导航:首页 > 五金知识 > matlab中的bp神经网络工具箱

matlab中的bp神经网络工具箱

发布时间:2021-10-15 00:05:52

1. bp神经网络 matlab 工具箱怎么调出来

有神经网络的工具箱,bp是配出来的!

2. 如何用MATLAB的神经网络工具箱实现三层BP网络

这是一个来自<神经网络之家>nnetinfo的例子,在matlab2012b运行后的确可以,因为网络知道的文本宽度不够,注释挤到第二行了,有些乱,楼主注意区分哪些是代码哪些是注释,
x1 =
[-3,-2.7,-2.4,-2.1,-1.8,-1.5,-1.2,-0.9,-0.6,-0.3,0,0.3,0.6,0.9,1.2,1.5,1.8]; %x1:x1 = -3:0.3:2;
x2 =
[-2,-1.8,-1.6,-1.4,-1.2,-1,-0.8,-0.6,-0.4,-0.2,-2.2204,0.2,0.4,0.6,0.8,1,1.2];%x2:x2 = -2:0.2:1.2;
y = [0.6589,0.2206,-0.1635,-0.4712,-0.6858,-0.7975,-0.8040,...

-0.7113,-0.5326,-0.2875
,0,0.3035,0.5966,0.8553,1.0600,1.1975,1.2618]; %y:
y = sin(x1)+0.2*x2.*x2;
inputData = [x1;x2]; %将x1,x2作为输入数据

outputData = y; %将y作为输出数据

%使用用输入输出数据(inputData、outputData)建立网络,

%隐节点个数设为3.其中隐层、输出层的传递函数分别为tansig和purelin,使用trainlm方法训练。
net = newff(inputData,outputData,3,{'tansig','purelin'},'trainlm');

%设置一些常用参数
net.trainparam.goal = 0.0001;
%训练目标:均方误差低于0.0001
net.trainparam.show = 400; %每训练400次展示一次结果
net.trainparam.epochs = 15000;
%最大训练次数:15000.
[net,tr] = train(net,inputData,outputData);%调用matlab神经网络工具箱自带的train函数训练网络
simout = sim(net,inputData);
%调用matlab神经网络工具箱自带的sim函数得到网络的预测值
figure; %新建画图窗口窗口
t=1:length(simout);
plot(t,y,t,simout,'r')%画图,对比原来的y和网络预测的y

3. MATLAB中用(BP神经网络)工具箱直接画出的图怎么去颜色

随便吧。你怎么加的颜色,就怎么去。

4. matlab的BP神经网络哦工具箱在哪

打开matlab 在命令窗口输入nntool 回车
开始菜单里也有
goodluck

5. matlab bp神经网络工具箱和程序的区别

没区别,那些工具箱就是为了应用方便,原理还是编程

6. bp神经网络matlab工具箱里每次是重新算还是迭代

每次都是重新建立网络,重新设置随机初始权值,重新训练,所以每次的内训练结果都不相同。而且样本容每次代入的顺序可能也是不一样的,所以训练的过程也不同。如果你是做仿真,可以多进行几次,选较好一些的结果。

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

7. matlab中bp神经网络的工具箱怎么用,不要matlab程序,就工具箱怎么实现问题的解决

matlab中神经网络的工具箱:输入nntool,就会弹出一个对话框,然后你就可以根据弹出框的指示来操作。

8. 一个关于BP神经网络的问题,matlab中神经网络工具箱的初始权值和阀值是

训练BP神经网络所采取的随机初始参数确实是随机的,在训练过程中这些参数和权值都会朝着同一个大方向进行修正。例如你用BP神经网络来拟合曲线,找到输入值与输出值之间的线性规律,那么在训练的过程中这个拟合的曲线会不断的调整其参数和权值直到满足几个预设条件之一时训练停止。虽然这个训练出来的结果有时候会有一定误差,但都在可以接受的范围内。
缩小误差的一个方法是需要预先设置初始参数,虽然每次依然会得到不一样的模型(只要参数是随机修正的),但不同模型之间的差距会很小。另外可以反复训练,找到一个自己觉得满意的模型(可以是测试通过率最高,可以是平均结果误差值最小)。
至于你说别人怎么检查你的论文结果,基本上都是通过你的算法来重建模型,而且还不一定都用matlab来做,即便是用同样的代码都会出现不同的结果,何况是不同的语言呢?其实验算结果最重要的是看测试时的通过率,例如在对一组新的数据进行测试(或预测)时,通过率达到95%,别人用其他的方式重建了你的模型也得到这样的通过率,那么你的算法就是可行的。注意,在计算机专业的论文里面大家看重的不是代码,而是算法。
补充一点:只要你训练好了一个神经网络可以把这个神经网络以struct形式保存,这样这个网络可以被反复使用,且每次对同一组测试数据的预测结果都会一样。你也可以当做是检测论文可行性的工具。

9. 用matlab的神经网络工具箱(nntool命令打开的窗口化工具)做bp神经网络时怎么生成误差曲

训练结束后,训练窗口里有一个plot区域,点击performance按钮,就能弹出误差曲线下降图。内

BP(Back Propagation)神经网络是86年由容Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

阅读全文

与matlab中的bp神经网络工具箱相关的资料

热点内容
养猪场需要什么环保设备 浏览:767
仪表盘上面的叉是什么意思 浏览:934
公用主管道阀门没关紧谁的责任 浏览:178
超声波焊机焊点有坑什么原因 浏览:43
设备pm是什么意思 浏览:212
冷箱结冰不制冷怎么处理 浏览:74
播网课需要什么设备 浏览:868
压缩空气自动排污装置 浏览:731
锯切自动送料装置 浏览:812
我的世界自动种植装置 浏览:685
船舶重工需要用什么阀门 浏览:146
慈溪游乐设备哪里有 浏览:714
塑料的比色皿怎么放在仪器中 浏览:845
dnf男机械走什么路线 浏览:422
mh是什么机床牌子 浏览:492
超声波探伤渣孔怎么样 浏览:82
pvc胶粘阀门怎么换新 浏览:896
什么是校核机床功率 浏览:798
上下推拉门五金件 浏览:478
空调制冷为什么卡卡响 浏览:71