① 地震观测仪器有哪些
地震观测仪器可分为两大类,一类称为地震仪,用来观测和记录地震振动,以确定地震发生的时间、地点和震级;另一类称为前兆仪器,用以检测地震的前兆异常,为地震预报服务.
② 检测地震的仪器叫什么求答案
检测地震的仪器叫地震仪,它是在地震发生时,记录下地震发生的时间和能量的仪器。这种仪器实际上是马后炮,没有更有效的。
③ 我国探测地震的仪器是什么
光学生命探测仪:把废墟看得清清楚楚
“蛇眼”就是一种搜索仪器,它的学名叫“光学生命探测仪”,是利用光反射进行生命探测的仪器。仪器的主体非常柔韧,像通下水道用的蛇皮管,能在瓦砾堆中自由扭动。仪器前面有细小的探头,可深入极微小的缝隙探测,类似摄像仪器,将信息传送回来,救援队员利用观察器就可以把瓦砾深处的情况看得清清楚楚。
此外,光学生命探测仪上的探头可以360度旋转,只要废墟上有一个手指粗细的眼,光学生命探测仪就可以伸入,探头在下面旋转后将图像传上来,基本确定被埋人所处的位置和被困地形,在实际救援时可以不伤着被埋压人员。
热红外生命探测仪:在黑暗中也能工作
热红外生命探测仪具有夜视功能,它的原理是通过感知温度差异来判断不同的目标,因此在黑暗中也可照常工作。红外线生命探测仪在感觉人是否存活方面很精确,确保不错过任何仅存一线希望的生者。
它可以完美地帮助救援队员在废墟灾区或其周围定位遇难者的位置。它能够探测并且显示出遇难者身体的热量,从而帮助救援队员很快确定被埋在废墟底下或隐藏在尘雾后面的遇难者的位置,且能经受住救援现场的恶劣条件。
热红外生命探测仪还可用于检测煤矿井下隐性火区分布、火源的位置,亦可非接触性检测井下中央与采区变电所各种开关、接头、变压器的事故隐患,水泵、防爆电机及动力设备(动力电缆)的温升,运输机及运输皮带的发热状态。
声波生命探测仪:能探寻微弱声音
声波振动生命探测仪寻找生命靠的是识别被困者发出的声音。人类有两只耳朵,这种仪器却有3—6个耳朵,它的耳朵叫做“拾振器”,也叫振动传感器,它能根据各个耳朵听到声音先后的微小差异来判断幸存者的具体位置。
说话的声音对它来说最容易识别,因为设计者充分研究了人的发声频率。如果幸存者已经不能说话,只要用手指轻轻敲击,发出微小的声响,也能够被它听到。即便被埋人被困在一块相当严实的大面积水泥楼板下,只要心脏还有微弱的颤动,探测仪也能感觉出来,于是救援队员可以确定废墟下是否有人活着。
④ 可以预测地震的仪器有哪些
地震预测方法有很多种,基于很多网友大部分都不懂数据,而且历史地震资料也不熟悉,地理知识也并不算特别好博主介绍以下几种简单的地震预测方法给各位网友用来防身。【PS:地震云不可预测地震,如果所谓地震云可以预测地震为何网上那些依据地震云预测地震的神棍没预测到吉林松原地震呢?】
第一种方法:含羞草预测地震法:
原理:地震前震中周边数十千米甚至数百千米的地下岩石岩层里面的电流会异常的活动【地球本身就是一个导体,地下会有电流,只不过这个电流非常微弱,人类几乎感觉不到,目前来看只有动物和植物对地下电流有感应】。
预测方法:正常的情况下含羞草是白天开放,晚上闭合;而地震前含羞草会出现白天闭合,晚上开放的现象;一般含羞草的异常出现在地震发生前2周至4周之间。
第二种预测方法:虎皮鹦鹉法
原理:和第一种地震预测方法一样的原因,因为地球本身就是导体,地震前震中周边会出现异常的电流,虽然人类感应不了这种电流但是动物和植物都感应的到,因此动物和植物会出现与平常不一样的反应。
