Ⅰ 机械设计软件有哪些
1、Solidworks
在机械设计软件当中,solidworks可以说是目前最主流的软件了,无论是在非标设计还是在仿真模拟上,都有着其它软件所没有的能力。而且友善的操作界面受到很多设计者的喜欢,是每位机械设计师的必备工具之一。

Ⅱ 做机械设计用哪个软件好
现在用的最抄多的是pro/e,因为它一出生就处于垄断地位。UG可能出来比较早,但是在技术更新方面可能没有后两者快,UG使用于模具设计,pro/e适用于三维仿真,solidworks的发起者是原来PRO/E的一位技术总监跳槽,自立门户。其速度比pro/e快了30%-40%,不过现在正在壮大阶段,用的人比pro/e可能要少一点
Ⅲ 机械设计制造需要掌握的软件
机械设计制造及其自动化专业要掌握CAD(计算机辅助技术(CAXC)认证),UG(交互CAD/CAM系统,Pro/Engineer操作软件。
1、CAD组成:通常以具有图形功能的交互计算机系统为基础,主要设备有:计算机主机,图形显示终端,图形输入板,绘图仪,扫描仪,打印机,磁带机,以及各类软件。
2、UG组成:UG具有三个设计层次,即结构设计(design)、子系统设计(subsystemdesign)和组件设计(componentdesign)。
3、proe组成:参数化设计,基于特征建模,单一数据库(全相关)。
(3)机械设计用什么计算器扩展阅读:
就业方向
1、从事机械设滑明计与制造加工工艺规程的编制与实施工作。
2、从事机械、电气、液压、气压等控制设备的维护维修工作。
3、从事工艺工装的设计、制造工作。
4、从事数控机床、加工中心等高智能设备的编程信激告及操作工作;
5、从事机械CAD/CAM技术的应用工作。
6、从事机械设计与制造的现场技术管理工作。
7、从事机电产品的销售和服务工作。
8、在高等学校、科研机构铅颤和国家机关从事教学、科研和行政管理工作。
9、从事机械模具设计生产及制造相关工作。
Ⅳ 机械设计师,需要用到哪些工具
电脑,计算器,卷尺,卡尺,千分尺,直尺,
以及其他一些工具手册,标准文档等等东西
Ⅳ 机械设计用什么软件好
问题一:使用哪种机械设计软件更好?! 你说的问题比较宽泛,看你的要求是“想将厂里的东西用电脑表达出来,并且用电脑进行新产品的开发”,应该是需要进行产品建模并出图纸,然后交给数控来加工,前者涉及到CAD(计算机辅助设计,puter aided design),后面涉及到数控编程,市面上的CAD软件多如牛毛,一般分为二维和三维类,二维的有AUTOCAD、CAXA等,三维的有你提到的Pro/E、SolidWorks,还有比较大型的UG、CATIA,这些软件网上都有破解版,而且功能比正版要全,且会有不断更新。
CAD市场里面除了CAXA是国产的还不错外其它的基本都很难跟国外竞争,CAXA是北航海尔开发的二维电子图版,很简单易学,还有配套的直接生成数控程序的软件,我上学的时候都用过,记得当时才四百多块钱一套,算是物廉价美了,但是功能显然没有AUTOCAD多,一般够用了。最近好像也有三维的产品了,不太清楚。
AutoCAD没的说,二维建模不用它用谁,网上破解版虽是保证最新,如果不考虑买正版的话当然是不二之选,要花钱的话。。。嘿嘿嘿,还是凑合凑合搞个CAXA吧。也能画三维图,只是相对其它三维软件没什么优势。
三维建模的话,Pro/E、SolidWorks、UG、CATIA这几种主流软件中,SolidWorks比较小型,不仅仅应用于机械设计,动画行业也有应用。
其他三个都是行业内的大型软件,提供全面的解决方案,当然包括出数控程序,而且如果你的数控机床足够高级的话,还可以支持直接三维图,否则的话必须将三维模型生成二维图纸后在进行加工。
这三个软件各有千秋,ProE行业应用稍微差一点,UG二次开发能力很强,CATIA在飞机汽车行业是巨头,你得根据自己的产品特点选择,至于正版......,从你们厂使用经济型数控来看,这一套动则十几万美元(还不说买全部模块)的东东还是甭考虑了,还是充分利用网络吧:)
问题二:做机械设计用哪个软件好? 用Solidworks好,操作简单,出工程图也很方便。
