❶ 机械设计都有哪些基本要求及原则
机械设计要求及原则:
1、技术性能准则:技术性能包括产品功能、制造和运行状况在内的一切性能,既指静态性能,也指动态性能。例如,产品所能传递的功率、效率、使用寿命、强度、刚度、抗摩擦、磨损性能、振动稳定性、热特性等。技术性能准则是指相关的技术性能必须达到规定的要求。
2、标准化准则:与机械产品设计有关的主要标准大致有:概念标准化,实物形态标准化,方法标准化。标准化准则就是在设计的全过程中的所有行为,都要满足上述标准化的要求。现已发布的与机械零件设计有关的标准,从运用范围上来讲,可以分为国家标准、行业标准和企业标准三个等级。从使用强制性来说,可分为必须执行的和推荐使用的两种。
3、可靠性准则:可靠性:产品或零部件在规定的使用条件下,在预期的寿命内能完成规定功能的概率。可靠性准则就是指所设计的产品、部件或零件应能满足规定的可靠性要求。
4、安全性准则:机器的安全性包括零件安全性、整机安全性、工作安全性、环境安全性。
(1)机械系统总体设计中不包括以下哪些内容扩展阅读:
机械设计优化要求:优化设计需要综合地考虑许多要求,一般有:最好工作性能、最低制造成本、最小尺寸和重量、使用中最可靠性、最低消耗和最少环境污染。这些要求常是互相矛盾的,而且它们之间的相对重要性因机械种类和用途的不同而异。设计者的任务是按具体情况权衡轻重,统筹兼顾,使设计的机械有最优的综合技术经济效果。
过去,设计的优化主要依靠设计者的知识、经验和远见。随着机械工程基础理论和价值工程、系统分析等新学科的发展,制造和使用的技术经济数据资料的积累,以及计算机的推广应用,优化逐渐舍弃主观判断而依靠科学计算。各产业机械的设计,特别是整体和整系统的机械设计,须依附于各有关的产业技术而难于形成独立的学科。
❷ 机械系统设计都有哪些类型特点_机械系统的总体设计包括哪些内容
机械系统设计是对机械系统进行构思、计划并把设想变为现实的技术实践活动。
机械系统设计的类型:
虽然机械系统种类繁多,结构千变万化,但从设计角度来看一般可分为开发设计、变异设计和反求设计。
1、开发设计
针对新任务,提出新方案,完成产品规划、概念设计、构形设计的全过程。
2、变异设计
在已有产品的基础上,针对原有缺点或新的工作要求,从工作原理、功能结构、执行机构类型和尺寸等方面进行一定的变异,设计出新产品以适应市场需要,增强市场竞争力。这种设计也可包括在基本型产品的基础上,工作原理保持不变,开发出不同参数、不同尺寸或不同功能和性能的变型系列产品。如空调机系统产品,有不同功率的空调机系列、不同性能(变频、净化等)空调机系列等都属于变异设计。
3、反求设计
针对已有的先进产品或设计,进行深入分析研究,探索掌握其关键技术,在消化、吸收的基础上,开发出同类型、但能避开其专利的新产品。
机械系统设计的特点:
机械系统设计必须考虑整个系统的运行,而不是只关心各组成都分的工作状态和性能。传统的设计方法注重内部系统的设计,且以改善零部件的特性为重点,至于各零部件之间、外部环境与内部系统之间的相互作用和影响考虑较少。零部件的设计固然应该给予足够的重视,但全部用最好的零部件未必能组成好的系统,其技术和经济性未必能实现良好的统一。应该在保证系统整体工作状态和性能最好的前提下,确定各零部件的基本要求及它们之间的协调和统一。
同时,应在调查研究的基础上搞清外部环境对该机械系统的作用和影响,如市场的要求(包括功能、价格、销售量、尺寸、质量、工期、外观等)和约束条件(包括资金、材料、设备、技术、人员培训、信息、使用环境、后勤供应、检修、售后服务、基础和地基、法律和政策等)。这些都对内部系统设计有直接影响,不仅影响机械系统的总体方案、经济性、可靠性和使用寿命等指标,也影响具体零部件的性能参数、结构和技术要求,甚至可能导致设计失败。
此外,也不能忽略机械系统对外部环境的作用和影响,包括该产品投入市场后对市场形势、竞争对手的影响,运行中对操作环境、操作人员及周围其他人员的影响等。
内部系统设计与外部系统设计相结合是系统设计的特点,它可使设计尽量做到周密、合理,少走弯路,避免不必要的返工和浪费,以尽可能少的投资获取尽可能大的效益,其技术、经济、社会效果往往随系统复杂程度的增加而越趋明显。
❸ 机械系统设计的系统法有哪些内容特性
机械系统设计的系统法就是把研究的对象作为系统或系统的要素和结构,从整体上系统地、全面地进行确定的科学方法。它从系统的观点出发,着眼于整体与局部、系统与环境、人与机之间的相互联系和相互作用,并且综合地、精确地考察研究对象,从而最佳地处理所研究的问题。下面侧重阐述系统分解和系统分析的相关内容。