预测方法:地震发生前虎皮鹦鹉会出现长时间的乱叫或者扑腾翅膀,撞笼子等,特别是半夜虎皮鹦鹉出现长时间乱叫,撞笼子等,不过这个方法有个弱点就是虎皮鹦鹉感知范围可能非常大;另外虎皮鹦鹉的异常一般出现在地震发生前1周至2周左右。【批注:注意虎皮鹦鹉观测法最好买2只或者2只以上的虎皮鹦鹉,另外记得每天添加一次水,每天添加2次鸟粮,记得把虎皮鹦鹉笼子的门用锁锁好,有很多粉丝买了虎皮鹦鹉和笼子,结果这货会开门然后趁人不注意自己开笼子飞跑了的,另外还有很多粉丝是因为忘记喂食喂水饿死了虎皮鹦鹉了的,建议定时喂食喂水,定时观察虎皮鹦鹉的表现】
⑤ 现在测地震用的都是什么地震仪
记录地震波的仪器称为地震仪,它能客观而及时地将地面的振动记录下来。其基本原理是利用一件悬挂的重物的惯性,地震发生时地面振动而它保持不动。由地震仪记录下来的震动是一条具有不同起伏幅度的曲线,称为地震谱。曲线起伏幅度与地震波引起地面振动的振幅相应,它标志着地震的强烈程度。从地震谱可以清楚地辨别出各类震波的效应。纵波与横波到达同一地震台的时间差,即时差与震中离地震台的距离成正比,离震中越远,时差越大。由此规律即可求出震中离地震台的距离,即震中距。
值得注意的是,地震仪只能用于测量地震的强度、方向,并不能用于预测地震。
⑥ 用单道浅层地震反射波法寻找地下管道<sup>[]</sup>
单道浅层地震反射波法具有设备简单、野外工作方便、灵活且不需强震源等优点,可用纵波法或横波法观测(图5-4-16)。野外工作需地震仪一台、检波器一个、锤子一把。震源点距为1~10m,测点距为1~2m,观测资料可垂直叠加1~16次。单道浅层地震法用于小范围的工程调查,其勘探深度可达40m。图5-4-17为单道近角和宽角浅层反射波法工作图。
图5-4-16 单道浅层反射波法野外布置图
图5-4-17 单道近角和宽角反射波法工作图
图5-4-18是用单道浅层地震反射波法探测水泥制的下水道的例子 国外地质勘探技术编辑部,1986。工程与水文物探专辑,国外地质勘探技术,专辑9。
采用点距0.5m,震源距1m,工作频率f=100~200Hz,垂直叠加2次的方法进行观测。观测结果表明,在点位14~21m、记录时间37.5ms处,存在一较强的水平反射界面。钻探验证为一下水道,顶板深度为5.6m。另外,在点位7m、记录时间为25ms处,有一反射界面,推断为卵石层。
图5-4-18 水泥制的下水道上观测结果
(a)反射波形(近角排列);(b)推断地质剖面
1—填土层;2—卵石层;3—粘性土层;4—下水道
⑦ 调查方法及其设备
大洋多金属结核矿产资源的勘查需要综合应用各类地球物理勘探方法和地质勘查方法。地球物理勘探方法有:海底地形地貌调查,重力、磁力调查,地震调查;多频探测和海底照相以及深拖和多波束回声测深等先进的勘探系统。各类地质勘查方法有:有缆地质采样、无缆地质采样、温度-盐度-深度测量等。在不同的勘探阶段所采用的方法种类以及工作量要求均有所差别。下面对各种调查设备(图版Ⅱ—2)及其方法作进一步阐述。
3.2.1地球物理勘查方法及其调查设备
1.海底地形地貌测量及其调查设备
海底地形地貌测量是大洋多金属结核调查中必须执行的调查项目之一。通过水深测量,可以了解海底地形特征和海底基本情况,从而为评价和开采矿区提供必须的基本资料。
在区域调查阶段,海底深度测量工作主要采用单波束回声测深仪,以揭示海底地形地貌。传统的做法是运用回声测深仪测量调查区的水深值以获得地形地貌的基本信息。近年来一些先进的测试仪器如SEABEAM等多波束测量装置的运用,使得海底地形地貌测量变得更加精确可靠。有关SEABEAM等仪器设备的性能和有关资料将在下面叙述。这里将阐述运用回声测深仪执行海底地形地貌调查的有关情况。
在区域调查阶段,水深测量常用的仪器为12.5kHz的万米测深仪,其测量精度由航行中船舶的定位精度和测深精度决定。所得的测量数据经过水深校正和声速校正后即可得到相应的水深值,用于绘制海底地形图。这种测深仪的缺点是水深数据采样间距大(1km),难以准确地反映地形地貌形态,常把较小的地形轮廓拉平,使海底起伏平缓化,复杂地区的地形简单化。