机械设计(machine design),根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算并将其转化为具体的描述以作为制造依据的工作过程。
机激设计是机械工程的重要组成部分,是机械生产的第一步,是决定机械性能的最主要的因素。机械设计的努力目标是:在各种限定的条件(如材料、加工能力、理论知识和计算手段等)下设计出最好的机械,即做出优化设计。优化设计需要综合地考虑许多要求,一般有:最好工作性能、最 *** 造成本、最小尺寸和重量、使用中最可靠性、最低消耗和最少环境污染。这些要求常是互相矛盾的,而且它们之间的相对重要性因机械种类和用途的不同而异。设计者的任务是按具体情况权衡轻重,统筹兼顾,使设计的机械有最优的综合技术经济效果。过去,设计的优化主要依靠设计者的知识、经验和远见。随着机械工程基础理论和价值工程、系统分析等新学科的发展,制造和使用的技术经济数据资料的积累,以及计算机的推广应用,优化逐渐舍弃主观判断而依靠科学计算。
问题三:机械设计用什么软件好 首先要学好CAD,这个是机械设计基础软件。主要用于后期出工程图等。
其次要掌握一门3D软件,这个主要是用于三维建模。
至于三维软件,现在主流的有solidworks、ProE、UG等,很多,软件就这样,经常练习看视频多动手操作,很容易学的。其实软件就只是个辅助我们设计的一个工具。不用钻研的那么精。多学习点机械相关资料,这些就够你学的了,这行学的东西太多太广了!
问题四:初学机械设计用什么软件好 这些软件不用专门学吧。像CAD了你在网上一下就有N多,当然你的经常画一下,手熟了就会了,最主要的是你得懂得作图原理。机械设计嘛,当然制图必不可少但工程材料的选用包括其强度了什么的,还有就是效率了,功率了,材料的热处理,机构的选用等等都要懂得,还有就是机械设计的禁忌手册也要经常看一下。总之机械这条路很广很长。
问题五:现在有哪些机械设计的软件, 10分 二维的有AutoCAD CAXA interCAD等
三维的软件solidworks,ug, PRO/E CATIA solide场ge
还有一些国产的CAD基于AutoCAD开发的也好用。
问题六:机械设计师,需要用到哪些工具? 电脑,计算器,卷尺,卡尺,千分尺,直尺,
以及其他一些工具手册,标准文档等等东西
问题七:最好用的机械设计软件有哪些 做机械设计个人感觉INVENTOR比较好,尤其是三维设计完成之后画工程图各种标注都很丰富,因为是和CAD是一家公司做的产品,与CAD格式转换、衔接都很方便,另外INVENTOR有自顶而下的设计方式,可以在零件模式下直接新建实体,可以直接转换为装配图,各个零件之间尺寸可以相互参照并且关联,对于复杂装配图零件设计很有帮助;
其次是Solid works,也是一款比较普及的三维设计软件,比INVENTOR普及率高,三维功能感觉比INVENTOR强一些,画二维工程图不如INVENTOR顺手;
如果是汽车、航空等领域,需要曲面建模的用CATIA比较多,CATIA的曲面建模能力很强。
问题八:现在机械设计用的什么软件该怎么下载? SOLIDWORKS, PROE, UG 等,一般到他们的官网上都有学生试用版。
也可以到有关论坛上看看。
问题九:常用的机械设计软件有哪些 不知道你现在做的是哪一个行当。PRO/E和SOLIDWORKS,现在北方用SOLIDWORKS用得比较多,南方用PROE比较多,但是在深圳广州这些城市也有很多公司存在员工同时使用这两种软件的情况。最好都掌握。 SOLIDWORKS现在功能有了很大的改进,而且他的工程图功能比PROE要强大,现在国内搞机械加工的用得较多的是AUTOCAD,直接导入图形,模具成型之类的用PROE用得比较多,如果单纯搞设计的话,二者平分秋色,但是就学习而言,solidworks是比较好学,而且个人感觉他的界面很不错的。我现在用的2008。
如果你现在还在搞电路方面的建议你不要学那么复杂,毕竟软件只是一种工具,最重要的是你的设计理念,如果现在让你设计模具,可是你连最基本的设计思路都没有,软件用的再好也是没用,所以要结合你自己的实际情况来确定自己使用哪种软件。
祝你工作顺利!
