『壹』 怎么让我的一只机器人手臂,能够和视觉系统(ccd摄像头)配合,抓取物...
机器视觉与运动控制结合,所谓的视觉引导。利用视觉系统获取分析图像,定位所要抓内取物体在图像中的位置。容通过标定将图像中的位置数据转换为运动控制系统的坐标中,机械手定位抓取。大概是以上步骤,实际应用可能要复杂的多,包括要考虑CCD的安装,固定式或装在机械手上,镜头畸变所引入的误差等等。
『贰』 机器人智能臂抓取和移动功能的实现(机械臂)
通过计算纸杯直径 及机械手缩小尺寸 微小于纸杯直径 就可以实现抓稳 要使水不外漏 就要调节机械手 保持水平 以及移动速度大小
『叁』 机械手的每个关节旋转定位,限位是如何实现的
机器人的每个轴基本都是伺服电机驱动的,伺服电机自带编码器,编码器可以反馈每个轴的位置环,速度环以及力矩环。
『肆』 生产线上机器人机械臂是怎么实现精确定位的
最直接的方法是采用非接触位移测量传感器,安装到机械手上,测量距回离被测物体的距离答,从而精确定位控制机械手动作。
非接触位移测量传感器有以下特点“
◆量程最小2mm,最大1250mm
◆量程起始距离最小10mm,最大260mm
◆频率响应:2K、5K、8K、9.4K;
◆分辨率最高0.01%,线性度最高0.1%
◆支持多个传感器同步采集
◆支持特殊量程
◆特殊应用(如路面平整度,高温被测体,管道内径,石油钻杆内外螺纹测量等)
◆针对串口,提供了运行应用的DLL开发库,方便用户开发应用软件
◆非接触位移精密测量。
『伍』 机械手装配怎样定坐标系啊
你可以看《工业机器人》。韩建海第二版。里面对齐次坐标及其变换。还有D-H坐标系介绍的非常详细,全是机械臂
『陆』 工业机器人定位精度标准
机器人重复定位精度:±0.05mm
移动机构重复定位精度:±0.1mm
变位机重复定位精度:±0.1mm
工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。

(6)机器人机械臂如何定位扩展阅读:
一、组成结构
工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。
大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。
二、发展方向
工业机器人正向着智能化方向发展,而智能工业机器人将成为未来的技术制高点和经济增长点。
要想跟上未来工业发展,工业机器人技术是先进制造技术的代表。首要任务是提高工业机器人的智能化技术。智能化技术可以提高机器人的工作能力和使用性能。
智能化技术的发展将推动着机器人技术的进步,未来智能化水平将标志着机器人的水平,虽然目前还有很多问题需要解决,但随着科学技术的进步,会逐渐改进发展。
未来的智能化方向不会改变,并且会将机器人产品拓展到更多行业,形成完备的系统。现今我国人工利息不时上升的大环境下,工业机器人必将迅速发展,逐渐成为工厂自动化生产线的主要发展形式。
『柒』 达芬奇手术机器人是如何完成自动定位的
它配备了激光定位系统,是可以智能自动定位的。另外分步指导和声音辅助功能,也能使得机器入位更加快捷精准。
『捌』 有哪几种定位工业机器人方式各有什么特点
工业机器人最显著的特点有以下几个:
(1)可编程。生产自动化的进一步发展是柔性启动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统中的一个重要组成部分。
(2)拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。
(3)通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。
(4)工业机器技术涉及的学科相当广泛,归纳起来是机械学和微电子学的结合-机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展水平。
信息:粤为工业机器人培训学院
『玖』 工业机器人有哪几种定位方式各有什么特点
工业机器人最显著的特点有以下几个:
(1)可编程。生产自动化的进一步发展是柔性启动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统中的一个重要组成部分。