2.地震测量及其设备
为了解海底沉积物的分布特征、沉积层的内部结构和基底起伏,在大洋多金属结核勘查工作中往往采用单道地震的声波勘查方法。设备配置方案为NEC-20C单道剖面仪、数字地震仪、气枪、漂浮电缆等,资料以模拟方式记录或者数字化方式记录,炮号以数字方式记录在卫星导航系统的磁带上。工作航速常用6kn。测线首尾端点应有合格的导航定位点,单道地震的数字记录常常和其它声波探测结果综合用于多金属结核的分布状况的解释。
单道地震资料与多频探测资料结合往往能获得较好的解释结果,这项调查常用于多金属结核的初期阶段。
3.多频探测及其设备
多频勘探数据处理系统(multi-frequency exploration system)是一种利用多种频率的声波勘探深海多金属结核丰度和粒度大小的计算机数据处理系统。该系统可以在正常的航行速度(10~12kn)下工作,并可以在船上对已获得的数据进行处理,迅速获得多金属结核的丰度和粒度值。
多频勘探数据处理系统主要由声波发射和接收、模拟信号检测和数据处理三部分组成。在声波发射和接收部分配置有浅层剖面仪(SBP)、测深仪(PDR)和窄波束测深仪(NBS)等装置。模拟信号检测部分的功能是对声波信号进行放大、滤波。数据处理部分则对声波信号进行数字化、存储及数据处理。目前,它采用频率为:SBP——3.5kHz,PDR——12kHz,NBS——30kHz三种不同频率的声波发射和对应的接收仪器。
多金属结核呈席状分布于海底表层,表层沉积物一般为硅质粘土、深海粘土、硅质软泥或钙质软泥。这类沉积物富含孔隙水,质地松软均匀,声速接近于水或比水略低,声波在此层的反射率很低,可以近似地认为不受阻碍地穿透这一沉积层(即透声层),多金属结核连同下伏的沉积层在3.5kHz浅层剖面上表现为一席状披盖的无反射带或弱反射带(即透声层)。沉积速率过高或过低的海域都不利于结核的生长,只有特定厚度的声波透声层才有利于多金属结核的赋存。多频探测系统使用MFES-100B多频勘探数据处理系统与3.5kHz浅层剖面仪和12kHz回声测深仪联机的方式测量结核的丰度,若要测量结核的粒度还需配置30kHz窄波束剖面仪。多频探测与单道地震检测资料相结合往往可以得到更好的解释效果。
多频探测与其它方法结合能得到更完满的结果,这包括用地质采样等多种手段。一些国家利用多频探测系统进行多金属结核调查,其结果与实际抓斗取样结果相比较,相关系数达0.7。
当多频勘探数据处理系统与调查船的其它声波探测器,如回声探测器和深海浅层剖面仪一起使用时,可连续测得海底多金属结核的分布密度和大小等资料。在此种情况下,回声测深仪和深海浅层剖面仪等的频率在理论上应在下列范围:3~5kHz、8~15kHz和25~35kHz。因为所欲探测的结核的大小的直径为几厘米到>10cm不等,所以多频勘探数据处理系统能与任何一般规格的声波探测仪器结合使用,只要从这些仪器测得的声波输出信号给予线性放大,并加以控制,以避免饱和即可。
多频勘测的具体工作方法与其它物探方法类似,测网的布置要依照不同的调查阶段而定。按不同的精度要求和比例尺选择适当的数据采集时间间隔,通常是每公里采集3~4个点,因而对不同的航速要有不同的采集时间间隔,以保证勘探精度要求。
多频探测系统与无缆式抓斗或有缆抓斗相比较有如下优点:
(1)速度快;
(2)可以获得连续的整条测线的数据;
(3)相关系数为0.7~0.9;
(4)工作方便,安全可靠。
与海底照相和海底电视相比较,多频探测系统成本低、速度快、安全可靠并不受海底地形起伏和海山等障碍物的影响。它适合于在大洋中进行大面积的连续调查。
4.重力、磁力测量及其仪器设备
