A. 机械发生自锁是由于 A、机械效率小于零 B、阻力太大 C、约束反力太大
是由于:B,阻力太大。因为机械效率小于0,不存在,故不选A。约束反力太大,只能说明安全系数太大,没有必要产生自锁,故不选C。只有阻力太大,机械容易产生损坏,所以需要自锁,故选B。
B. 从机械效率的观点看,机械自锁的条件是什么
你好,从机械效率来看,机械自锁的条件是机械效率小于或者等于零。
C. 如何确定机械的自锁条件
蜗轮蜗杆传动中发生自锁的条件是蜗杆的展开螺旋角小于蜗轮蜗杆接触的摩擦角。即β<Φ,β为蜗杆的展开螺旋角,Φ为摩擦角;tgΦ=μ,μ为摩擦系数。
这个道理跟斜面上的物体不下滑是一样的,就是要求G*sinα<G*cosα*μ,α为斜面斜角,μ为摩擦系数,G为重力。整理得:tgα<μ,即:α<arctanμ=Φ。
因为蜗杆的螺旋角一般很小,小于摩擦角,能自锁。一般单线蜗杆都会自锁,所以不能反转.。不过也有多线蜗杆,它对螺旋角很大,不能自锁,可以反转,在有些场合是要加防反转的装置的。

(3)机械自锁条件是什么扩展阅读:
杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小。具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在起重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用。
传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高。
D. 自锁现象是如何出现的
由于摩擦力的存在以及驱动力方向问题,有时无论驱动力如何增大也无法使机械运动的现象称为机械的自锁。
研究自锁现象的意义
设计机械时必须避免机械在所需的运动方向发生自锁;
有一些机械在设计时需要保证其具有自锁特性。
发生自锁的条件:
1. 移动副自锁
图示移动副,驱动力P使滑块产生运动的有效分力为水平分力Pt,即
Pt=Psinb=Pntgb
垂直分力Pn使滑块1所受的最大摩擦阻力为
Fmax=Pntgf
当b≤f时,则有Pt≤Fmax,即不管驱动力P如何增大,驱动力的有效分力总是小于驱动力P本身所可能引起的最大摩擦力,因而滑块1总不会发生运动,即发生了自锁现象。
移动副自锁条件:驱动力作用在摩擦角内必发生自锁。
2. 转动副自锁
作用在轴颈上的外载荷为P,则当力P的作用线在摩擦圆之内时,即a<ρ, 因驱动力矩M=Pa=Qa,始终小于它本身所能引起的最大摩擦力矩Mf=R21ρ=ρQ。所以力P任意增大,也不能驱使轴颈转动。亦即发生了自锁现象。
转动副自锁条件:驱动力作用在摩擦圆内必发生自锁。
3. 根据效率确定自锁条件:
在机械发生自锁时,是因为驱动力所能作的功总是小于由其可能引起的最大摩擦阻力所需要的功。 即当机械发生自锁时,其机械效率将恒小于或等于零,即h≤0。
当η=0时机械处于临界自锁状态;若η<0,则其绝对值越大,表明自锁越可靠。所以可通过机械效率的计算公式来判断机械是否发生自锁和分析自锁的条件。但一定要注意:此时η已没有通常效率的意义。
4. 根据所求阻抗力确定自锁条件
在机械发生自锁时,机械已不能运动,这时所求得的生产阻力Q将等于或小于零,即Q≤0。
此时,只有阻抗力反向变为驱动力后机械才能运动。于是可驱动力任意增大时,Q≤0是否成立判定是否自锁并确定自锁条件。
5. 结论
所谓机械具有自锁性,只是说当它所受的驱动力作用于其某处或按某方向作用时是自锁的,而在另外的情况下却是能够运动的。
判定机构是否会自锁和在什么条件下发生自锁,可根据具体情况,视方便运用分析驱动力是否作用于摩擦角之内