㈠ 目前最精度最高的计时仪器是什么
目前,精度最高的计时仪器是铯原子钟
原子钟是利用原子吸收或释放能量时发出的电磁波来计时的。由于这种电磁波非常稳定,再加上利用一系列精密的仪器进行控制,原子钟的计时就可以非常准确了。现在用在原子钟里的元素有氢(Hydrogen)、铯(Cesium)、铷(rubidium)等。原子钟的精度可以达到每2000万年才误差1秒。
㈡ 精度最高的计时仪器是什么
精确度最高的计时工具是原子钟,目前世界上最准确的原子钟一百万年积累起来的误差。
根据原子物理学的基本原理,原子是按照不同电子排列顺序的能量差,也就是围绕在原子核周围不同电子层的能量差,来吸收或释放电磁能量的。这里电磁能量是不连续的。当原子从一个“能量态”跃迁至低的“能量态”时,它便会释放电磁波。
这种电磁波特征频率是不连续的,这也就是人们所说的共振频率。同一种原子的共振频率是一定的—例如铯133的共振频率为9 192 631 770Hz。因此铯原子便用作一种节拍器来保持高度精确的时间。

中国古代的计时的仪器和工具
一、圭表
又称,日晷,日规。圭表中的“表”是一根垂直立在地面的标竿或石柱;“圭”是从表的跟脚上以水平位置伸向北方的一条石板。每当太阳转到正南方向的时候,表影就落在圭面上。量出表影的长度,就可以推算出冬至、夏至等各节气的时刻。表影最长的时候,冬至到了;表影最短的时候,夏至来临了。它是我国创制最古老、使用最熟悉的一种天文仪器。
二、刻漏
又称漏刻、漏壶。漏壶主要有泄水型和受水型两类。早期的刻漏多为泄水型。水从漏壶底部侧面流泄,格叉和关舌又上升,使浮在漏壶水面上的漏箭随水面下降,由漏箭上的刻度指示时间。后来创造出受水型,水从漏壶以恒定的流量注入受水壶,浮在受水壶水面上的漏箭随水面上升指示时间,提高了计时精度。
㈢ 目前精度最高的计时器是
你好,目前精度最高的计时仪器是“原子钟”。原子钟是一种高精度计时装置,精度可以达到每2000万年才误差1秒,它最初本是由物理学家创造出来用于探索宇宙本质的;他们从来没有想过这项技术有朝一日竟能应用于全球的导航系统上原子钟在1950年代刚刚被制造出来时,它的精准度就让人类的想象力大吃一惊:大约每2000万年才会差1秒。
今天最新最准的原子钟,160亿年才差一秒!
这与传统钟表行业的“精准”完全不是一个概念,当然使用需求也完全不一样,无法进行对比。因为原子钟的特殊性,至今未能民用,更不要说成为戴在手上的腕表了。
所以原子钟纯粹是一个离我们相对遥远的特别的、高冷的、科学研究性质计时器的存在。
可以戴在手上计时的腕表,最准的是什么表?
大家可能会想到最新最常见的智能腕表,甚至会说:今天我们根本不需要腕表,手机的计时能永远精准无误。
但是,无论是智能表、光波表、卫星对时表,这些能够实现超级精准的腕表,都必须借助外来计时进行实时授时并接收,才能实现它的精准,这些腕表本身并不具备超级的精准计时能力。
今天戴在手上的腕表,能够以“自己的本事”精准计时的,主要就是机械表和石英表。机械表通过几百年的漫长发展,从曾经每日误差半小时一小时也算正常,到今天无比精准,靠不断精益求精的精密制造和高水准人手调教,实现和达到人类机械腕表精准的极限。石英表靠远远超越机械表振频的稳定而高频的石英谐振实现精准,通常一枚普通的石英表也比最高级的机械表要精准。仅供参考
㈣ 精度最高的计时仪器是什么
原子钟。
原子钟,是一种计时装置,精度可以达到每2000万年才误差1秒,它最初本是由物理学家创造出来用于探索宇宙本质的;他们从来没有想过这项技术有朝一日竟能应用于全球的导航系统上。
原子钟是利用原子吸收或释放能量时发出的电磁波来计时的。由于这种电磁波非常稳定,再加上利用一系列精密的仪器进行控制,原子钟的计时就可以非常准确了。
现在用在原子钟里的元素有氢(Hydrogen)、铯(Cesium)、铷(Rubidium)等。原子钟的精度可以达到每2000万年才误差1秒。这为天文、航海、宇宙航行提供了强有力的保障。
工作原理
每一个原子都有自己的特征振动频率。人们最熟悉的振动频率现象就是当食盐被喷洒到火焰上时食盐中的元素钠所发出的桔红色的光。一个原子具有多种振动频率,一些位于无线电波波段,一些位于可见光波段,而另一些则处在两者之间。
铯133则被普遍地选用作原子钟。将铯原子共振子置于原子钟内,需要测量其中一种的跃迁频率。通常是采用锁定晶体振荡器到铯原子的主要微波谐振来实现。这一信号处于无线电的微波频谱范围内,并恰巧与广播卫星的发射频率相似,因此工程师们对制造这一频谱的仪器十分在行。
为了制造原子钟,铯原子会被加热至汽化,并通过一个真空管。在这一过程中,首先铯原子气要通过一个用来选择合适的能量状态原子的磁场,然后通过一个强烈的微波场。微波能量的频率在一个很窄的频率范围内震荡,以使得在每一个循环中一些频率点可以达到9,192,631,770Hz。
精确的晶体振荡器所产生的微波的频率范围已经接近于这一精确频率。当一个铯原子接收到正确频率的微波能量时,能量状态将会发生相应改变。
在更远的真空管的尽头,另一个磁场将那些由于微波场在正确的频率上而已经改变能量状态的铯原子分离出来。在真空管尽头的探测器将打击在其上的铯原子呈比例的显示出,并在处在正确频率的微波场处呈现峰值。
这一峰值被用来对产生的晶体振荡器作微小的修正,并使得微波场正好处在正确的频率。这一锁定的频率被9,192,631,770除,得到常见的现实世界需要的每秒一个脉冲。