1、系统分解
任何较大的复杂的系统均可分成若干部分或层次,对于时间过程系统可以分成若干阶段。如何将所研究的系统按不同层次或阶段,以至逐个地把组成系统的要素或子系统区分开来进行分析,使复杂的系统整体变换成许多简单的子系统,这就是系统的分解问题。系统整体如何通过分解简化为若干个子系统,这对于认识整体系统,作出决策,以及协调配合都关系极大。系统分解大体可以分成以下几种类型:
(1)按空间结构关系进行分解
这是系统分解的常用方法。将系统按空间关系划分为若干相互关联的子系统,同一层次的子系统属平行关系。
例如,一个机械厂如按空间关系可以划分为铸造车间、锻造车间、金工车间、装配车间、检修车间等相对独立的各个子系统,彼此之间虽有联系,但基本上属于平行关系。
(2)按系统总目标进行分解
这是将整体系统的总目标划分为若干部分的分目标。这种系统分析法有利体现系统不同的属性。
例如,一台行走式谷物联合收获机其总目标是收获谷物。它可以分解为动力、传动、执行(包括作物茎秆切断、谷粒与谷穗分离、谷粒清选等)、操纵控制、行走、支承等相对独立的子系统。各个子系统分别实现分目标。这种划分任务明确、目的性强。
(3)按系统模型的关联性进行分解
这种方法借助于系统模型的关联性对系统分解。首先对系统建立主框图模型,用图示法或图表法反映各子目标的相互关系;其次按掌握的资料建立定量的数学模型,反映各子目标的函数关系;其三,将属性模型转换为计算机语言以便进行分析计算。通过模型的关联性分解得到系统的各子系统的相互关系。
(4)按系统控制和管理过程进行分解
为了便于系统工程施工以及进入运行阶段的控制和管理,在工程系统中,还必须把一个完整的控制问题变换成一组控制的子问题,然后采取不同方法加以解决。
机械系统的分解采用第2种方法居多。在进行系统分解时,要特别关注系统的整体性和相关性,并把容易综合获得最优的整体方案作为首要条件。
系统分解可以平面分解,也可以分级分解,或者兼有二者的组合分解
系统分解时应注意下述各点:
1)分解数和层次应适宜分解数太少,子系统仍很复杂,不便于子系统的模型化和优化等设计工作;分解数和层次太多,又会给总体系统的综合设计造成困难。
2)避免过于复杂的分界面对那些联系紧密的要素不宜分解拆开,即分解的界面应尽可能选择在要素间结合枝数(联系数)较少和作用较弱的地方。
3)保持能量流、物质流和信息流的合理流动途径通常机械系统工作时都存在着能量、物料和信息三种流的传递和变换,它们在从系统输入到系统输出的过程中,按一定方向和途径流动,既不可中断阻塞,也不能造成干涉或紊流,即便分解成各个子系统,它们的流动途径仍应明确和畅通。
4)了解系统分解与功能分解的关联及不同系统分解时,每个子系统仍是一个子系统,它把具有比较紧密结合关系的要素集合在一起,其结构成员虽稍为简单,但其功能往往还有多项。而功能分解时是按功能体系进行逐级分解,直至不能再分解的单元功能为止。
2、系统分析
系统分析是一种科学的决策方法,其目的是帮助决策者,对所要决策的问题逐步提高其清晰度。它是采用系统的观点和方法,用定性和定量的工具,对所研究的问题进行系统结构和系统状态的分析,提出各种可行的方案和替代方案,并进行分析和评价,为决策者选择最优系统方案提供主要依据。
系统分析的一般程序如下:
1)系统目标设定系统目标是系统分析的出发点和进行评价、决策的主要依据。因此,应进行系统研究——通过对广泛的资料的分析,获得有关信息,并利用有效方法(如进行统计和检验等)对信息进行处理,以确定系统目标。
2)构造模型模型是实体系统的抽象,它应能表示系统的主要组成部分和各部分的相互作用,以及在运用条件下因果作用和反作用的相互关系。构造模型的目的是用较少的风险、时间和费用来对实体系统作研究和实验,以便更好地得到系统的性能。模型包括数学模型、实物模型、计算机模拟及各种图表等。在构造模型时,必须全面考虑系统的各影响因素,分清主次,尽可能如实描述系统的主要特征。在能满足系统目标的前提下,应尽量简化,以需要、简明、易解为原则。
机械系统是物理系统,描述物理系统的模型常用图像模型和数学模型。由于计算机技术的渗透,数学模型的应用越来越广,尤其是需要对系统进行精确定量分析的场合。
虽然构造模型对于系统分析是很重要的,但也不能排除经验分析和类比判断。当设计师能够根据自己或他人的经验直观地作出正确的分析判断时,也可不必建立模型,但应提出可靠的例证。
3)系统最优化系统最优化就是应用最优化理论和方法,对各个候选方案进行最优化设计和计算,以获得最优的系统方案。
