Ⅰ 机械系统动力学的介绍
《机械系统动力学》是清华大学出版社出版,杨义勇编著的机械专业书籍。全书共9章。介绍了机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,讲述了刚性机械系统的动力学分析与设计,含弹性构件的机械系统的动力学,含间隙副机械的动力学,含变质量机械系统动力学以及机械动力学数值仿真数学基础与相关软件。本书可作为高等院校机械工程专业本科和研究生教材,也可作为从事机械工程研究和设计的技术人员的参考书籍。

Ⅱ 机械动力学系统的三要素及作用
机械设备种类繁多,机械设备运行时,其一些部件甚至其本身可进行不同形式的机械运动。机械设备由驱动装置、变速装置、传动装置、工作装置、制动装置、防护装置、润滑系统、冷却系统等部分组成。如果把机械设备概括成三大要素的话,它应该由可以完成某种特定功能的机构、原动力和操控系统三部分组成。
Ⅲ ADAMS是什么
ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),
该软件是美国机械动力公司(Mechanical Dynamics Inc.)(现已并入美国MSC 公司)开发的虚拟样机分析软件。ADAMS已经被全世界各行各业的数百家主要制造商采用。
根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额,现已经并入美国MSC公司。

(3)机械系统动力学指什么扩展阅读:
特点:
1、系统动力学将生命系统和非生命系统都作为信息反馈系统来研究,并且认为,在每个系统之中都存在着信息反馈机制,而这恰恰是控制论的重要观点,所以,系统动力学是以控制论为理论基础的。
2、系统动力学把研究对象划分为若干子系统,并且建立起各个子系统之间的因果关系网络,立足于整体以及整体之间的关系研究,以整体观替代传统的元素观。
Ⅳ 机械动力学主要学些什么出来后可以从事什么专业,此专业是否有前途,请详细解答谢谢
一、机械动力学性质
1. 机械:机构、机器的总称。
(机械原理) 2.动力学:研究刚
体运动及受力关系的学科。 动力
学正问题—已知力(力矩)求运
动; 动力学反(逆)问题—已知
运动求力(力矩)。
F = ma
机械动力学:是研究机械在力作
用下的运动、 机械在运动中产生
的力(力矩)的科学。
例:
ω
M
v
F
机构组成性质:曲柄、急回。 若
已知力(力矩),当机构处于平
衡状态时,求力 矩(力) --机械
静力学问题。 若已知M、F,求
ω、v时—机械动力学。
二、机械动力学研究内容
1. 描述机械有那些基本参数 1)
机构参数:几何参数(杆长);
物理参数(质量 m,转动惯量
J)。 2)运动参数:转角θ、
ω、α、s、v、a。 3)力矩M、力
F。
2. 内容 1)已知机械的物理、几
何参数进行动力学分析。 a、已
知力求运动;b、已知力求运
动。 可表示为:f ( F , M ) g (l , m,
J , v, a, ω , α ) 2)已知运动、受力
求结构 这是机械设计研究问题,
一般实际做法是先 设计后校核,
少数情况是直接求设计参数。
例:求支点最佳位置。
如果梁静止为静力学问题; 如果
梁有惯性运动为动力学问题。
q
3)具体章节内容 单自由度运动
学方程的建立 二自由度运动学方
程的建立,如差动轮系、五杆机
构 多自由度运动学方程的建立,
如机械手臂、机器人等
理想情况下(无摩擦变形等) 考
虑摩擦,如铰链、关节处摩擦 考
虑弹性变形,如杆变形、并联柔
性机器人 变质量问题,如推土机
工作过程、火箭发射过程 有间隙
情况下动力学研究,不详讲述
三、 研究对象--以机械为研究对
象
三大典型机构 连杆机构 凸轮机
构 齿轮机构 组合机构
四、其它
1. 学习机械动力学目的、意义 学
习动力学分析问题的思想和基本
方法,能够 解决一般动力学问
题。 2.教材(见前言) 3.考核方
式 开卷。
第一章 单自由度的机械系统动力
学分析
§1-1 利用动态静力法进行动力学
分析 一、思路
动静法:根据达朗贝尔原理将惯
性力计入静力平衡 方程,求出为
平衡静载荷和动载荷而需在原动
件上 施加的力(力矩)。平衡方
程包括:惯性力、载荷、 约束反
力和驱动力(力矩)。 ※用静力
