⑴ 流式细胞仪分析技术及应用
在2019年的三月份我正式开始做单细胞相关研究工作,有趣的同时也是朋友我们经常误会的是:你是不是用流式细胞术?而我在得知自己要做这单细胞(single cell )的研究时,在Google搜关键词(single cell ),居然有不少是介绍流式细胞术的。流式细胞术应用到高通量测序领域就变成了微流控技术。可见,把生命科学的视界拉倒单细胞水平的比高通量测序更早的是流式细胞术。
那么在单细胞测序技术出现之前,人们在研究单细胞的时候都是怎么做的呢,都有哪些分析点呢?单细胞测序技术给单细胞研究带来了哪些新的视角?这一切的答案都要求我们对流式细胞术有一个基本的了解。
流式细胞术(flow cytometry, FCM)是以流式细胞仪为检测手段的一项能快速、精确的对单个细胞理化特性进行多参数定量分析和分选的新技术。
流式细胞仪是测量染色细胞标记物荧光强度的细胞分析仪,是在单个细胞分析和分选基础上发展起来的对细胞的物理或化学性质(如大小、内部结构、DNA、RNA、蛋白质、抗原等)进行快速测量并可分类收集的高技术。
采用激光作为激发光源,保证其具有更好的单色性与激发效率;利用荧光染料与单克隆抗体技术结合的标记技术,保证检测的灵敏度和特异性;用计算机系统对流动的单细胞悬液中单个细胞的多个参数信号进行数据处理分析,保证了检测速度与统计分析精确性。
(1) 液流系统
(2) 光学系统
(3) 数据处理系统
激光光源:气冷式氩离子激光器
分色反光镜:反射长/短波长,通过短/长波长
光束成形器:两十字交叉放置的透镜
透镜组:形成平行光,除去室内光
滤片:长通、短通、带通
光电倍增管:FS, SS(散射光), FL1, FL2, FL3, FL4(荧光)
测得的FS与SS信号通过计算机处理,可得到FS-SS图,由此可仅用散射光信号对未染色的活细胞进行分析或分选。此为血细胞分类的基本原理,但不能分析表面分子。
荧光信号由被检细胞上标记的特异性荧光染料受激发后产生,发射的荧光波长与激发光波长不同。
每种荧光染料会产生特定波长的荧光和颜色,通过波长选择通透性滤片,可将不同波长的散射光和荧光信号区分开,送入不同的光电倍增管。
选择不同的单抗及染料就可同时测定一个细胞上的多个不同特征。
线性放大器和对数放大器
通过流式细胞仪进行细胞分选主要是在对具有某种特征的细胞需进一步培养和研究时进行的。
FS:反映颗粒的大小
SS:反映颗粒的内部结构复杂程度
FL:反映颗粒被染上的荧光数量多少
单参数直方图
双参数直方图:点图
二维等高图
假三维等高图
三参数直方图
多参数分析
双参数直方图:纵轴和横轴分别代表被测量细胞的两个测量参数,根据这两个参数就可以确定细胞在图上的表达位置。
双参数信号通常采用对数信号,最常用的是点密图,在图中,每个点代表一个细胞,点图利用颗粒密度反映同样散射光或荧光强度的颗粒数量的多少。
由类似地图上的等高线组成,其本质也是双参数直方图。
等高图上每一条连续曲线上具有相同的细胞相对或绝对数,即“等高”。
曲线层次越高(越里面的线) 所代表的细胞数愈多。
等高线越密集则表示细胞数变化率越大。
流式细胞仪(FCM)是集单克隆抗体、荧光化学、激光、计算机等高技术发展起来的一种先进仪器,已广泛应用于免疫学、生物化学、生物学、肿瘤学以及血液学等方面的研究和临床常规工作。
①细胞生物学 :细胞凋亡研究;定量分析细胞周期并分选不同细胞周期时相的细胞;分析生物大分子如DNA、RNA、抗原、癌基因表达产物等物质与细胞增殖周期的关系,进行染色体核型分析,并可纯化X或Y染色体。 [详细]
②肿瘤学 :DNA倍体含量测定是鉴别良、恶性肿瘤的特异指标。近年来已应用DNA倍体测定技术,对白血病、淋巴瘤及肺癌、膀胱癌、前列腺癌等多种实体瘤细胞进行探测。用单克降抗体技术清除血液中的肿瘤细胞。 [详细]