重力、磁力测量往往在大洋多金属结核调查的初期进行,其目的是了解调查区域的构造特征、岩浆活动以及海底地形、地貌变化的控制因素。我国现有的调查船往往都配置有这类设备,如海洋四号船使用KSS-5型海洋重力仪和G821G型核子磁力梯度仪;向阳红16号船配置有KSS-5型海洋重力仪和CHHK-2型海洋核子磁力仪。
5.海底照相及其设备
通过海底照相,在照片上可直接观察到多金属结核在大洋表面的赋存状态,求得其覆盖率、粒径和丰度,并了解洋底表层沉积物的特征、底栖生物的活动等信息。海底照相通常采用两种方法和设备:
(1)自返式海底照相系统该设备配合自返式采样装置可以拍摄采样点的海底沉积物和多金属结核的分布特征。美国Boathos公司生产的改进型4201自返式抓斗配备有海底照相系统。这种系统把袖珍的135相机装在一高压密封罐中,照相机系有2.0kg的重物,当与海底接触时启动电磁快门。在取样前触发一次照相,拍摄的海底面积最大为2.1m×1.4m。
图3—1海底照相系统
(2)拖曳式海底照相系统该系统的作用是探明海底多金属结核赋存状态,照片供研究人员计算结核覆盖率、推算丰度及其它解释使用。海洋四号采用英国Camera Alive公司生产的CI800和CI256型海底照相系统(图3—1),两系统的结构和原理相同,均由照相机、闪光灯、声脉冲发生器、触发器、直流电源和同步控制器组成。前者可以连续拍摄800张135彩色胶片,后者可以连续拍摄256张135彩色胶片(照相机镜头离海底距离3m,每张胶片的画面最大覆盖面积3.9rn×2.6m)。照相系统工作时,钢缆连结,万米绞车收放,声脉冲发生器和回声测深仪的应答器确定和控制海底照相机到达海底预定深度,每触发一次拍摄相片一张。系统结构合理,性能良好,成功率达到80%左右。
亦有一些国家将海底电视勘查系统用于大洋多金属结核海区海床勘查,当然这些设备的技术性能亦应满足如下要求:①作业深度——6000m;②拖曳速度——2.5kn;③电视离海底距离——3~10m;④像帧数——2×3150;⑤电视系统——慢速扫描标准。
6.先进的勘查系统及其设备
深拖系统和多波束回声测深仪等先进勘探系统是西方国家在多金属结核勘探阶段采用的手段,尤其是带有电视/照相装置的深拖系统,它可用于海底表层多金属结核的直接观察和评价。深拖装置所配备的浅层剖面仪、旁侧声纳以及多波束回声测深仪配置的测深仪、浅层剖面仪和旁侧声纳等均可以快速、精确地提供海底有关地形起伏、成分[1]、海底结构和构造等信息。这些设备往往在勘查的后期阶段使用。我国现已引进了这类设备,在开辟区内结核勘查的中、后期阶段,可以利用这些勘查系统获得精确可靠的资料。
(1)深拖系统深拖系统主要由声学拖体和光学拖体两部分组成。以美国Simrad公司制作的AMS-60SI型深拖系统为例,该装置的声学拖体配备有浅层剖面仪(4.5kHz)、旁侧声纳(56.7kHz)等测量系统,具有旁侧声纳、条带水深测量和浅地层剖面测量等多种声学测量功能;光学拖体配置有一套电视/照相系统。工作水深可达6000m。该设备还备有为旁侧声纳和浅层剖面资料归位校正的传感器。当作业中因拖鱼深度变化而引起的地形畸变时,可通过联机自动归位校正。拖鱼结构设计最大拖速为8kn,然而,该系统在运用浅层剖面仪(4.5kHz)、旁侧声纳(56.7kHz)等测量系统进行工作时,则将深拖装置置于海底之上50m处,以拖速1.5kn进行航行。
我国购置的深拖设备,包括一套AMS-60SI标准配置的声学拖体和一套电视/照相光学拖体、甲板控制和数据采集工作站、后处理工作站以及Dynacon柴油机-液压绞车系统和万米同轴电缆。在声学和光学拖体中,各种设备的技术指标分别如下:
旁侧声纳
发射频率56.7kHz
发射功率2000W(RMS,Hi设置)150W(RMS,Lo设置)