(2)拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。
(3)通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。
(4)工业机器技术涉及的学科相当广泛,归纳起来是机械学和微电子学的结合-机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展水平。
更多信息请查看 http://robot.big-bit.com/
『拾』 机器人抓取时怎么定位的用什么传感器来检测
机器人家上了解到,机器人领域的视觉(Machine Vision)跟计算机领域(Computer Vision)的视觉有一些不同:机器视觉的目的是给机器人提供操作物体的信息。所以,机器视觉的研究大概有这几块:
物体识别(Object Recognition):在图像中检测到物体类型等,这跟 CV 的研究有很大一部分交叉;
位姿估计(Pose Estimation):计算出物体在摄像机坐标系下的位置和姿态,对于机器人而言,需要抓取东西,不仅要知道这是什么,也需要知道它具体在哪里;
相机标定(Camera Calibration):因为上面做的只是计算了物体在相机坐标系下的坐标,我们还需要确定相机跟机器人的相对位置和姿态,这样才可以将物体位姿转换到机器人位姿。
当然,我这里主要是在物体抓取领域的机器视觉;SLAM 等其他领域的就先不讲了。
由于视觉是机器人感知的一块很重要内容,所以研究也非常多了,我就我了解的一些,按照由简入繁的顺序介绍吧:
0. 相机标定
这其实属于比较成熟的领域。由于我们所有物体识别都只是计算物体在相机坐标系下的位姿,但是,机器人操作物体需要知道物体在机器人坐标系下的位姿。所以,我们先需要对相机的位姿进行标定。 内参标定就不说了,参照张正友的论文,或者各种标定工具箱; 外参标定的话,根据相机安装位置,有两种方式:
Eye to Hand:相机与机器人极坐标系固连,不随机械臂运动而运动
Eye in Hand:相机固连在机械臂上,随机械臂运动而运动 两种方式的求解思路都类似,首先是眼在手外(Eye to Hand)
只需在机械臂末端固定一个棋盘格,在相机视野内运动几个姿态。由于相机可以计算出棋盘格相对于相机坐标系的位姿 、机器人运动学正解可以计算出机器人底座到末端抓手之间的位姿变化 、而末端爪手与棋盘格的位姿相对固定不变。 这样,我们就可以得到一个坐标系环
而对于眼在手上(Eye in Hand)的情况,也类似,在地上随便放一个棋盘格(与机器人基座固连),然后让机械臂带着相机走几个位姿,然后也可以形成一个 的坐标环。
1. 平面物体检测
这是目前工业流水线上最常见的场景。目前来看,这一领域对视觉的要求是:快速、精确、稳定。所以,一般是采用最简单的边缘提取+边缘匹配/形状匹配的方法;而且,为了提高稳定性、一般会通过主要打光源、采用反差大的背景等手段,减少系统变量。
目前,很多智能相机(如 cognex)都直接内嵌了这些功能;而且,物体一般都是放置在一个平面上,相机只需计算物体的 三自由度位姿即可。 另外,这种应用场景一般都是用于处理一种特定工件,相当于只有位姿估计,而没有物体识别。 当然,工业上追求稳定性无可厚非,但是随着生产自动化的要求越来越高,以及服务类机器人的兴起。对更复杂物体的完整位姿 估计也就成了机器视觉的研究热点。
2. 有纹理的物体
机器人视觉领域是最早开始研究有纹理的物体的,如饮料瓶、零食盒等表面带有丰富纹理的都属于这一类。 当然,这些物体也还是可以用类似边缘提取+模板匹配的方法。但是,实际机器人操作过程中,环境会更加复杂:光照条件不确定(光照)、物体距离相机距离不确定(尺度)、相机看物体的角度不确定(旋转、仿射)、甚至是被其他物体遮挡(遮挡)。
