Ⅰ 锻造比对大型锻件力学性能的影响有什么
大型锻件的组织和力学性能与很多因素有关,而锻造比是影响锻件质量的最主要因素之专一属。锻造比是锻造时金属变形程度的一种表示方法。锻造比越大,锻件的变形程度就高,而变形程度直接关系到材料最终夹杂物尺寸、材料共晶碳化物的破碎程度、材料最终成形后的纤维流向及密度等,对材料的综合性能产生较大的影响。
不同锻造比锻件内的锻造比(即变形程度)分布是不均匀的,明显分为大锻造比区域、平均锻造比区域和小锻造比区域。力学性能实验表明:在相同热处理条件下,进行一定锻造比的塑性变形,能够明显提高轧钢材的强度指标与塑性指标,当锻造比到达一定值时,大型锻件的组织性能变化激烈,其强度提高到最好,但韧性明显下降。山西永鑫生锻造,在相同的应变速率条件下,锻造比(即塑性变形程度)越大,锻件组织中的动态再结晶越明显,当锻造比达到一定值时,原始晶粒就会被新生的再结晶晶粒取代,发生较完全的动态再结晶。目前有3类提高锻造比均匀性的工艺方案,分别为改变坯料与模具的边界条件、改变坯料形状、改变镦粗变形方式。以及通过改变平砧镦粗的变形方式能够有效的提高锻件锻造比及几何尺寸均匀性。因此要提高大型锻件的锻造比,才能更好的提高环形锻件的质量。
Ⅱ <锻件正火>与<锻后直接风冷>的机械性能差异
一)对高频淬火影响不大。但高频淬火但不到你所说的深度,我想你说的淬火是中回频淬火。
二)锻后直接风答冷有一个问题:组织无经过再加热转变,风冷后得到的组织肯定不均匀,如果是大型件的可能存有很大的内应力,会有引起变形甚至开裂的危险。
三)因为焊层深度有限,产生不了什么影响。
四)对零件的影响同二。
Ⅲ 为什么锻件的机械性能常优于铸件
锻件是把金属纹理进行了处理,其强度和韧性都优于铸件。
铸件只是将熔融的金属液浇铸成形,里面会产生气孔,缩松,缩孔,杂质等,都会影响其机械性能。
Ⅳ 相同成分的情况下,通过锻造和通过压延后的性能有区别么
锻造
利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。
锻造的分类
锻造按成形方法可分为:
①自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。
②模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。
按变形温度锻造又可分为热锻(锻造温度高于坯料金属的再结晶温度)、温锻(锻造温度低于金属的再结晶温度)和冷锻(常温)。钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。
编辑本段锻造的材料和流程
锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。材料的原始状态有棒料、铸锭、金属粉末和液态金属。 金属在变形前的横断面积与变形后的横断面积之比称为锻造比。正确地选择锻造比、合理的加热温度及保温时间、合理的始锻温度和终锻温度、合理的变形量及变形速度对提高产品质量、降低成本有很大关系。
一般的中小型锻件都用圆形或方形棒料作为坯料。棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。
铸锭仅用于大型锻件。铸锭是铸态组织,有较大的柱状晶和疏松的中心。因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。
经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。粉末锻件内部组织均匀,没有偏析,可用于制造小型齿轮等工件。但粉末的价格远高于一般棒材的价格,在生产中的应用受到一定限制。 、
对浇注在模膛的液态金属施加静压力,使其在压力作用下凝固、结晶、流动、塑性变形和成形,就可获得所需形状和性能的模锻件。液态金属模锻是介于压铸和模锻间的成形方法,特别适用于一般模锻难于成形的复杂薄壁件。