问题十:3D的机械设计软件哪个用的比较多呢 我是一名机械行业的从业人员,我自己的使用感觉及身边的朋友同学中的情况是,solidworks因为其简单宜人的操作界面,上手容易,使用者较多
pro/e 做整体设计分析用得较多 但是初学起来,还是有点难度的,好多东西都要自己设置,二维图设计虽然有其智能化较高特点,但是实在是远远不及CAD
catie汽车行业用的较多,分析仿真功能很强大,但是很容易出现一些发现不了原因的错误(估计是我学的不好的原因)
UG做模具方面的设计实在是功能强大,超喜欢
至于使用的多不多看你具体的从事工作啦!
Ⅵ 机械之美——机械时期的计算设备
本文刊载于《上海财经大学博物馆馆刊》2018年11月(第一期),网络版为 《机械之美——机械时期的计算设备》 。
所谓计算机,顾名思义,就是用于计算的机器。诚然现在的计算机应用已经远远超出了计算本身,不论是电脑、平板、还是手机,我们天天靠着它们看电影、听音乐、交流感情,看似与计算已经毫无关系,但事实上最初计算机的诞生就是为了满足人们对数学计算的需求,而如今计算机这些强大功能的底层实现,也依旧靠的是数学计算,这也是为什么我们仍然保留着「计算机」这一称呼的原因吧。
远古时代,原始人为了搞清楚猎物的数目就已经与计算攀上了关系,他们用手指计数,用结绳记事。到了古代,人们又发明了算筹、算盘等简单工具,借助复杂的使用方法,求解复杂的问题。至此,人们在计算时不光要动手,还要动脑,甚至动口(念口诀),必要时还得动笔(记录中间结果),人工成本很高。
到了17世纪,人们终于开始尝试使用机械装置完成一些简单的数学运算(加减乘除)——可不要小看了只能做四则运算的机器,计算量大时,如果数值达到上万、上百万,手工计算十分吃力,而且容易出错,这些机器可以大大减轻人工负担、降低出错概率。
机械装置的历史其实相当久远,在我国,黄帝和蚩尤打仗时就发明了指南车,东汉张衡的地动仪、浑天仪、记里鼓车(能自动计算行车里程),北宋时期苏颂、韩公廉发明的水运仪象台(天文钟),数不胜数,其中好多发明事实上已经实现了某些特定的计算功能。然而所谓工具都是应需求而生的,我国古代机械水平再高,对计算(尤其是大批量计算)没有需求也难为无米之炊,真正的通用机械计算设备还得在西方进入资本主义后逐渐出现。
那个时候,西方资产阶级为了夺取资源、占据市场,不断扩大海外贸易,航海事业蓬勃兴起,航海就需要天文历表。在那个没有电子计算机的时代,一些常用的数据通常要通过查表获得,比如cos27°,不像现在这样掏出手机打开计算器APP就能直接得到答案,从事特定行业、需要这些常用数值的人们就会购买相应的数学用表(从简单的加法表到对数表和三角函数表等等),以供查询。而这些表中的数值,是由数学家们借助简单的计算工具(如纳皮尔棒)一个个算出来的,算完还要核对。现在想想真是蛋疼,脑力活硬生生沦为苦力活。而但凡是人为计算,总难免会有出错,而且还不少见,常常酿成航海事故。机械计算设备就在这样的迫切的需求背景下应运而生。
研制时间:1623年~1624年
契克卡德是现今公认的机械式计算第一人,你也许没听说过他,但肯定知道开普勒吧,对,就是那个天文学家开普勒。契克卡德和开普勒出生在同一城市,两人既是生活上的好基友,又是工作上的好伙伴。正是开普勒在天文学上对数学计算的巨大需求促使着契克卡德去研发一台可以进行四则运算的机械计算器。