幸好有一位叫做 Lowe 的大神,提出了一个叫做 SIFT (Scale-invariant feature transform)的超强局部特征点: Lowe, David G. "Distinctive image features from scale-invariant keypoints."International journal of computer vision 60.2 (2004): 91-110. 具体原理可以看上面这篇被引用 4万+ 的论文或各种博客,简单地说,这个方法提取的特征点只跟物体表面的某部分纹理有关,与光照变化、尺度变化、仿射变换、整个物体无关。 因此,利用 SIFT 特征点,可以直接在相机图像中寻找到与数据库中相同的特征点,这样,就可以确定相机中的物体是什么东西(物体识别)。
对于不会变形的物体,特征点在物体坐标系下的位置是固定的。所以,我们在获取若干点对之后,就可以直接求解出相机中物体与数据库中物体之间的单应性矩阵。 如果我们用深度相机(如Kinect)或者双目视觉方法,确定出每个特征点的 3D 位置。那么,直接求解这个 PnP 问题,就可以计算出物体在当前相机坐标系下的位姿。
↑ 这里就放一个实验室之前毕业师兄的成果 当然,实际操作过程中还是有很多细节工作才可以让它真正可用的,如:先利用点云分割和欧氏距离去除背景的影响、选用特征比较稳定的物体(有时候 SIFT 也会变化)、利用贝叶斯方法加速匹配等。 而且,除了 SIFT 之外,后来又出了一大堆类似的特征点,如 SURF、ORB 等。
3. 无纹理的物体
好了,有问题的物体容易解决,那么生活中或者工业里还有很多物体是没有纹理的:
我们最容易想到的就是:是否有一种特征点,可以描述物体形状,同时具有跟 SIFT 相似的不变性? 不幸的是,据我了解,目前没有这种特征点。 所以,之前一大类方法还是采用基于模板匹配的办法,但是,对匹配的特征进行了专门选择(不只是边缘等简单特征)。
简单而言,这篇论文同时利用了彩色图像的图像梯度和深度图像的表面法向作为特征,与数据库中的模板进行匹配。 由于数据库中的模板是从一个物体的多个视角拍摄后生成的,所以这样匹配得到的物体位姿只能算是初步估计,并不精确。 但是,只要有了这个初步估计的物体位姿,我们就可以直接采用 ICP 算法(Iterative closest point)匹配物体模型与 3D 点云,从而得到物体在相机坐标系下的精确位姿。
当然,这个算法在具体实施过程中还是有很多细节的:如何建立模板、颜色梯度的表示等。另外,这种方法无法应对物体被遮挡的情况。(当然,通过降低匹配阈值,可以应对部分遮挡,但是会造成误识别)。 针对部分遮挡的情况,我们实验室的张博士去年对 LineMod 进行了改进,但由于论文尚未发表,所以就先不过多涉及了。
4. 深度学习
由于深度学习在计算机视觉领域得到了非常好的效果,我们做机器人的自然也会尝试把 DL 用到机器人的物体识别中。
首先,对于物体识别,这个就可以照搬 DL 的研究成果了,各种 CNN 拿过来用就好了。有没有将深度学习融入机器人领域的尝试?有哪些难点? - 知乎 这个回答中,我提到 2016 年的『亚马逊抓取大赛』中,很多队伍都采用了 DL 作为物体识别算法。 然而, 在这个比赛中,虽然很多人采用 DL 进行物体识别,但在物体位姿估计方面都还是使用比较简单、或者传统的算法。似乎并未广泛采用 DL。 如 @周博磊 所说,一般是采用 semantic segmentation network 在彩色图像上进行物体分割,之后,将分割出的部分点云与物体 3D 模型进行 ICP 匹配。
当然,直接用神经网络做位姿估计的工作也是有的
它的方法大概是这样:对于一个物体,取很多小块 RGB-D 数据(只关心一个patch,用局部特征可以应对遮挡);每小块有一个坐标(相对于物体坐标系);然后,首先用一个自编码器对数据进行降维;之后,用将降维后的特征用于训练Hough Forest。
5. 与任务/运动规划结合
这部分也是比较有意思的研究内容,由于机器视觉的目的是给机器人操作物体提供信息,所以,并不限于相机中的物体识别与定位,往往需要跟机器人的其他模块相结合。
我们让机器人从冰箱中拿一瓶『雪碧』,但是这个 『雪碧』 被『美年达』挡住了。 我们人类的做法是这样的:先把 『美年达』 移开,再去取 『雪碧』 。 所以,对于机器人来说,它需要先通过视觉确定雪碧在『美年达』后面,同时,还需要确定『美年达』这个东西是可以移开的,而不是冰箱门之类固定不可拿开的物体。 当然,将视觉跟机器人结合后,会引出其他很多好玩的新东西。由于不是我自己的研究方向,所以也就不再班门弄斧了。