③免疫学 :研究细胞周期或DNA倍体与细胞表面受体及抗原表达的关系;进行免疫活性细胞的分型与纯化;分析淋巴细胞亚群与疾病的关系;免疫缺陷病如艾滋病的诊断;器官移植后的免疫学监测等。 [详细]
④血液学 :血液细胞的分类、分型,造血细胞分化的研究,血细胞中各种酶的定量分析,如过氧化物酶、非特异性酯酶等;用NBT及DNA双染色法可研究白血病细胞分化成熟与细胞增殖周期变化的关系,检测母体血液中Rh(+)或抗D抗原阳性细胞,以了解胎儿是否可能因Rh血型不合而发生严重溶血;检测血液中循环免疫复合物可以诊断自身免疫性疾病,如红斑狼疮等。 [详细]
⑤药物学 :检测药物在细胞中的分布,研究药的作用机制,亦可用于筛选新药,如化疗药物对肿瘤的凋亡机制,可通过测DNA凋亡峰,Bcl-2凋亡调节蛋白等。 [详细]
细胞凋亡研究 :细胞凋亡是细胞在基因控制下的有序死亡,在疾病发生、发展中有重要作用,因而研究细胞凋亡有重要意义。细胞凋亡检测方法很多,应用流式细胞仪技术可根据细胞在凋亡过程中发生一系列形态、生化变化从多个角度对细胞凋亡进行定性和定量的测定。 [详细]
** 细胞分选**:流式细胞仪能够分选某一亚群细胞,分选纯度>95%。目前细胞分选主要用于研究,临床应用较少。利用流式细胞仪分选免疫担当细胞进行细胞免疫学研究也是目前的热门课题。流式细胞仪能够分选出你想得到的任何一亚群细胞,只要你想得到的某一亚群细胞有合适的单克隆抗体标记。 [详细]
** 细胞因子的检测**:随着多标记及胞内细胞因子标记流式细胞技术的出现,使对细胞内细胞因子的研究推向了一个新的阶段。本文主要对胞内细胞因子流式细胞技术作介绍。 [详细]
** 血液学应用**:本文向您介绍流式细胞仪在血液研究领域的应用,包括DNA倍体分析及细胞周期分析,淋巴细胞亚群测定,白血病免疫分型,淋巴瘤免疫分型,红细胞疾病诊断,血小板功能分析和血小板病诊断,微小残留白血病检测,白细胞吞噬功能测定,NK和LAK细胞活性测定,造血干/祖细胞测定等。 [详细]
⑵ 什么是流式细胞仪
流式细胞仪可同时进行多参数测量,信息主要来自特异性荧光信号及非荧光散射信号。测量是在测量区进行的,所谓测量区就是照射激光束和喷出喷孔的液流束垂直相交点。液流中央的单个细胞通过测量区时,受到激光照射会向立体角为2π的整个空间散射光线,散射光的波长和入射光的波长相同。散射光的强度及其空间分布与细胞的大小、形态、质膜和细胞内部结构密切相关,因为这些生物学参数又和细胞对光线的反射、折射等光学特性有关。未遭受任何损坏的细胞对光线都具有特征性的散射,因此可利用不同的散射光信号对不经染色活细胞进行分析和分选。经过固定的和染色处理的细胞由于光学性质的改变,其散射光信号当然不同于活细胞。散射光不仅与作为散射中心的细胞的参数相关,还跟散射角、及收集散射光线的立体角等非生物因素有关。

⑶ 流式细胞技术与流式细胞仪
流式细胞技术 (Flow Cytometer, FCM)是细胞学的研究手段之一。其能在细胞分子水平上通过单克隆抗体对单个细胞或其他生物粒子进行多参数、快速的定量分析。它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数。例如,采用双激光的方法,研究者可进行核型分析和鉴定,分离纯化某号染色体并构建染色体特异性DNA文库。流式细胞技术是当代最先进的细胞定量分析技术之一。
该技术依托 流式细胞仪 。其主要部件为光源、流动室、荧光检测部件、分选器。
(1)光源。通常是激光光源,目的是提供足够的荧光激光能量。
(2)流动室。其为流式细胞仪中最重要的部分。目的是使细胞流稳定流动,依次通过固定的检测区。其间一道加入还有鞘液(sheath fluid),使样品微粒之间相互分离,基于 鞘流原理 ,使微粒恒定处于同轴流动的中心位置。流动室的设计运用 液体聚焦原理 ,把激光激发点放在液流聚焦点上,该处是液流直径最小处,通常为10-20μm,做到了单个细胞进入检测区。