契克卡德计算钟支持六位整数计算,主要分为加法器、乘法器和中间结果记录装置三部分。其中位于机器底座的中间结果记录装置是一组简单的置数旋钮,纯粹用于记录中间结果,仅仅是为了省去计算过程中笔和纸的参与,没什么可说的,我们详细了解一下加法器和乘法器的实现原理和使用方法。
乘法器部分其实就是对纳皮尔棒的改进,简单地将乘法表印在圆筒的十个面上,机器顶部的旋钮分有10个刻度,可以将圆筒上代表0~9的任意一面转向使用者,依次旋转6个旋钮即可完成对被乘数的置数。横向有2~9八根挡板,可以左右平移,露出需要显示的乘积。以1971年的纪念邮票上的图案为例,被乘数为100722,乘以4,就移开标数4的那根挡板,露出100722各位数与4相乘的积:04、00、00、28、08、08,心算将其错位相加得到最终结果402888。
加法器部分通过齿轮实现累加功能,6个旋钮同样分有10个刻度,旋转旋钮就可以置六位整数。需要往上加数时,从最右边的旋钮(表示个位)开始顺时针旋转对应格数。以笔者撰写该部分内容的时间(7月21日晚9:01)为例,计算721+901,先将6个旋钮读数置为000721:
随后最右边的(从左数第六个)旋钮顺时针旋转1格,示数变为000722:
第五个旋钮不动,第四个旋钮旋转9格,此时该旋钮超过一圈,指向数字6,而代表百位的第三个旋钮自动旋转一格,指向数字1,最终结果即001622:
这一过程最关键的就是通过齿轮传动实现的自动进位。契克卡德计算钟使用单齿进位机构,通过在齿轮轴上增加一个小齿实现齿轮之间的传动。加法器内部的6个齿轮各有10个齿,分别表示0~9,当齿轮从指向数字9的角度转动到0时,轴上突出的小齿将与旁边代表更高位数的齿轮啮合,带动其旋转一格(36°)。
相信聪明的读者已经可以想到减法怎么做了,没错,就是逆时针旋转加法器的旋钮,单齿进位机构同样可以完成减法中的借位操作。而用这台机器进行除法就有点「死脑筋」了,你需要在被除数上一遍又一遍不断地减去除数,自己记录减了多少次、剩余多少,分别就是商和余数。
由于乘法器单独只能做多位数与一位数的乘法,加法器通常还需要配合乘法器完成多位数相乘。被乘数先与乘数的个位相乘,乘积置入加法器;再与乘数十位数相乘,乘积后补1个0加入加法器;再与百位数相乘,乘积后补2个0加入加法器;以此类推,最终在加法器上得到结果。
总的来说,契克卡德计算钟结构比较简单,但也照样称得上是计算机史上的一次伟大突破。而之所以被称为计算钟,是因为当计算结果溢出时,机器还会发出响铃警告,在当时算得上十分智能了。可惜的是,契克卡德制造的机器在一场火灾中烧毁,一度鲜为人知,后人从他在1623年和1624年写给开普勒的信中才有所了解,并复制了模型机。
研制时间:1642年~1652年
1639年,帕斯卡的父亲开始从事税收方面的工作,需要进行繁重的数字相加,明明现在Excel里一个公式就能搞定的事在当时却是件大耗精力的苦力活。为了减轻父亲的负担,1642年起,年方19的帕斯卡就开始着手制作机械式计算器。刚开始的制作过程并不顺利,请来的工人只做过家用的一些粗糙机械,做不来精密的计算器,帕斯卡只好自己上手,亲自学习机械制作。
现在想想那个生产力落后的时代,这些天才真心牛逼,他们不仅可以是数学家、物理学家、天文学家、哲学家,甚至还可能是一顶一的机械师。