不同的锻造方法有不同的流程,其中以热模锻的工艺流程最长,一般顺序为:锻坯下料;锻坯加热;辊锻备坯;模锻成形;切边;中间检验,检验锻件的尺寸和表面缺陷;锻件热处理,用以消除锻造应力,改善金属切削性能;清理,主要是去除表面氧化皮;矫正;检查,一般锻件要经过外观和硬度检查,重要锻件还要经过化学成分分析、机械性能、残余应力等检验和无损探伤。
压延加工实际是指锻压(固态下成形)加工。只能对钢材进行锻压,铸铁不能进行锻压(原因是铸铁含碳量太高,很脆)。
冶炼可以改变钢、铁材料的化学成分。压延则不能改变钢的化学成分。
Ⅳ 锻件缺陷有哪些
(1)氧化
金属坯料在加热时与炉中氧化性气体反应生成氧化物的现象称为氧化。氧化皮的产生,不但造成金属的烧损,而且降低锻件表面质量和尺寸精度。当氧化皮压入锻件内深度超过机械加工余量时,能导致锻件报废。
(2)脱碳
加热时金属坯料表层的碳与氧等介质发生化学反应造成表层碳元素降低的现象称为脱碳。脱碳会使表层硬度下降,耐磨性降低。如脱碳层厚度小于机械加工余量,不会对锻件造成危害;反之则影响锻件质量。采用快速加热、在坯料表层涂保护涂料、在中性介质或还原性介性中加热都能减缓脱碳。
(3)过热
金属坯料由加热温度过高或高温下保温时间太长引起晶粒粗大的现象称为过热。过热会使坯料塑性下降,锻件的力学性能降低。为此,要严格控制加热温度,尽可能缩短高温阶段的保温时间来预防过热的产生。
(4)过烧
金属坯料加热温度超过始锻温度过多,使晶粒边界出现氧化及熔化的现象称为过烧。过烧后,材料的强度严重下降,塑性很差,一经锻打即破碎变成废料,是无法挽救的。因此,要严格执行正确的操作规范。
(5)裂纹
大型锻件加热时,如果装炉温度过高或加热速度过快,则锻件心部与表层温差过大,造成内应力过大,导致产生裂纹。因此,对大型锻件加热时,要防止装炉温度过高和加热速度过快,一般应采用防热措施。
Ⅵ 请问锻造对金属组织、性能的影响与锻件缺陷有哪些
锻件的缺陷包括表面缺陷和内部缺陷。有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。本章概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的内容和方法;锻件质量分析的一般过程。
(一)锻造对金属组织和性能的影响锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。锻造用的原材料是铸锭、轧材、挤材和锻坯。而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能:1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合内部孔隙,提高材料的致密度;2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布;3)控制晶粒的大小和均匀度;4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布;5)使组织得到形变强化或形变相变强化等。由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、内部缺陷或性能不合格等。
(二)原材料对锻件质量的影响原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。如原材料的化学元素超出规定的范围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。为了获得本质细晶粒钢,钢中残余铝含量需控制在一定范围内,例如Al酸0.02%~0.04%(质量分数)。含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。如原材料内存在缩管残余、皮下起泡、严重碳化物偏析、粗大的非金属夹杂物(夹渣)等缺陷,锻造时易使锻件产生裂纹。原材料内的树枝状晶、严重疏松、非金属夹杂物、白点、氧化膜、偏析带及异金属混人等缺陷,易引起锻件性能下降。原材料的表面裂纹、折叠、结疤、粗晶环等易造成锻件的表面裂纹。