(3)荧光检测部件。染色细胞通过激光束时会发出荧光,检测系统将接收的这些荧光转换成与其量大小成正比的电压脉冲信号,该脉冲称为 峰值脉冲 ,分析系统根据这些来自不同方向的信号把不同的细胞群加以区分。散射光是围绕细胞360°散发的,所以检测装置里一般有90°散色光检测器(SSC,侧向散射光)和前向散射光检测器(FSC,前向角度散射光)。由于侧向散射光强度较弱,因此光电转换器件选用增益较大的 光电倍增管 。一般来说,6°以内的前向散射光为小角度散射光,可反映细胞体积的大小。大于6°的前向散射为大角度散射光,可提供细胞内的信息,特别是分叶核的信息,细胞质粒存在与否会明显改变前向大角度散射光的强度。由于前向散射光的强度较强,因此用光电二极管作 光电转换器 。
(4)分选器。细胞的分选是通过分离含有单细胞的滴液实现的。通过特异性识别与给液滴加电(2kV~6kV),施加静电场,来实现分离。
过程细节:被激光照射的染色细胞会产生散射光和激发荧光。这两种光信号同时被光电二极管和光电倍增管接收后转换成电脉冲信号。无论是散射光或荧光信号,检测的目的都是要分析不同的粒子。分析的方法有两种,一是测量粒子通过激光束的最大电压(与荧光强度成正比),二是测量脉冲的面积。再经过A/D 转换器将脉冲信号变换成二进制数字信号由计算机处理。光信号基本上反映了细胞体积的大小,荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度。这种属分析型流式细胞仪。分选型则是则是将液滴充电后送入上面描述的分选器中进行分离,目的是为了将所需的细胞做进一步的培养、观察和实验。
染色体倍性不同的细胞,染料吸附于染色体的量迥异,激发的荧光强度限定于一定区间。因此可以对染色体倍性实施鉴定。
总而言之,流式细胞仪能够对细胞的性质进行系列分析,是细胞学研究的重要工具。
[1] 何克健.流式细胞技术与流式细胞仪[J].医疗装备,2000(05):6-8.
[2] 罗庆,高建有,李洁维,叶开玉,莫权辉,蒋桥生,查满荣,王发明,刘世彪.利用流式细胞仪对51份猕猴桃种质染色体倍性的鉴定[J/OL].生物学杂志:1-8[2022-06-02]. http://kns.cnki.net/kcms/detail/34.1081.Q.20220321.1515.00
⑷ 流式细胞术简介
liú shì xì bāo shù
flow cytometry
流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体, 同时具有分析和分选细胞功能。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。
流式细胞术(Flow Cytometry, FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术。其特点是:①测量速度快,最快可在1秒种内计测数万个细胞;②可进行多参数测量,可以对同一个细胞做有关物理、化学特性的多参数测量,并具有明显的统计学意义;③是一门综合性的高科技方法,它综合了激光技术、计算机技术、流体力学、细胞化学、图像技术等从多领域的知识和成果;④既是细胞分析技术,又是精确的分选技术。
概要说来,流式细胞术主要包括了样品的液流技术、细胞的分选和计数技术,以及数据的采集和分析技术等。FCM目前发展的水平凝聚了半个世纪以来人们在这方面的心血和成果。
1934年,Moldavan1首次提出了使悬浮的单个血红细胞等流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置计测的设想,在此之前,人们还习惯于测量静止的细胞,因为要使单个细胞顺次流过狭窄管道容易造成较大的细胞和细胞团块的淤阻。1953年Crosland –Taylor根据雷诺对牛顿流体在圆形管中流动规律的研究认识到:管中轴线流过的鞘液流速越快,载物通过的能力越强,并具有较强的流体动力聚集作用。于是设计了一个流动室,使待分析的细胞悬浮液都集聚在圆管轴线附近流过,外层包围着鞘液;细胞悬浮液和鞘液都在作层液。这就奠定了现代流式细胞术中的液流技术基础。