帕斯卡加法器,顾名思义,只实现了加减法运算,按理说原理应该非常简单,用契克卡德的那种单齿进位机构就可以实现。而帕斯卡起初的设计确实与单齿进位机构的原理相似(尽管他不知道有契克卡德计算钟的存在)——长齿进位机构——齿轮的10个齿中有一个齿稍长,正好可以与旁边代表更高数位的齿轮啮合,实现进位,使用起来与计算钟的加法器一样,正转累加,反转累减。
但这一类进位机构有着一个很大的缺陷——齿轮传动的动力来自人手。同时进行一两个进位还好,若遇上连续进位的情况,你可以想象,如果999999+1,从最低位一直进到最高位,进位齿全部与高位齿轮啮合,齿轮旋转起来相当吃力。你说你力气大,照样能转得动旋钮没问题,可齿轮本身却不一定能承受住这么大的力,搞不好容易断裂。
为了解决这一缺陷,帕斯卡想到借助重力实现进位,设计了一种叫做sautoir的装置,sautoir这词来自法语sauter(意为「跳」)。这种装置在执行进位时,先由低位齿轮将sautoir抬起,而后掉落,sautoir上的爪子推动高位齿轮转动36°,整个过程sautoir就像荡秋千一样从一个齿轮「跳」到另一个齿轮。
这种只有天才才能设计出来的装置被以后一百多年的许多机械师所称赞,而帕斯卡本人对自己的发明就相当满意,他号称使用sautoir进位机构,哪怕机器有一千位、一万位,都可以正常工作。连续进位时用到了多米诺骨效应,理论上确实可行,但正是由于sautoir装置的存在,齿轮不能反转,每次使用前必须将每一位(注意是每一位)的齿轮转到9,而后末位加1用连续进位完成置零——一千位的机器做出来恐怕也没人敢用吧!
既然sautoir装置导致齿轮无法反转,那么减法该怎么办呢?帕斯卡开创性地引入了沿用至今的补码思想。十进制下使用补九码,对于一位数,1的补九码就是8,2的补九码是7,以此类推,原数和补码之和为9即可。在n位数中,a的补九码就是n个9减去a,以笔者撰写该部分内容的日期(2015年7月22日)为例,20150722的8位补九码是99999999 - 20150722 = 79849277。观察以下两个公式:
a-b的补码就是a的补码与b的和,如此,减法便可以转化为加法。
帕斯卡加法器在显示数字的同时也显示着其所对应的补九码,每个轮子身上一周分别印着9~0和0~9两行数字,下面一行该位上的表示原数,上面一行表示补码。当轮子转到位置7时,补码2自然显示在上面。
帕斯卡加了一块可以上下移动的挡板,在进行加法运算时,挡住表示补码的上面一排数,进行减法时就挡住下面一排原数。
加法运算的操作方法与契克卡德计算钟类似,唯一不同的是,帕斯卡加法器需要用小尖笔去转动旋钮。这里主要说一说减法怎么做,以笔者撰写该部分内容的时间(2015年7月23日20:53)为例,计算150723 - 2053。
置零后将挡板移到下面,露出上面表示补码的那排数字:
输入被减数150723的补码849276,上排窗口显示的就是被减数150723:
加上被减数2053,实际加到了在下排的补码849276上,此时上排窗口最终显示的就是减法结果148670:
整个过程用户看不到下面一排数字,其实玄机就在里头,原理挺简单,09一轮回,却很有意思。
研制时间:1672年~1694年
由于帕斯卡加法器只能加减,不能乘除,对此莱布尼茨提出过一系列改进的建议,终究却发现效果不大。就好比自己写一篇文章很简单,要修改别人的文章就麻烦了。那么既然改进不成,就重新设计一台吧!