(三)锻造工艺过程对锻件质量的影响锻造工艺过程一般由以下工序组成,即下料、加热、成形、锻后冷却、酸洗及锻后热处理。锻造过程中如果工艺不当将可能产生一系列的锻件缺陷。加热工艺包括装炉温度、加热温度、加热速度、保温时间、炉气成分等。如果加热不当,例如加热温度过高和加热时间过长,将会引起脱碳、过热、过烧等缺陷。对于断面尺寸大及导热性差、塑性低的坯料,若加热速度太快,保温时间太短,往往使温度分布不均匀,引起热应力,并使坯料发生开裂。锻造成形工艺包括变形方式、变形程度、变形温度、变形速度、应力状态、工模具的情兄和润滑条件等,如果成形工艺不当,将可能引起粗大晶粒、晶粒不均、各种裂纹、折叠。寒流、涡流、铸态组织残留等。锻后冷却过程中,如果工艺不当可能引起冷却裂纹、白点、网状碳化物等。
(四)锻件组织对最终热处理后的组织和性能的影响奥氏体和铁素体耐热不锈钢、高温合金、铝合金、镁合金等在加热和冷却过程中,没有同素异构转变的材料,以及一些铜合金和钛合金等,在锻造过程中产生的组织缺陷用热处理的办法不能改善。在加热和冷却过程中有同素异构转变的材料,如结构钢和马氏体不锈钢等,由于锻造工艺不当引起的某些组织缺陷或原材料遗留的某些缺陷,对热处理后的锻件质量有很大影响。现举例说明如下:
1)有些锻件的组织缺陷,在锻后热处理时可以得到改善,锻件最终热处理后仍可获得满意的组织和性能。例如,在一般过热的结构钢锻件中的粗晶和魏氏组织,过共析钢和轴承钢由于冷却不当引起的轻微的网状碳化物等。
2)有些锻件的组织缺陷,用正常的热处理较难消除,需用高温正火、反复正火、低温分解、高温扩散退火等措施才能得到改善。例如,低倍粗晶、9Cr18不锈钢的孪晶碳化物等。
3)有些锻件的组织缺陷,用一般热处理工艺不能消除,结果使最终热处理后的锻件性能下降,甚至不合格。例如,严重的石状断口和棱面断口、过烧、不锈钢中的铁素体带、莱氏体高合金工具钢中的碳化物网和带等。
4)有些锻件的组织缺陷,在最终热处理时将会进一步发展,甚至引起开裂。例如,合金结构钢锻件中的粗晶组织,如果锻后热处理时未得到改善,在碳、氮共渗和淬火后常引起马氏体针粗大和性能不合格;高速钢中的粗大带状碳化物,淬火时常引起开裂。锻造过程中常见的缺陷及其产生原因在第二章中将具体介绍。应当指出,各种成形方法中的常见缺陷和各类材料锻件的主要缺陷都是有其规律的。不同成形方法,由于其受力情况不同,应力应变特点不一样,因而可能产生的主要缺陷也是不一样的。例如,坯料镦粗时的主要缺陷是侧表面产生纵向或45°方向的裂纹,锭料镦粗后上、下端常残留铸态组织等;矩形截面坯料拔长时的主要缺陷是表面的横向裂纹和角裂,内部的对角线裂纹和横向裂纹;开式模锻时的主要缺陷则是充不满、折叠和错移等。各主要成形工序中常见的缺陷将在第四章中详细介绍。不同种类的材料,由于其成分、组织不同,在加热、锻造和冷却过程中,其组织变化和力学行为也不同,因而锻造工艺不当时,可能产生的缺陷也有其特殊性。例如,莱氏体高合金工具钢锻件的缺陷主要是碳化物颗粒粗大、分布不均匀和裂纹,高温合金锻件的缺陷主要是粗晶和裂纹;奥氏体不锈钢锻件的缺陷主要是晶间贫铬,抗晶间腐蚀能力下降,铁素体带状组织和裂纹等;铝合金锻件的缺陷主要是粗晶、折叠、涡流、穿流等。
Ⅶ 锻造锻件时可能产生的缺陷有哪些
我是永鑫生锻造厂的师傅,很荣幸可以为您解决问题:
锻造锻件时可能产生的缺陷是多种多样的。依据缺陷的宏观与微观的特征可以得出初步的印象,即缺陷纯属锻造工艺因素引起还是与原材料质量有关,是制定的工艺规程不合理还是执行工艺不当所致,确切的结论只有在经过细致的试验分析后才能作出。
有的表现在锻件外观方面:如外部裂纹、折迭、折皱、未充满或缺肉、压坑、表面粗糙或桔皮等;有的表现在锻件内部:如各种低倍组织缺陷,如裂纹、发纹、疏松、粗晶、表面脱碳、非金属夹杂和异金属夹杂、白点、偏析、树枝状结晶、缩管残余、流线紊乱、有色金属的穿流、粗晶环、氧化膜等;有的反映在微观组织方面:如第二相的析出等;有的锻件质量问题反映在锻件性能方面:如室温强度或塑性、韧性、疲劳性能等不合格,瞬时强度、持久强度和持久塑性、蠕变强度等高温性能或冷热疲劳性能等不符合使用要求。