平衡方程解决动力学问题 基本方
程为: F = ma M = Jα
M 1 (驱) 解:利用动静法拆开机
构 轮1:有反作用力R,惯性力
矩 J11 轮2:有反作用力R,惯性
力矩 J 2 2 则有方程: M Rr J = 0
1 1 1 1 M 2 Rr2 J 22 = 0
二、典型实例 例1:已知:z1 ,
z2 , J! , J 2 , M 1 , M 2 求:角加速
度 1
r1 r2
M 2 (阻)
得
M 1 M 2 ( z1 / z2 ) 1 = J1 + J 2
( z1 / z2 ) 2
结论:1、加惯性力(力矩) 2、
约束反力 3、
详细可以去网络文库找,,
专业就是机械化工程之类的,,主要是工程,
Ⅳ 机械系统动力学研究内容和研究意义
它是关于物体自由度的动力学方程分析,包括单自由度,二自由度和多自由度等
可以分析研究对象的动力学特性等
Ⅵ 机械动力学都有哪些内容
机械动力学是研究机械在力作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械的设计和改进的科学。机械动力学的内容:
机械动力学是研究机械在力的作用下的运动和机械在运动中产生的力的一门学科。机械动力学研究的主要内容概括起来,主要有如下几个方面。
一、共振分析
随着机械设备的高速重载化和结构、材质的轻型化,现代化机械的固有频率下降,而激励频率上升,有可能使机械的运转速度进入或接近机械的“共振区”,引发强烈的共振。所以,对于高速机械装置(如高速皮带、齿轮、高速轴等)的支承结构件乃至这些高速机械本身,均应进行共振验算。
这种验算在设计阶段进行,可避免机械的共振事故发生;而在分析故障时进行,则有助于找到故障的根源和消除故障的途径。
二、振动分析与动载荷计算
现代的机械设计方法正在由传统的静态设计向动态设计过渡,并已产生了一些专门的学科分支。如机械弹性动力学就是考虑机械构件的弹性来分析机械的精确运动规律和机械振动载荷的一个专门学科。
三、计算机与现代测试技术的运用
计算机与现代测试技术已成为机械动力学学科赖以腾飞的两翼。它们相互结合,不仅解决了在振动学科中许多难以用传统方法解决的问题,而且开创了状态监测、故障诊断、模态分析、动态模拟等一系列有效的实用技术,成为生产实践中十分有力的现代化手段。
机械动力学的各个分支领域,在运用计算机方面取得了丰硕成果,如MATLAB、AnAMS、CATIA、ANSYS等大型仿真软件得到了广泛的运用。
四、减振与隔振
高速与精密是现代机械与仪器的重要特征。高速易导致振动,而精密设备却又往往对自身与外界的振动有极为严格的限制。因此,对机械的减振、隔振技术提出了越来越高的要求。所以,隔振设备的设计、选用与配置以及减振措施的采用,也是机械动力学的任务之一。
机械动力学在近年来虽然得到了迅速的发展,但仍有大量的理论问题与技术问题等待人们去探索,其中主要包括以下几个方面。
1、振动理论问题
这类问题主要是指非线性振动理论问题。工程上的非线性问题常常采用简化的线性化处理,或在计算机上进行分段线性化处理。在这方面还有待进一步探索。
工程中的大量自激振动(如导线舞动、机床颤振、车轮振摆、油缸与导轨的爬行等),目前还缺乏统一成熟的理论方法,许多问题尚待研究。
2、虚拟样机技术
机械系统动态仿真技术又称为机械工程中的虚拟样机技术,是20世纪80年代随着计算机技术的发展而迅速发展起来的一项计算机辅助工程(CAE)技术。运用这一技术,可以大大简化机械产品的开发过程,大幅度缩短产品的开发周期,大量减少产品的开发费用和成本,明显提高产品的质量,提高产品的系统及性能,获得最优化和创新的设计产品。因此,该技术一出现,就受到了人们的普遍重视和关注,而且相继出现了各种分析软件,如MATLAB、ADAMS、ANSYS、CATIA、UG、Pro/E、SolidWorks等。对于这方面的工作,目前我国还有相当大的差距。
3、振动疲劳机理的研究
许多机械零件的疲劳破坏是由振动产生的。如何把振动理论与振动疲劳机理结合起来仍是一个热门课题。
4、有关测试技术理论和故障诊断理论的研究
适用、有效、廉价的测试诊断设备与技术的研究,离生产急需尚有相当大的距离。
5、流固耦合振动
流体通过固体时会激发振动,而固体的振动,如导线舞动、卡门涡振动、轴承油膜振荡等,又会反过来影响流体的流场和流态,从而改变振动的形态。
