % 个体极值初始化
global_x=pop(bestindex,:); % 全局极值点
local_x=pop; % 个体极值点初始化
tic
%% 迭代寻优
for i=1:maxgen
for j=1:sizepop
%速度更新
wV = 0.9; % wV best belongs to [0.8,1.2]
V(j,:) = wV*V(j,:) + c1*rand*(local_x(j,:) - pop(j,:)) + c2*rand*(global_x - pop(j,:));
if V(j,1) > Vcmax
V(j,1) = Vcmax;
end
if V(j,1) < Vcmin
V(j,1) = Vcmin;
end
if V(j,2) > Vgmax
V(j,2) = Vgmax;
end
if V(j,2) < Vgmin
V(j,2) = Vgmin;
end
%种群更新
wP = 0.6;
pop(j,:)=pop(j,:)+wP*V(j,:);
if pop(j,1) > popcmax
pop(j,1) = popcmax;
end
if pop(j,1) < popcmin
pop(j,1) = popcmin;
end
if pop(j,2) > popgmax
pop(j,2) = popgmax;
end
if pop(j,2) < popgmin
pop(j,2) = popgmin;
end
% 自适应粒子变异
if rand>0.5
k=ceil(2*rand);
if k == 1
pop(j,k) = (20-1)*rand+1;
end
if k == 2
pop(j,k) = (popgmax-popgmin)*rand+popgmin;
end
end
%适应度值
cmd = ['-v ',num2str(v),' -c ',num2str( pop(j,1) ),' -g ',num2str( pop(j,2) )];
fitness(j) = svmtrain(train_label, train, cmd);
fitness(j) = -fitness(j);
end
%个体最优更新
if fitness(j) < local_fitness(j)
local_x(j,:) = pop(j,:);
local_fitness(j) = fitness(j);
end
%群体最优更新
if fitness(j) < global_fitness
global_x = pop(j,:);
global_fitness = fitness(j);
end
fit_gen(i)=global_fitness;
end
toc
%% 结果分析
plot(-fit_gen,'LineWidth',5);
title(['适应度曲线','(参数c1=',num2str(c1),',c2=',num2str(c2),',终止代数=',num2str(maxgen),')'],'FontSize',13);
xlabel('进化代数');ylabel('适应度');
bestc = global_x(1)
bestg = global_x(2)
bestCVaccuarcy = -fit_gen(maxgen)
cmd = ['-c ',num2str( bestc ),' -g ',num2str( bestg )];
model = svmtrain(train_label,train,cmd);
[trainpre,trainacc] = svmpredict(train_label,train,model);
trainacc
[testpre,testacc] = svmpredict(test_label,test,model);
testacc