由于系统的变量众多,结构通常都很复杂,在系统目标设定时,常常有多个目标,其中有些可能是矛盾的,很难完全兼顾,因此,在多目标的系统分解中,常采取合理的妥协和折中的办法,如满意性设计或协调性设计。前者为不一定追求系统的真正最优,而是寻求一个综合考虑功能、技术、经济、使用等因素后的满意的系统;后者在系统中,不一定每项性能指标都达到最优,虽然从局部看不都是最优,但从整体看则是最优,整个系统具有良好的协调性。
4)系统评价系统评价是对系统分析过程和结果的鉴定,其主要目的是判断所设计的系统是否达到了预定的各项技术经济指标。
系统的评价对于决策的有效性关系极大,正确的评价可以使决策获得成功,取得很大的效益,错误的评价可以导致决策失败,付出沉重的代价。
系统评价时,首先要根据系统目标规定一组评价指标,确定系统的评价项目,制定评价的准则。不同的系统应该有不同的评价指标。系统评价的项目是由构成系统的性能要素来确定的,主要包括系统的功能、速度、成本、可靠性、实用性、适应性、寿命、技术水平、生存能力、竞争能力、重量、体积、外观、能耗等因素。由这些因素构成描述系统的有序集合,可以根据系统所处的实际环境条件安排它们的评价顺序。通过对各因素赋予反映价值地位的加权系数,形成一种评价的价值体系。这种价值体系主要是从技术和经济的角度来进行衡量的。
系统评价应视被评价系统的特点和企业具体条件确定指标体系。一般机械系统采用较多的评价指标体系是价值和投资体系,对系统总投资费用和总收益进行分析和评价,以选择技术上先进、经济上合理的最优系统方案。
❹ 工业机器人设计流程
机器人家上了解到,工业机器人是一种自动化程度很高的机械产品,其设计流程即应该符合机械产品设计的一般流程,又具有其特殊性。
这里主要讨论工业机器人的机械系统设计,并且关注的是其设计流程,工业机器人机械系统的设计阶段可大致分为总体设计和详细设计。
机械系统总体设计是机器人设计的关键阶段,很大程度上决定了产品的技术性能、经济指标、外观造型。
总体结构设计可分为功能原理设计和结构总体设计两个阶段,主要内容包括功能设计、原理方案设计、总体布局、主要技术参数的确定及技术分析等内容。
对于机器人来说其机械系统总体设计主要内容有:确定基本参数、选择运动方式、手臂配置形式(构型)、驱动方式和机械结构设计等,具体如下:
(1) 根据机器人工作任务和目的来确定机器人本体的基本构型、驱动和控制方式、自由度数目。
(2) 根据机器人的共作任务、工作场地的空间布置等来确定机器人的工作空间。
(3) 根据机器人的工作任务来对机器人进行动作规划、制定各自由度的工作节拍、分配各动作时间,初步确定各自由度的运动速度。
(4) 根据机器人的工作空间,初步确定机器人各部分(各臂)的长度尺寸。
(5) 对机器人进行初步受力分析,根据受力分析结果及各关节的运动速度, 选择各关节驱动部件的基本参数(电动机和减速器的选型计算),对于速度较低的可以进行静力( Statics)分析,对于速度较高的机械,各构件的惯性力影响比较大,要进行动力学分析(Dynamics)。
(6) 根据工作要求确定机器人的定位精度。定位精度取决于机器人的定位方式、运动速度、控制方式、机器人手臂的刚度等。
(7) 根据技术要求等确定各零件的材料和结构及加工工艺;然后验算各构件的机械强度、驱动功率和最大负载重量,验算机器人各关键部件的使用寿命。初步确定各构件的机械结构。
(8) 把机器人机械系统总体设计编写成文,编制技术(设计)任务书,并绘制系统总图(草图)、简图(草图)。
经过以上过程,完成了机器人机械系统的总体设计,接下来还需要对机器哦人机械系统进行像是设计计算,过程如下:
(1) 对关键零部件的结构进行详细设计,并对主要零部件结构、材料、关键工艺进行实验。
(2) 编写设计计算说明书,绘制主要零部件草图。
(3) 全部零件设计及编制设计文件。 以上是工业机器人机械系统设计的一般流程,通过本阶段的设计和计算,可以初步确定机器人各构件的结构、材料、工艺的要求等,完成设计算及必要的实验,完成编制全部构件的图样和设计文件。
此外,以上各步骤常需要互相配合、交叉进行。设计工作也需要多次修改,逐步逼近,一遍设计出技术先进可靠、经济合理造型美观的工业机器人。
在机器人的总体参数完成之后,就可以进行机器人驱动系统的设计计算了,驱动系统的设计除了确定驱动方式外,还需要确定驱动系统的具体参数。
在选择伺服电机和精密减速之前,还需要清楚工业机器人对驱动电机的要求,以便根据要求选择机器人的伺服电机和精密减速器,工业机器人对伺服电机的要求有:
