㈠ 在弱电进户管上如何安装SPD请大家多指教!!!
SPD在低压系统中的选择,安装位置及其所提供的保护
对于固定式SPD,常规安装应遵循下述步骤:
1)确定放电电流路径
2)标记在设备终端引起的额外电压降的导线,见图2.1和2.2。
说明:在图2中, Ures是Ⅰ、Ⅱ类SPD的残压或更一般地说是限制电压。
3)为避免不必要的感应回路,应标记每一设备的 PE导体,图2.3、2.4和3。
说明:如果不可能进行单一接地则需要两个SPD(如图2.4所示)。
4)设备与SPD之间建立等电位连接。
5)要进行多级SPD的能量协调
为了限制安装后的保护部分和不受保护的设备部分之间感应耦合,需进行一定测量。通过感应源与牺牲电路的分离、回路角度的选择和闭合回路区域的限制能降低互感,见图2。
当载流分量导线是闭合回路的一部分时,由于此导线接近电路而使回路和感应电压而减少。见图3。
一般来说,将被保护导线和没被保护的导线分开比较好,而且,应该与接地线分开。同时,为了避免动力电缆和通信电缆之间的瞬态正交耦合,应该进行必要的测量。
与防护距离有关的振荡效应
当 SPD1用来保护设备或安装在输入口配电盘上却不能对某些设备提供足够的保护时, SPD2的安装位置应该尽可能地靠近被保护的设备。如果距离太远,可能会在终端设备上产生2倍于 Up甚至更高的振荡电压,尽管对设备使用了 SPD保护,但这个振荡电压仍会使 设备发生损坏。合理的距离(又称防护距离)与 SPD类型、系统类型、进入的浪涌源的陡度和波形及相连的负载有关。特别是在设备相当于高阻负载或设备内部发生脱离可能出现电压倍增。为了解释此现象,图(四)给出了这类情况下出现电压倍增的一个例子。
一般认为距离小于10米时不会产生振荡,图4说明即使距离为10米,也有可能产生电压倍增,但只有负载为纯电容时才有可能发生。有时设备有内部保护元件(如压敏电阻),即使距离较远,振荡也会显著减少。此时应注意SPD与设备内部保护元件的协调。
说明:一般来说,仅在靠近被保护设备处安装一个 SPD是不够的。由于电磁兼容原因(为避免浪涌电压产生的电磁干扰,最好在入口处进行分流)和为了对设备进行保护(避免导线之间的闪络),最好在设备的入口处安装 SPD。如果设备不在入口处安装的 SPD的保护范围内,有必要在靠近设备处另行安装一个SPD,此时也应考虑其协调性。
说明:这种现象可以通过由与浪涌频率和导线长度相关的振荡和行波来解释。
连接线长度的影响
为获得最佳过压保护应使SPD的连接导线尽可能短。如导线太长将引起SPD电压降,为提供有效的保护有必要降低安装于此的 SPD的保护等级。转移至设备的残压为由 SPD上和导线上感应电压的总和。这两种电压不一定同时达到峰值。出于实用的目的,一般情况下,它们可以相加。图(五)说明连接线的感应如何导致SPD残压的增加。
一般假设导线感抗为1μH/m。当脉冲陡度为1kA/μs,导线上感应电压降接近1kV/m,而且,如果 di/dt陡度更大时,感应电压值将增加。在可能情况下,当这种感抗的影响被认为是由于环路的分离而显著减小时,图(六),最好选用方案c);当方案c)不能采用时,则采用方案d),尽可能避免采用方案a)。
注意:如果回流线与进线是通过紧凑接线方式磁耦合,感抗将减小。
当建筑物进线处浪涌电压较低时,在靠近进线处安装一个SPD便行。但在某些特殊情况下,例如安装了非常敏感的设备(电子设备,计算机)或这些需要保护的设备离安装在入口处的 SPD太远、在建筑物内由于雷电放电和内部干扰源而产生电磁场时,有必要在靠近被保护设备处或设备内部安装附加的SPD。
电源系统和信号网络线进入防护区时,应彼此靠近并连接在同一金属物上,实现等电位连接,这一点对由非屏蔽金属(如木材、砖混结构)建筑物尤为重要。
要考虑系统中多数被保护的电子敏感设备的耐压水平。对安装在设备最近处的 SPD,必须使其UP值至少低于设备耐压值的20%。假定安装在进线处的SPD在保护范围内,如果进线处的 SPD的 UPl乘以一个过压因子后低于UP2,那么,只能使用进线处的SPD。(见图7)
