❶ 什么是MRI
核磁共振检查又称磁共振成像简称MRI。
MRI(MagneticResonanceImaging)又称磁共振成像,是利用原子核自旋运动的特点,将人体置于特殊的外加磁场内,经无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量,在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接收器收入,经电子计算机处理而获得图像的方法。
/iknow-pic.cdn.bcebos.com/d31b0ef41bd5ad6e6be0432a8fcb39dbb7fd3cd0"target="_blank"title="点击查看大图"class="illustration_alink">/iknow-pic.cdn.bcebos.com/d31b0ef41bd5ad6e6be0432a8fcb39dbb7fd3cd0?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="//www.fbslhl.com/fang_d31b0ef41bd5ad6e6be0432a8fcb39dbb7fd3cd0"/>
(1)mri是做什么仪器扩展阅读:
MRI设备基本要素:
1、磁体:除上述几种分型,尚有桶状闭合型及开放型,后者可行介入治疗。
2、梯度磁场:为空间编码而设计的,软件功能取决于它的强度和变化速率。
3、射频线圈:多种类型,发射和接收射频脉冲。
4、采集系统:程序和成像。
5、计算机:要求容量大、运算快、功能齐全,易操作。
❷ mri是什么意思
MRI是磁共振成像,原理是施加一个磁场,让原子核和着磁场的节拍动起来(共振),当磁场停下来的时候,原子核恢复常态,这个恢复的过程会以电磁波的形式释放能量,探头检测出这个能量,并用于成像。

适当的磁共振激励或者是RF脉冲激励(频率等于氢原子核谐振频率)能够强制原子核磁矩部分或全部偏移到与作用磁场垂直的平面。停止RF激励后,原子核磁矩将恢复到静态磁场的状况。原子核在重新排列的过程中释放能量,发出共振频率(取决于场强)的RF信号,MRI成像系统对该信号进行检测并形成图像。
❸ 磁共振是什么原理
核磁共振成像是一种利用核磁共振原理的最新医学影像新技术
核磁共振扫描仪(MRI)
核磁共振扫描仪(MRI)是使用非常强的磁场和无线电波,这些磁场和无线电波与组织中的质子相互作用,产生一个信号,然后经过处理,形成人体图像。质子(氢原子)可以被认为是微小的条形磁铁,有北极和南极,绕轴旋转——就像行星一样。正常情况下,质子是随机排列的,但当施加强磁场时,质子磁场方向会与这个磁场方向对齐。
用正确频率的无线电波脉冲激发质子,使它们产生共振,扰乱磁性排列。被激发的质子以射频信号的形式释放吸收的能量,发射物被扫描仪上的接收线圈接收。引起质子共振的无线电频率取决于磁场的强度。在核磁共振扫描仪中,梯度线圈被用来改变整个身体的磁场强度。这意味着身体的不同部位会以不同的频率共振。因此,通过按顺序应用不同的频率,你可以分别对身体的各个部分进行成像,并逐渐形成一幅图像。
❹ 核磁共振是什么东西
核磁共振(Nuclear Magnetic Resonance即NMR)
核磁共振成像(Nuclear Magnetic Resonance Imaging,NMRI),又称磁共振成像(Magnetic Resonance Imaging,MRI),
核磁共振全名是核磁共振成像(MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。
核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。
并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。
核磁共振(MRI)又叫核磁共振成像技术。是后继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。
核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。
MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。
MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
MRI也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。
核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。
根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:
质量数和质子数均为偶数的原子核,自旋量子数为0 ,质量数为奇数的原子核,自旋量子数为半整数 ,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P ,由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。
原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。
原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。
为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.