(1) 快速性。伺服电动机从获得指令信号到完成指令所要求的动作的时间要短。响应信号的时间越短,电机私服系统的灵敏性越高,快速响应性越好,一般是以伺服电机的机电时间常数的大小来说明伺服电动机快速响应的性能。
(2) 伺服电机的启动转矩与电动机本身惯量之比大。在机器人驱动负载时,要求机器人伺服电机驱动力矩大,转动惯量小。
(3) 控制特性的连续性和直线性。随着控制信号的变化,电动的转速能够连续的变化,有时候还需转速与控制信号成正比或近似正比。
(4) 调速范围宽。能应用与1:1000—1:10000的调速范围。
(5) 体积小、质量小、轴向尺寸小。
(6) 能经受起苛刻的运行条件,可进行频繁的正反转和加减速运行,并能在短时间内有较好的过载能力。 机器人的减速器应具有刚度大、输出转矩高、减速比范围大,回程间隙小、润滑好等特点。 当前RV减速器、谐波减速器、摆线针轮减速器、行星齿轮减速器等均可以用于工业机器人,其中具有扁平结构的高精度减速器更符合工业机器人的要求而广泛应用于工业机器人中。
❺ 工业机器人机械系统总体设计主要包括哪几个方面的内容
1、开放性模块化的控制系统体系结构:采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。
2、模块化层次化的控制器软件系统:软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。
3、机器人的故障诊断与安全维护技术:通过各种信息,对机器人故障进行诊断,并进行相应维护,是保证机器人安全性的关键技术。
4、网络化机器人控制器技术:当前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术变得越来越重要。可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。
(5)机械系统总体设计中不包括以下哪些内容扩展阅读:
机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数。
根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。
❻ 机械系统设计的过程包括哪些阶段
机械系统设计的一般过程包括产品规划、系统技术设计和制造销售三个阶段。
1、产品规划
①根据产品发展规划和市场需要提出设计任务书,或由上级主管部门下达计划任务书。
②调查研究,进行市场调查,收集技术情报和资料,掌握外部环境条件,预测市场趋势。
③进行可行性研究,包括技术研究和费用预测,对市场前景、投资环境、生产条件、生产规模、生产组织、成本与效益等进行全面的分析研究,提出可行性研究报告。
④系统计划,明确设计任务、目的和要求,搞清外部环境的作用和影响,制订系统开发计划。
2、系统技术设计
(1)总体设计
分析和确定系统目的与要求,选择工作原理,设计总体方案,对可行的各候选方案进行分析比较,确定最佳系统方案,并进行总体布置设计,必要时应针对所选方案进行试验研究(前期试验)。
(2)技术设计
分系统进行子系统的选型和设计,计算和确定主要尺寸,绘制部件装配图和总图,必要时进行试验研究(中期试验)。
(3)工作图设计
绘制全部零件工作图,编写各种技术文件和说明书。
(4)鉴定和评审
对设计进行全面的技术、经济评价,分析内部系统对周围环境的作用和影响。
3、制造销售
(1)样机试制及样机试验(后期试验)
(2)样机鉴定和评审
(3)改进设计
对不能满足系统要求的技术、经济指标进行分析,根据样机鉴定和评审意见修改和完善。
(4)小批试制
对单件生产的产品,经修改、试验、调整后,投入运行考核,并在运行中不断改进和完善。
对大量生产的产品,通过小批试制进一步考核设计的工艺性,并不断修改和完善设计,同时进行工艺装备的准备工作。
(5)定型设计
完善全部工作图、技术文件和工艺文件。
(6)销售
对于前期试验和中期试验,可部分或全部使用机械系统仿真分析的虚拟样机技术,这对缩短开发周期,减小开发成本都大有好处。
(7)产品使用
产品进入使用领域后还可能会暴露一些问题,一般经修改后,产品的设计就日臻完善。
(8)产品报废与回收
产品达到使用寿命(或经济寿命)后,不能继续使用或失去迸一步的使用价值,就必须进行报废处理,对于产品中有回收利用价值的部分经处理后可以进行再制造。这就要求在产品方案设计阶段就要考虑回收利用的问题,进行全生命周期设计。