说明:用户应注意设备的抗扰性可按IEC6l000-4-5标准,用混合波发生器进行试验得出。在这种情况下,低阻抗设备的抗扰性不只是根据耐压UW来定义,且部分浪涌电流通过设备分流,需设计一合理的协调。
在建筑物内部当可能出现一些高能量的开关浪涌(投切过电压)时,此时需安装附加SPD。
SPD应具备的功能和附加要求
1.SPD的基本功能
对于正常工作状态下的低压系统,安装后的SPD不应对系统和系统装置内的设备工作特性有明显的影响。
对于出现浪涌等非正常工作状态的低压系统,SPD应及时对浪涌作出反应,通过SPD能限制瞬态过电压和分走电涌电流的特性,将过电压降到IEC60664-1规定的各类别位置设备耐冲击过电压额定值以下。
对于经历了非正常状态的低压系统,即经过浪涌后恢复正常状态的SPD,应恢复其高阻抗特性,并采取措施防止或抑制电力线上的续流。
2.使用SPD的附加要求
1)对直接接触进行保护。 SPD应以这种方式安装:安装在不可接触的范围内或对直接接触采取保护(如安置隔离设备)。
2)发生 SPD失效事件的安全性。当浪涌电压超过设计的最大承受能力和放电电流容量时, SPD可能会失效或被损坏。 SPD的失效模式大致分为开路和短路两种方式。
处于开路模式时,被保护设备将不再受保护。这时,因为对系统本身几乎不会产生影响,很难发现 SPD己失效。为了保证在下一浪涌到来之前,能将失效的SPD替换掉,必须要求SPD具备指示失效的功能。
处于短路模式时,系统出于 SPD的失效而受到严重影响。短路电流由配电系统流向失效的 SPD。因为失效的 SPD通常并未完全短路且有一定阻抗,在开路前将产生热能引起燃烧。在这种情况下,被保护系统没有合适的器件使其与失效的SPD发生脱离,此时,对处于短路失效模式的SPD要求安装一个合适的脱离装置。(断路器)
SPD的选择步骤
说明如下:
A:Uc、UT和Ic
关于Uc在不同供电系统中的取值已在本文中说明。UT是SPD能承受的短时过电压值,在理论上是一直线。但在实际中常因一些值(电源频率、直流过压)可能随时间变化,使得在一定的时间间隔内(一般在0.05秒到10秒间),会超过最大连续工作电压Uc,因此选用UT值应考虑大于UTOV。但事实上,要求一个SPD既要有较高的耐短时过电压能力同时又能提供低保护等级不可能的,只有比较而舍取,或采用多级保护。
当外加连续工作电压Uc时,通过SPD的最大连续工作电流值为Ic。为避免过电流保护设备或其它保护设备(如RCD)不必要动作,Ic值的选择非常有用。Ic的选择可参看"五分法"的利用分流来确定。
B.保护距离
主要指SPD的安装位置。一般SPD应安装在低压供电系统在建筑物的入口处多指在变压器的低压侧(特别说明:在公共配电系统中安装SPD必须取得公共配电系统管理部门如供电局的批准)的配电盘上。当配电盘与用电设备距离较远或用电设备需要多重保护时,SPD2、SPD3应尽可能的靠近被保护设备并在防雷区交界处做等电位连接。
一般来说,SPD的选择有六个步骤,见图(八)
选用和使用SPD时的注意事项
1. 应在不同使用范围内选用不同性能的SPD。在选用电源SPD时要考虑供电系统的形式、额定电压等因素。LPZ0与LPZ1区交界处的SPD必
须是经过10/350us波形冲击试验达标的产品。对于信号SPD在选型时应考虑SPD与电子设备的相容性。
2. SPD保护必须是多级的。例如对电子设备电源部分雷电保护而言,至少应采取泄流型SPD与限压型SPD前后两级进行保护。
3. 为各级SPD之间做到有效配合,当两级SPD之间电源线或通讯线距离未达规定要求时,应在两级SPD之间采用适当退耦措施。
4. 建在城市、郊区、山区不同环境下计算机机房,设计选用SPD时,必须考虑机房供电电源不稳定因素,选用合适工作电压的SPD。
5. 对于无人值守场合,可选用带有遥信触点的电源SPD;对于有人值守场合,可选用带有声光报警之电源SPD。所有电源防雷器都具有老
化显示。
6. 信号SPD应满足信号传输带率、工作电平、网络类型的需要,同时接口应与被保护设备兼容。
7. 信号SPD由于串接在线路中,在选用时应选用插入损耗较小的SPD。