6、乘坐动力学
对于交通机械(如汽车、工程机械、舰船等),其结构设计、悬挂设计、座椅设计以及减振设计等都需要引入随机振动理论,是一个广阔且重大的课题。
7、微机械动力学问题
微机械并非传统意义下的宏观机械的几何尺寸的缩小。当系统特征尺寸达到微米或纳米的量级时,许多物理现象与宏观世界的情况有很大差别。例如,在微机械中,构件材料本身的物理性质将会发生变化;一些微观尺度的短程力所具有的长程效应及其引起的表面效应会在微观领域内起主导作用;在微观尺度下,系统的摩擦问题会更加突出,摩擦力则表现为构件表面间的分子和原子的相互作用,而不再是由载荷的正压力产生,并且当系统的特征尺寸减小到某一程度时,摩擦力甚至可以和系统的驱动力相比拟;在微观领域内,与特征尺寸L的高次方成比例的惯性力、电磁力等的作用相对减小,而与特征尺寸的低次方成比例的黏性力、弹性力、表面张力、静电力等的作用相对增大;此外,微构件的变形与损伤机制与宏观构件也不尽相同等。
针对微机械的研究中呈现出的新特征,传统的机械动力学理论与方法已不再适用。微机械动力学研究微构件材料的本构关系、微构件的变形方式和阻尼机制、微机构的弹性动力学方程等主要科学问题,揭示微构件材料的分子(或原子)成分和结构、材料的弹性模量和泊松比、微构件的刚度和阻尼以及微机构的弹性动力学特性等之间的内在联系,从而保证微机电系统在微小空间内实现能量传递、运动转换和调节控制功能,以规定的精度实现预定的动作。因此,机械动力学的研究将会取得多方面的创新成果,这些成果不仅有重要的科学意义和学术价值,而且有很好的应用前景。
机械动力学的研究方法可分为两类。
(1)结构动态分析
对于机械动力学正问题,动态分析一般借助于多种动态分析法(如模态分析法、模态综合法、机械阻抗分析法、状态空间分析法、模态摄动法及有限元法等)建立结构或系统的数学模型,进而对结构的动态特性进行分析(如动态仿真等)。
对于机械动力学逆问题,动态分析通常先进行动态实验,在此基础上根据一定的准则建立结构或系统的数学模型,然后借助参数辨识或系统辨识的方法进行分析。
(2)动态实验
结构动态实验包括模态实验、力学环境实验、模拟实验等,它是产品设计和生产过程中不可缺少的环节,不仅可以直接考核产品的动力学性能,也为动态分析建立可靠的数学模型提供必要的数据。
Ⅶ 机械动力学的研究内容
1.在已知外力作用下求具有确定惯性参量的机械系统的真实运动规律。为了简化问题,常把机械系统看作具有理想、稳定约束的刚体系统处理。对于单自由度的机械系统,用等效力和等效质量的概念可以把刚体系统的动力学问题转化为单个刚体的动力学问题;对多自由度机械系统动力学问题一般用拉格朗日方程求解。机械系统动力学方程常常是多参量非线性微分方程,只在特殊条件下可直接求解,一般情况下需要用数值方法迭代求解。许多机械动力学问题可借助电子计算机分析。计算机根据输入的外力参量、构件的惯性参量和机械系统的结构信息,自动列出相应的微分方程并解出所要求的运动参量。
2.分析机械运动过程中各构件之间的相互作用力。这些力的大小和变化规律是设计运动副的结构、分析支承和构件的承载能力以及选择合理润滑方法的依据。在求出机械真实运动规律后可算出各构件的惯性力,再依据达朗伯原理用静力学方法求出构件间的相互作用力。
3.研究回转构件和机构平衡的理论和方法。平衡的目的是消除或减少作用在机械基础上周期变化的振颤力和振颤力矩。对于刚性转子的平衡已有较成熟的技术和方法:对于工作转速接近或超过转子自身固有频率的挠性转子平衡问题,不论是理论和方法都需要进一步研究。
平面或空间机构中包含有往复运动和平面或空间一般运动的构件。其质心沿一封闭曲线运动。根据机构的不同结构,可以应用附加配重或附加构件等方法全部或部分消除其振颤力。但振颤力矩的全部平衡较难实现。优化技术应用于机构平衡领域已经取得较好的成果。
4.研究机械运转过程中能量的平衡和分配关系。这包括:机械效率的计算和分析;调速器的理论和设计;飞轮的应用和设计等。
5.机械振动的分析研究是机械动力学的基本内容之一。它已发展成为内容丰富、自成体系的一门学科。 6.机构分析和机构综合一般是对机构的结构和运动而言,但随着机械运转速度的提高,机械动力学已成为分析和综合高速机构时不可缺少的内容。