为了实现乘法,莱布尼茨以其非凡的创新思维想出了一种具有划时代意义的装置——梯形轴(stepped drum),后人称之为莱布尼茨梯形轴。莱布尼茨梯形轴是一个圆筒,圆筒表面有九个长度递增的齿,第一个齿长度为1,第二个齿长度为2,以此类推,第九个齿长度为9。这样,当梯形轴旋转一周时,与梯形轴啮合的小齿轮旋转的角度就可以因其所处位置(分别有0~9十个位置)不同而不同。代表数字的小齿轮穿在一个长轴上,长轴一端有一个示数轮,显示该数位上的累加结果。置零后,滑动小齿轮使之与梯形轴上一定数目的齿相啮合:比如将小齿轮移到位置1,则只能与梯形轴上长度为9的齿啮合,当梯形轴旋转一圈,小齿轮转动1格,示数轮显示1;再将小齿轮移动到位置3,则与梯形轴上长度为7、8、9的三个齿啮合,小齿轮就能转动3格,示数轮显示4;以此类推。
除了梯形轴,莱布尼茨还提出了把计算器分为可动部分和不动部分的思想,这一设计也同样被后来的机械计算器所沿用。莱布尼茨计算器由不动的计数部分和可动的输入部分组成,机器版本众多,以德意志博物馆馆藏的复制品为例:计数部分有16个示数轮,支持16位结果的显示;输入部分有8个旋钮,支持8位数的输入,里头一一对应地安装着8个梯形轴,这些梯形轴是联动的,随着机器正前方的手柄一同旋转。机器左侧的手柄借助蜗轮结构实现可动部分的左右平移,手柄每转一圈,输入部分移动一个数位的距离。
进行加法运算时,先在输入部分通过旋钮置入被加数,计算手柄旋转一周,被加数即显示到上方的计数部分,再将加数置入,计算手柄旋转一周,就得到计算结果。减法操作类似,计算手柄反转即可。
进行乘法运算时,在输入部分置入被乘数,计算手柄旋转一周,被乘数就会显示到计数部分,计算手柄旋转两周,就会显示被乘数与2的乘积,因此在乘数是一位数的情况下,乘数是多少,计算手柄旋转多少圈即可。那么如果乘数是多位数呢?这就轮到移位手柄登场了,以笔者撰写该部分内容的日期(7月28日)为例,假设乘数为728:计算手柄先旋转8周,得到被乘数与8的乘积;而后移位手柄旋转一周,可动部分左移一个数位,输入部分的个位数与计数部分的十位数对齐,计算手柄旋转2周,相当于往计数部分加上了被乘数与20的乘积;依法炮制,可动部分再左移,计算手柄旋转7周,即可得到最终结果。
可动部分右侧有个大圆盘,外圈标有0~9,里圈有10个小孔与数字一一对应,在对应的小孔中插入销钉,可以控制计算手柄的转动圈数,以防操作人员转过头。在进行除法时,这个大圆盘又能显示计算手柄所转圈数。
进行除法运算时,一切操作都与乘法相反。先将输入部分的最高位与计数部分的最高位(或次高位)对齐,逆时针旋转计算手柄,旋转若干圈后会卡住,可在右侧大圆盘上读出圈数,即为商的最高位;逆时针旋转位移手柄,可动部分右移一位,同样操作得到商的次高位数;以此类推,最终得到整个商,计数部分剩下的数即为余数。
最后提一下进位机构,莱布尼茨计算器的进位机构比较复杂,但基本就是单齿进位的原理。然而莱布尼茨没有实现连续进位,当产生连续进位时,机器顶部对应的五角星盘会旋转至角朝上的位置(无进位情况下是边朝上),需要操作人员手动将其拨动,完成向下一位的进位。
研制时间:1818年~1820年
以往的机械式计算器通常只是发明者自己制作了一台或几台原型,帕斯卡倒是有赚钱的念头,生产了20台加法器,但是根本卖不出去,这些机器往往并不实惠,也不好用。托马斯是将机械式计算器商业化并取得成功的第一人,他不仅成为了机械式计算器的发明家,更成为了牛逼的企业家(创办了当时法国最大的保险公司)。从商之前,托马斯在法国军队从事过几年部队补给方面的工作,需要进行大量的运算,正是在这期间萌生了制作计算器的念头。他从1818年开始设计,于1820年制成第一台,次年生产了15台,往后持续生产了约100年。
托马斯四则计算器基本采用莱布尼茨的设计,同样使用梯形轴,同样分为可动和不动两部分。