8. 在选用SPD时,应让指定供应商提供相关SPD技术参数资料。
9. 正确的安装才能达到预期的效果。SPD的安装应严格依据厂方提供的安装要求进行安装。
㈡ 压力变送器怎样连接仪表
压力变送器看两线制、三线制、还是四线制;一般两线制的信号又是电源,所以要串入24V电源,仪表带24V输出的可直接接入,三线制四线制需单独供电;四线制注意电源电压。
㈢ 仪表供电时怎么一回事
变送器你说的是压力或流量,24VDC是PLC后边接的配电器(隔离器)提供。
仪表电源柜、DCS电源柜、DCS系统柜一般是220VAC,各器件一般有自己的变压元件,将220变成自己需要的电压。
其他的不知道。不过无非220 3相380 10KV 等几种吧
0分悬赏啊
㈣ 24V仪表仪表电源开路24V,接通仪表就只有2~3V,怎么回事
简单回答:电阻串联在回路中,你想,要是并联,对于两线制的仪表来说,电阻两端其不是直接加上了24v电压。实际就需要一个电阻就可以,串联在回路,手操器的鳄鱼嘴夹直接夹到电阻两端。就可以通讯。
㈤ 从DCS或PLC控制柜卡件供电到就地的24VDC电压,在供电线路上的电压损失如何补偿
加补偿电容,但我不会计算,换粗线或镀银线,把接触面处理干净,拧紧螺丝,以减小接触电阻。
也可在就地加24VDC电源。
仅供参考
㈥ 24v电源带4-20ma输出的仪表怎么接入分信号隔离器
你好,信号分配器也是24V供电的,您只需要给信号分配器供电,然后将您的4-20mA信号接入信号分配器的输入端,便可输出多个(2-4个)和您的信号一样的信号
㈦ 直流开关电源输出24V给仪表供电,仪表输入端有MB10S(整流桥堆),为什么整流桥堆经常烧坏怎么不烧坏
从规格表来看,这个桥堆是1000v 0.5a的,因为输入的是直流24v,因此超压击穿的可能性几乎没有,很可能是过流发热导致的,如果桥堆后面有容量较大的电解电容,在上电时就容易过流击穿,具体是否这样,需要你根据实际电路来测量/检查

㈧ 现场仪表接线图
一般现场仪表不外乎有以下几种接线端子:
供电电源接线 24VDC或220VAC,若为两线制仪表则不需独立供电电源;
信号输入接线(若为二次表);
信号输出接线
㈨ 仪表的24VDC跟220VAC供电有啥区别啊
24V供电一般是2线制,可直接带24vDC继电器,或DCS有源输入控制。220V一般4线制2根电源单独供电,2根信号干接点开关信号,直接接DCS无源输入或串入继电器回路。
㈩ 关于仪表供电问题(石化设计行业)
220的交流电
24的是直流电
直流电的优点主要在输电方面:
①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2
直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3.
如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少.
②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗.
在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上.
③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整.
④直流输电发生故障的损失比交流输电小.两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流.因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关.而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样.因此不必更换两侧原有开关及载流设备.
在直流输电线路中,各级是独立调节和工作的,彼此没有影响.所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能.但在交流输电线路中,任一相发生永久性故障,必须全线停电.