无论表现在锻件外部的,或是表现在锻件内部和性能方面的质量问题:它们之间的大多数情况下是互为影响的,往往是互相联系、伴随产生和恶性循环的。例如,锻造锻件时过热或过烧通常会造成晶粒粗大、锻造裂纹、表面脱碳以及塑性、韧性等机械性能降低等缺陷;材质内部有夹杂则可能引起内部裂纹,内裂纹的进一步扩大与发展就可能暴露为锻件表面裂纹。
Ⅷ 锻件与铸件相比机械性能较高的主要原因是什么
金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属
的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原
有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。 一
般说来,铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性, 使
锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采
用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的。飞机锻件 按重量计算,飞机
上有85%左右的的构件是锻件。飞机发动机的涡轮盘、后轴颈(空心轴)、叶片、机翼的翼梁, 机身的肋
筋板、轮支架、起落架的内外筒体等都是涉及飞机安全的重要锻件。飞机锻件多用高强度耐磨、耐蚀的铝
合金、钛合金、镍基合金等贵重材料制造。为了节约材料和节约能源,飞机用锻件大都采用模锻或多向模
锻压力机来生产。 汽车锻按重量计算,汽车上有1719%的锻件。一般的汽车由车身、车箱、发动机、前
桥、后桥、车架、变速箱、传动轴、转向系统等15 个部件构成汽车锻件的特点是外形复杂、重量轻、工
况条件差、安全度要求高。如汽车发动机所使用的曲轴、连杆、凸轮轴、前桥所需的前梁、转向节、后桥
使用的半轴、半轴套管、桥箱内的传动齿轮等等,无一不是有关汽车安全运行的保安关键锻件。
柴油机锻件柴油机是动力机械的一种,它常用来作发动机。以大型柴油机为例,所用的锻件有汽缸盖、主轴颈、曲轴
端法兰输出端轴、连杆、活塞杆、活塞头、十字头销轴、曲轴传动齿轮、齿圈、中间齿轮和染油泵体等十余种。
船用锻件船用锻件分为三大类,主机锻件、轴系锻件和舵系锻件。主机锻件与柴油机锻件一样。轴系锻件有推力轴、
中间轴艉轴等。舵系锻件有舵杆、舵柱、舵销等。
兵器锻件锻件在兵器工业中占有极其重要的地位。按重量计算,在坦克中有60%是锻件。火炮中的炮管、炮口制退
器和炮尾,步兵武器中的具有膛线的枪管及三棱刺刀、火箭和潜艇深水炸弹发射装置和固定座、核潜艇高
压冷却器用不锈钢阀体、炮弹、枪弹等,都是锻压产品。除钢锻件以外,还用其它材料制造武器。
石油化工锻件
锻件在石油化工设备中有着广泛的应用。如球形储罐的人孔、法兰,换热器所需的各种管板、对焊法兰催
化裂化反应器的整锻筒体(压力容器),加氢反应器所用的筒节,化肥设备所需的顶盖、底盖、封头等均是锻件。
矿山锻件按设备重量计算,矿山设备中锻件的比重为12-24%。矿山设备有:采掘设备卷扬设备破碎设备研磨设备洗选设备烧结设备核电锻件核电分为压水堆和沸水堆两类。核电站主要的大锻件可分为压力壳和堆内构件两大类。
压力壳含:筒体法兰、管嘴段、管嘴、上部筒体、下部筒体、筒体过渡段、螺栓等。
堆内构件是在高温、高压、强中子幅照、硼酸水腐蚀、冲刷和水力振动等严峻条件下工作的,所以要选用
18-8 奥氏不锈钢来制作。
Ⅸ 铸件和锻件的机械性能通过热处理可以达到同样的标准要求
铸件和锻件通过热处理可以使得其机械性能达到所需的强度、硬度、耐冲击性能、韧性、耐磨性能等指标。
Ⅹ 回火温度会对锻件的机械性能产生影响吗
回火温度对锻件来的机械性能自总的影响是随着回火温度的升高,其强度和内应力下降,塑性和韧性升高。根据多年在山西永鑫生锻造厂工作经验所得锻件的钢种和尺寸等存在差别,其性能变化是不一样的,表现在:各种性能指标的具体数值不一样;各种性能上升或下降程度不一样;各种性能之间的配合不一样