所不同的是, 它的手柄在加减乘除情况下都是顺时针旋转,示数轮的旋转方向通过与不同方向的齿轮啮合而改变。
此外,托马斯还做了许多细节上的改进(包括实现了连续进位),量产出来的机器实用、可靠,因而能获得巨大成功。
研制时间:1874年
莱布尼茨梯形轴虽然好用,但由于其长筒状的形态,机器的体积通常很大,某些型号的托马斯四则计算器摆到桌子上甚至要占掉整个桌面,而且需要两个人才能安全搬动,亟需一种更轻薄的装置代替梯形轴。
这一装置就是后来的可变齿数齿轮(variable-toothed gear),在17世纪末到18世纪初,有很多人尝试研制,限于当时的技术条件,没能成功。直到19世纪70年代,真正能用的可变齿数齿轮才由鲍德温和奥德纳分别独立制成。该装置圆形底盘的边缘有着9个长条形的凹槽,每个凹槽中卡着可伸缩的销钉,销钉挂接在一个圆环上,转动圆环上的把手即可控制销钉的伸缩,这样就可以得到一个具有0~9之间任意齿数的齿轮。
齿轮转一圈,旁边的被动轮就转动相应的格数,相当于把梯形轴压成了一个扁平的形状。梯形轴必须并排放置,而可变齿数齿轮却可以穿在一起,大大缩减了机器的体积和重量。此类计算机器在1885年投产之后风靡世界,往后几十年内总产量估计有好几万台,电影《横空出世》里陆光达计算原子弹数据时所用的机器就是其中之一。
研发时间:1884年~1886年
上述的机器似乎已经发展到十分完美的程度了,可与今人概念中的计算操作始终存在着一道巨大屏障——没有按键。
好在那个年代的人们发现旋钮置数确实不太方便,最早提出按键设计的应该是美国的一个牧师托马斯·希尔(Thomas Hill),计算机史上有关他的记载貌似不多,好在还能找到他1857年的专利,其中详细描述了按键式计算器的工作原理。起初菲尔特只是根据希尔的设计简单地将按键装置装到帕斯卡加法器上,第一台菲尔特自动计算器就这么诞生了。
菲尔特自动计算器采用的是“全键盘”设计(也就是希尔提出的设计),每个数位都有1~9九个按键(0不需要置数),某个数位要置什么数,就按下该数位所对应的一列按键中的一个。每列按键都装在一根杠杆上,杠杆前端有一个叫做Column Actuator的齿条,按下按键带动杠杆摆动,与Column Actuator啮合的齿轮随之旋转一定角度。按键1~9按下时杠杆摆动的幅度递增,示数轮随之转动的幅度也递增,如此就实现了按键操作到齿轮旋转的转化。
1889年,菲尔特又发明了世界上第一台能在纸带上打印计算结果的机械式计算器——Comptograph,相当于给计算器引入了存储功能。
1901年,人们开始给一些按键式计算器装上电动马达,计算时不再需要手动摇杆,冠之名曰「电动计算机」,而此前的则称为「手摇计算机」。
1902年,出现了将键盘简化为「十键式」的道尔顿加法器,不再是每一位数需要一列按键,大大精简了用户界面。
1961年,菲尔特自动计算器被改进为电子计算器,却依然保留着「全键盘」设计。
[1] 陈厚云, 王行刚. 计算机发展简史[M]. 北京: 科学出版社, 1985.
[2] 吴为平, 严万宗. 从算盘到电脑[M]. 长沙: 湖南教育出版社, 1986.
[3] 胡守仁. 计算机技术发展史(一)[M]. 长沙: 国防科技大学出版社, 2004.
[4] Wikipedia. Wilhelm Schickard[EB/OL]. https://en.wikipedia.org/wiki/Wilhelm_Schickard, 2015-07-12.
[5] yi_ting_su. 计算工具——机械计算机(Mechanical Calculators)(二)[EB/OL]. http://blog.sina.com.cn/s/blog_a3144172010139kr.html, 2012-05-04.