适应症:
神经系统的病变包括肿瘤、梗塞、出血、变性、先天畸形、感染等几乎成为确诊的手段。特别是脊髓脊椎的病变如脊椎的肿瘤、萎缩、变性、外伤椎间盘病变,成为首选的检查方法。
心脏大血管的病变;肺内纵膈的病变。
腹部盆腔脏器的检查;胆道系统、泌尿系统等明显优于CT。
对关节软组织病变;对骨髓、骨的无菌性坏死十分敏感,病变的发现早于X线和CT。
❺ 核磁共振成像术有哪些方面的应用
1946年,美国哈佛大学的伯塞尔和斯坦福大学的布洛克两名教授分别发现了“核磁共振”的现象,并为此在1952年获得了诺贝尔物理学奖。
这个物理现象一经发现,立即受到高度重视,在一些领域里马上得到应用。1972年,就有一些医生提出了利用核磁共振的原理做医疗诊断的设想。经过大约10年的研究和实验,此项技术日臻成熟,终于,在80年代,科学家将核磁共振原理同空间编码技术、数学变换和电影电视影像技术结合,发明了一种崭新的扫描技术——核磁共振成像术(简称MRI)。
MRI是一种比X射线成像更为优越的技术。它不需要通过放射线照射和扫描来形成影像,对人体更安全,可以说是彻底的无损伤检查。它的工作原理颇复杂,让我们简略介绍一下吧。
我们知道,世上万物均由原子组成,原子又是由原子核和围着原子核旋转的电子组成,原子核则是由带正电荷的质子和不带电荷的中子组成。许多原子核的运动类似“自旋体”,不停地以一定的频率自旋,如能设法让它进入一个恒定的磁场的话,它就会沿着这磁场方向回旋。这时如用特定的射频电磁波去照射这些含有原子核的物体,物体就会吸收电磁波的能量,发生“共振”;当射频电磁波撤掉后,吸收了能量的原子核又会把这部分能量以电磁波的形式释放出来,即发射所谓“核磁共振”信号。
这种核磁共振信号携带着物质内部结构的大量信息。对这些信号进行测量和分析,可以进一步获得此物质的物理和化学信息,比如密度、分布特点及组织的成分等。也就是说,可以通过核磁共振现象来了解物体内部的情况。
在人体中有着大量的水,有着许许多多氢原子,MRI就是利用人体中的氢原子,在强磁场内受到脉冲的激发后,所产生的核磁共振现象。在共振过程中,不同的组织器官的共振信号强度不同,恢复到激发前的平衡状态所需的时间也不同,这些信息经过电子计算机的处理后形成不同的图像。这种图像很清楚,不仅可以提供人体清晰的解剖细节,而且还能提供组织器官和病灶细胞内外的物理、化学、生物和生物化学等方面的诊断信息,便于医生据此作出诊断。
在做MRI检查时,病人要拿掉身上各种带金属的物件,平躺在检查床上,然后被徐徐送入诊室,程序十分简便。它不必使用任何造影剂,即可显示出血管等微细结构。它还可以从任何方向做切层检查,且成像有高度灵活性,分辨率高,仅在短短的一二秒钟内即可成像。
MRI不但能够像CT一样提供受检部位解剖信息的图像,还可以为我们提供有关组织生理生化信息的专门图像,比CT更灵敏地分辨出正常或异常的组织,为我们清楚地显示出病变的部位、范围,常可在病变处器官的形状、功能还未出现明显改变之前,就向人们发出警告。所以它在对肿瘤的早期检测及鉴别肿瘤的性质上有特别大的帮助。
MRI除了可以显示任何方向截面解剖部位的病变外,还可以透过骨骼的屏障,获得令人满意的断层图像,所以在临床应用中,MRI某些方面的功效明显优于CT。可以说,MRI是一种比CT用途更广泛的新型检查仪器。
1995年2月,一个即将被执行死刑的美国犯人,为表示他对自己罪行的追悔和对世人的歉意,表示愿将遗体献给科学机构作研究之用。科学家在犯人被处决之前先用MRI对他的身体进行成像扫描,获得许多图像资料。在处决后又将他的遗体冷冻后从头到脚切成2700片不及1毫米厚的薄片,再一一照相。科学家对这些相片与MRI获得的断层图像作比较,从中获取所需要的信息。这2700张断面照片现已由德国慕尼黑的一家电子企业加工成光盘,它是世界上第一张详细记录人体内部结构图像的光盘。它的问世,不仅可为医学院提供史无前例的详尽的人体解剖资料,对人们如何进一步用好、改进包括MRI在内的新型医疗检查仪器,也会有很大的作用。