1956年,Coulter在多年研究的基础上利用Coulter效应生产了Coulter 计数器。其基本原理是:使细胞通过一个小孔,只在细胞与悬浮的介质之间存在着导电性上的差异,便会影响小孔道的电阻特性,从而形成电脉冲信号,测量电脉冲的强度和个数则可获得有关细胞大小和数目方面的信息。1967年Holm等设计了通过汞弧光灯激发荧光染色的细胞,再由光电检测设备计数的装置。1973年Steinkamp设计了一种利用激光激发双色荧光色素标记的细胞,既能分析计数,又能进行细胞分选的装置。这样就基本完成了现代FCM计数技术的主要历程。
现代的FCM数据采集和分析技术是从组织化学发源的,其开拓者是Kamentsky。1965年,Kamentsky在组织化学的基础上提出了两个新设想:(1)细胞的组分是可以用光光度学来定量测定的,即分光光度术可以定量地获得有关细胞组织化学的重要信息。(2)细胞的不同组分可以同时进行多参数测量,从而可以对细胞进行分类。换句话说,对同一细胞可以同时获得有关不同组分的多方面信息,用作鉴别细胞的依据。Kamentsky不仅思路敏捷,而且能身体力行。他是第一个把计算机接口接到仪器上并记录分析了多参数数据的人,也是第一个采用了二维直方图来显示和分析多参数的人。
流式细胞术在细胞化学中的应用的先驱者是Van Dilla和美国的Los Alamos小组。他们在1967年研制出流液束、照明光轴、检测系统光轴三者相互正交的流式细胞计的基础上,首次用荧光Feulgen反应对DNA染色显示出DNA的活性与荧光之间存在着线性关系,并在DNA的直方图上清楚地显示出细胞周期的各个时相。Gohde 和Dittrich接着把这项技术推向实用,他们用流式细胞术测定细胞周期借以研究细胞药代动力学问题。FCM用于免疫组织化学中的关键是对细胞进行免疫荧光染色,其它和在细胞化学的应用并没有多大差异。
近20年来,国内外在FCM上都做了不少的研究和应用工作,也取得了不少成果。特别是随着仪器和方法和日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面的工作以扩大FCM的应用领域和使用效果。FCM在免疫组织化学中的应用也大致差不多,并注重了在临床应用的推广。
流式细胞术
将待测细胞染色后制成单细胞悬液。用一定压力将待测样品压入流动室,不含细胞的磷酸缓冲液在高压下从鞘液管喷出,鞘液管入口方向与待测样品流成一定角度,这样,鞘液就能够包绕着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列,依次通过检测区域。
流式细胞仪通常以激光作为发光源。经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。
这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过模/数转换器,将连续的电信号转换为可被计算机识别的数字信号。计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,液可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。
检测数据的显示视测量参数的不同由多种形式可供选择。单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。对于双参数或多参数数据,既可以单独显示每个参数的直方图,也可以选择二维的三点图、等高线图、灰度图或三维立体视图。