[6] Wikipedia. Blaise Pascal[EB/OL]. https://en.wikipedia.org/wiki/Blaise_Pascal, 2015-07-21.
[7] Wikipedia. Pascal's calculator[EB/OL]. https://en.wikipedia.org/wiki/Pascal%27s_calculator, 2015-07-21.
[8] MechanicalComputing. How the Pascaline Works[EB/OL]. https://www.youtube.com/watch?v=3h71HAJWnVU, 2012-03-09.
[9] yi_ting_su. 计算工具——机械计算机(Mechanical Calculators)(二)[EB/OL]. http://blog.sina.com.cn/s/blog_a314417201013fym.html, 2012-05-10.
[10] Wikipedia. Gottfried Wilhelm Leibniz[EB/OL]. https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz, 2015-07-29.
[11] N.A.阿波京, JI.E.梅斯特洛夫. 计算机发展史[M]. 上海: 上海科学技术出版社, 1984.
[12] Wikipedia. Stepped Reckoner[EB/OL]. https://en.wikipedia.org/wiki/Stepped_Reckoner, 2015-02-04.
[13] Wikipedia. Charles Xavier Thomas[EB/OL]. https://en.wikipedia.org/wiki/Charles_Xavier_Thomas, 2015-05-02.
[14] Wikipedia. Arithmometer[EB/OL]. https://en.wikipedia.org/wiki/Arithmometer, 2015-06-20.
[15] MechanicalComputing. How the Arithmometer Works[EB/OL]. https://www.youtube.com/watch?v=nyCrDI7hRpE, 2014-04-05.
[16] Wikipedia. Frank Stephen Baldwin[EB/OL]. http://en.wikipedia.org/wiki/Frank_Stephen_Baldwin, 2015-02-04.
[17] Wikipedia. Willgodt Theophil Odhner[EB/OL]. http://en.wikipedia.org/wiki/Willgodt_Theophil_Odhner, 2015-05-03.
[18] Wikipedia. Pinwheel calculator[EB/OL]. http://en.wikipedia.org/wiki/Pinwheel_calculator, 2014-07-21.
[19] Wikipedia. Timeline of computing hardware 2400 BC–1949[EB/OL]. http://en.wikipedia.org/wiki/Timeline_of_computing_hardware_2400_BC%E2%80%931949#1800.E2.80.931899, 2015-05-05.
[20] MechanicalComputing. How Pinwheel Calculators Work[EB/OL]. https://www.youtube.com/watch?v=YXMuJco8onQ, 2012-07-02.
[21] Wikipedia. Dorr Felt[EB/OL]. https://en.wikipedia.org/wiki/Dorr_Felt, 2015-04-30.
[22] Wikipedia. Comptometer[EB/OL]. https://en.wikipedia.org/wiki/Comptometer, 2015-06-27.
[23] Wikipedia. Thomas Hill (clergyman)[EB/OL]. https://en.wikipedia.org/wiki/Thomas_Hill_(clergyman), 2015-06-14.
[24] Thomas Hill. Arithmometer[P]. 美国专利: 18692, 1857-11-24.
[25] MechanicalComputing. How the Comptometer Works[EB/OL]. https://www.youtube.com/watch?v=SbJpufimfdM, 2012-01-30.
[26] Wikipedia. Mechanical calculator[EB/OL]. https://en.wikipedia.org/wiki/Mechanical_calculator, 2015-07-11.
[27] Martin E, Kidwell P A, Williams M R. The calculating machines (Die Rechenmaschinen) : their history and development[M]// MIT Press , Tomash Publishers, 1992.
[28] Wikipedia. Sumlock ANITA calculator[EB/OL]. https://en.wikipedia.org/wiki/Sumlock_ANITA_calculator, 2015-03-28.
[29] 机械美学. 【精算之美】It's ALIVE!神奇而复杂的古董机械计算器[EB/OL]. http://mp.weixin.qq.com/s?__biz=MzA4NjY5NjQxNA==&mid=204871557&idx=1&sn=, 2014-12-17.