应用
一、全球导航卫星系统
美国空军太空司令部运营的全球定位系统(GPS)提供了非常准确的定时和频率信号。GPS接收器通过测量至少四个但通常更多的GPS卫星的信号的相对时间延迟来工作,每个GPS卫星至少有两个车载铯和多达两个atomic原子钟。
俄罗斯航天集团运营的格洛纳斯系统(GLONASS)提供了全球定位系统(GPS)系统的替代方案,并且是第二个在全球范围内运行且具有相当精度的导航系统。
GLONASS时间(GLONASST)由GLONASS中央同步器生成,通常优于1000纳秒。与GPS不同,GLONASS时标像UTC一样实现闰秒精确。
伽利略定位系统是由操作欧洲导航卫星系统管理局(GNSS)和欧洲空间局和附近实现全面运行覆盖全球。伽利略于2016年12月15日开始提供全球早期作战能力(EOC),提供第三套,也是第一套非军用的全球导航卫星系统,当时计划在2019年达到完全作战能力(FOC)。
北斗卫星导航系统北斗2/北斗-3是由中国国家航天局运营。2018年12月27日,北斗导航卫星系统开始提供据报道的20纳秒定时精度的全球服务。
二、无线电发射机时间信号
无线电时钟是由政府无线电的装置通过接收的无线电接收器自动同步本身的时间信号。许多零售商将电子钟作为原子钟销售不准确。
尽管它们接收到的无线电信号来自原子钟,但它们本身并不是原子钟。普通的低成本消费级接收机仅依靠幅度调制的时间信号,并使用带有小型铁氧体线圈天线的窄带接收机(带宽为10 Hz)以及具有非最佳数字信号处理延迟的电路,因此只能期望以±0.1秒的实际不确定性精度来确定秒的开始。
以上内容参考网络-原子钟
㈤ 目前精度最高的计时仪器是
目前精确度最高的计时工具是原子钟。
原子钟的精度可以达到每2000万年才误差1秒,它最初本是由物理学家创造出来用于探索宇宙本质的;他们从来没有想过这项技术有朝一日竟能应用于全球的导航系统上。
历经数年的努力,三种原子钟――铯原子钟、氢微波激射器和铷原子钟(它们的基本原理相同,区别在于元素的使用及能量变化的观测手段),都已成功的应用于太空、卫星以及地面控制。迄今为止,在这三类中最精确的原子钟是铯原子钟,GPS卫星系统最终采用的就是铯原子钟。

原子钟的工作原理
根据原子物理学的基本原理,原子是按照不同电子排列顺序的能量差,也就是围绕在原子核周围不同电子层的能量差,来吸收或释放电磁能量的。这里电磁能量是不连续的。当原子从一个“能量态”跃迁至低的“能量态”时,它便会释放电磁波。
这种电磁波特征频率是不连续的,这也就是人们所说的共振频率。同一种原子的共振频率是一定的—例如铯133的共振频率为9 192 631 770Hz。因此铯原子便用作一种节拍器来保持高度精确的时间。