细胞的分选是通过分离含有单细胞的液滴而实现的。在流动室的喷口上配有一个超高频电晶体,充电后振动,使喷出的液流断裂为均匀的液滴,待测定细胞就分散在这些液滴之中。将这些液滴充以正负不同的电荷,当液滴流经带有几千伏特的偏转板时,在高压电场的作用下偏转,落入各自的收集容器中,不予充电的液滴落入中间的废液容器,从而实现细胞的分离。
1.流式细胞仪可以检测细胞结构,包括:细胞大小、细胞粒度、细胞表面面积、核浆比例、DNA含量与细胞周期、R NA 含量、蛋白质含量。
2.流式细胞仪可以检测细胞功能,包括:细胞表面/ 胞浆/ 核的特异性抗原、细胞活性、细胞内细胞因子、酶活性、激素结合位点和细胞受体。
1.流式细胞术在肿瘤学中的应用:流式细胞术可以检测肿瘤细胞增殖周期、检测肿瘤细胞表面标记、癌基因表达产物、进行多药耐药性分析、检测凋亡;
2.流式细胞术在血液学中的应用:检测白血病和淋巴瘤细胞、活化血小板、造血干细胞(CD34+)计数、白血病与淋巴瘤的免疫分型、网织红细胞计数、细胞移植的交叉配型和免疫状态监测;
3.流式细胞术在免疫学中的应用:可以进行淋巴细胞及其亚群分析、淋巴细胞免疫分型、检测细胞因子。
主要有细胞动力学功能研究、环境微生物分析、流式细胞术与分子生物学研究。
取一定量细胞(约1×106 细胞/ml),直接加入连接有荧光素的抗体进行免疫标记反应(如做双标或多标染色,可把几种标记有不同荧光素的抗体同时加入),孵育20~60分钟后,用PBS(pH7.2 ~7.4)洗1~2次,加入缓冲液重悬,上机检测。本方法操作简便,结果准确,易于分析,适用于同一细胞群多参数同时测定。虽然直标抗体试剂成本较高,但减少了间接标记法中较强的非特异荧光的干扰,因此更适用于临床标本的检测。
取一定量的细胞悬液(约1X106 细胞/ml),先加入特异的第一抗体,待反应完全后洗去未结合抗体,再加入荧光标记的第二抗体,生成抗原抗体抗抗体复合物,以FCM检测其上标记的荧光素被激发后发出的荧光。本方法费用较低,二抗应用广泛,多用于科研标本的检测。但由于二抗一般为多克隆抗体,特异性较差,非特异性荧光背景较强,易影响实验结果。所以标本制备时应加入阴性或阳性对照。另外,由于间标法步骤较多,增加了细胞的丢失,不适用测定细胞数较少的标本。
流式细胞仪并非是完全自动化的仪器,准确的实验结果还需要准确的人工技术配合,所以标本制备需要规范,仪器本身亦需要质量控制。
流式细胞术在免疫学中有着广泛的应用,其免疫荧光染色的标本制备非常重要,常常由于标本制备过程中出现人为非特异性荧光干扰(尤其在间接免疫荧光染色中)或细胞浓度低等影响检测结果。解决这些影响因素的方法如下:
(1) 确保标本上机检测前的浓度为1X106/ml,细胞浓度过低直接影响检测结果。
(2) 使用蛋白封闭剂,封闭非特异结合位点,尤其在间接免疫荧光标记时必不可少。常用的蛋白封闭剂为0.5%牛血清白蛋白和1%胎牛血清。
(3) 荧光抗体染色后充分洗涤,注意混匀和离心速度,减少重叠细胞和细胞碎片。
(4) 设置对照样品,采用与抗体来源同型匹配的无关对照和荧光抗体的本底对照。
(5)判定结果时,应注意减去本底荧光,为使免疫荧光的定量分析更精确,应用计算机程序软件,用拟合曲线方法从实验组的曲线峰值中减去对照组的曲线峰值,可以得到更准确的免疫荧光定量结果。
(6) 注意染色后避光,保证细胞免疫荧光的稳定。
DNA倍体分析的质量控制仍没有统一的标准, 各文献报道的实验结果差异较大,1993年10月美国癌症研究组织制定了FCMDNA定的统一标准,我们根据这些标准并结合国内有经验的专家多年的实践,对FCM的DNA分析技术的质控和注意事项进行说明。
(1) 手术切除的新鲜标本或活检针吸标本取材时,要避免出血坏死组织。
(2) 标本采集后要及时固定或深低温保存,以免组织发生自溶,DNA降解,而造成测试结果的误差。
(3) 固定剂要采用对组织细胞穿透性强的浓度,70%的乙醇固定效果较好。
(4) 单细胞悬液制备过程中,注意将待测细胞成分分离出来,减少其他成分的干扰,并注意不要损伤该群细胞。
(5) 细胞样品的采集要保证足够的细胞浓度,即1X106/ml,杂质、碎片、团块和重叠细胞应<2%,对肿瘤细胞DNA异倍体的分析样品,至少有20%的肿瘤细胞存在。
(6) 石蜡包埋组织单细胞制备时要注意:取材时应选取无自溶、坏死的组织,对肿瘤组织标本,选取含肿瘤细胞丰富的区域;石蜡组织片的厚度要适宜,最好为40~50μm 。过薄或过厚的切片均会影响检测结果;彻底脱蜡,以免残留的石蜡影响酶的消化活性,验证脱蜡是否完全的方法是弃去二甲苯,加入100%乙醇,如果无絮状物浮起,说明蜡已脱净;水化要充分,使组织还原到与新鲜组织相似的状态;注意消化的时间和消化酶的活性。常规使用0.5%胃蛋白酶,pH 1.5。
(1)流式细胞仪在整个工作过程中处于最佳状态,能保证定量检测的准确性和检测精度。使用标准样品调整仪器的变异系数在最小范围,分辨率在最好状态,能避免在测量过程中仪器条件的变化引起的检测误差。
(2)评价仪器精度的重要指标是仪器的变异系数(CV),对于校准样品,其CV值越小越好,CV值越小,说明仪器校正的精度越高。校准样品包括非生物样品(荧光微球)和生物细胞样品(人淋巴细胞、鸡红细胞等)。目前,非生物荧光微球已有商品试剂,CV一般<2%~3%。
(1) 当样品中碎片杂质或团块过多,所测细胞数在20%以下,组方图的基线抬高时,应放弃分析处理。
(2) 做细胞周期分析时,样品细胞数应在1万个,排除碎片、杂质和团块,当异倍体细胞数占总细胞数10%以下时,需要结合其他诊断指标,不可盲目下结论,至少异倍体细胞占总细胞数的20%以上,可以确定异倍体的存在。
(3)DNA分析时,正常二倍体细胞组方图CV值>8%时放弃分析,但肿瘤细胞的CV值>8%,与肿瘤细胞的异质性有关。另外,DNA倍体分析时,同源组织的不同个体会出现10%的漂移。
⑸ 流式细胞技术的介绍
流式细胞术工作原理是在细胞分子水平上通过单克隆抗体对单个细胞或其他生物粒子进行多参数、快速的定量分析。它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数,具有速度快、精度高、准确性好的优点,是当代最先进的细胞定量分析技术之一。光源、液流通路、信号检测传输和数据的分析系统是流式细胞仪的主要组成。目前临床中运用流式细胞仪进行外周血白细胞、骨髓细胞以及肿瘤细胞等的检测是临床检测的重要组成部分。

⑹ 通过了解流式细胞术及仪器发展简史你有哪些思政启发
万物既渺小又伟大。
流式细胞术是一种生物学技术,用于对悬浮于流体中的微小颗粒进行计数和分选。这种技术可以用来对流过光学或电子检测器的一个个细胞进行连续的多种参数分析。 流式细胞术(Flow CytoMetry,FCM)是对悬液中的单细胞或其他生物粒子,通过检测标记的荧光信号,实现高速、逐一的细胞定量分析和分选的技术。随着流式细胞术的发展,出现了多种型号的流式分析仪、分选仪,同时随着配备的激光器的不断升级,有些流式分析仪可进行多达10色以上的荧光分析。
流式细胞术主要应用于生命科学的基础研究,尤其是免疫学、细胞生物学和分子生物学。80年代后期开始应用于临床,辅助多种疾病的诊断,尤其是白血病的诊断和分型。随后,利用流式分选干细胞过继回输用于疾病治疗,如NK细胞回输提高免疫力,CIK治疗等。
⑺ 什么是流式细胞仪
流式细胞仪是对细胞进行自动分析和分选的装置。
它可以快速测量、存贮、显示悬浮在液体中的分散细胞的一系列重要的生物物理、生物化学方面的特征参量,并可以根据预选的参量范围把指定的细胞亚群从中分选出来。
多数流式细胞计是一种零分辨率的仪器,它只能测量一个细胞的诸如总核酸量,总蛋白量等指标,而不能鉴别和测出某一特定部位的核酸或蛋白的多少。也就是说,它的细节 分辨率为零。