带宽水平1.5°±0.1°垂直600
最小旁辨压缩20dB
信号带宽.8kHz
磁通门罗经KVHC100,0.10分辨率
横纵摇传感器0.1°分辨率
压力/深度传感器0.01m分辨率
条带水深测量系统为同相干涉测量,增加了一组换能器和相关电路,包括波束寻找和波束正常化特征电路。
海底剖面仪
发射频率4.5kHz
发射功率500W(RMS)
带宽±25°
光学拖体的配置
ColmekTVTM多路传输系统
Simradphotosea5000D照相机
Simradphotosea1500SD闪光灯①成分泛指地层分层、分层结构等。
Ospreysitoe 1323电视摄像机
600TV线5×10-4LUX
电视照明灯
高度计Simrad Mesotech Mode 1807
电视信号传输速率实时黑白传输30帧/s
这项装置应能满足多金属结核后阶段详查工作的要求。
(2)多波束回声测深仪海底多波束测量系统能提供较高密度和较高质量的地形测量资料。目前在一些先进国家,该设备的使用已经逐渐取代了单波束的深海测深仪。法国从1980年开始在“让·夏尔科”号海洋科考船使用Sea Beam多波束回声测深仪,在认识海底含多金属结核地区的地貌方面取得了重大进展。这个系统发出16束狭窄的声波(每束2°40′),构成一个复杂的系列,能自动补偿船的纵横摇动。在进入船只本身的航行数据后可以得出航道两侧相当于海底深度2/3的长条的海底地形图。在5000m水深的海域其测量的分辨率不大于20~30m。多波束回声测深仪的优点是能在相对较短的时间内进行大面积的探测,在5000m水深的海域内可以在25天内完成面积为3万km2的测区。利用多波束回声测深仪可以显现回声测深仪不能显现的一些地貌和构造特征。但在勘探的最后阶段,仍无法取代高分辨率的深拖系统。
这类测量系统的深度测量范围为10~11000m,最新一代的海底多波束测量系统包括:海底测深系统、旁侧声纳和浅层剖面仪。目前已有德国的ATLAS公司、挪威的SINRAD公司和美国的SEABEAM仪器公司生产制作这类系统。
以SEABEAM仪器公司制作的SEABEAM2100型为例,其主要装置有:发射换能器子系统、水听器子系统、发射机子系统、接受机和声纳处理机子系统、工作站以及绘图处理机和显示储存子系统。
最新一代的多波束测量系统集测深、旁侧声纳和浅地层剖面仪功能于一体,可以同时测量并获得海底宽幅的地形资料、旁侧声纳图像资料、海底浅地层剖面资料,绘制海底等深线图,并揭示有关地形起伏、成分、海底结构和构造等有用信息。
SEABEAM 2100型多波束测量系统的主要技术指标:
深度范围10~11000m
频率2~7kHz
声源电平233dB/(μPa·m)
发射功率30kW(峰值线性)
TX动态范围70dB
TX脉冲射窗口矩形、余弦
3.2.2地质勘查方法及其调查设备
在各个阶段的多金属结核调查中,都必须按测站系统地采集地质样品用于直接的观察、描述和测试研究。研究目的不同,调查要求不同,所采用的采样设备也不同。以下将列举各种样品采集装置及其用途。
1.有缆地质采样器
有缆地质采样的项目包括抓斗、箱式取样器、拖网、重力取样器和重力活塞取样器等多种采样手段。
(1)抓斗抓斗是采集多金属结核或表层沉积物样品最常用的设备。有缆抓斗的配套装置是带钢缆的深海绞车和供取样器投放和回收的倒L型吊架或A型架。在离取样器50~100m处的钢缆上装上声脉冲发生器,它产生的脉冲信号及海底反射信号由测深仪接收,以便操作人员掌握抓斗到达海底的情况,及时进行定位和回收。通常采用的抓斗的开口面积为0.25m2(50cm×50cm)。目前我国大洋多金属结核调查所采用的抓斗多选用中国科学院(青岛)海洋研究所制作的大洋50型抓斗。
(2)箱式取样器箱式取样器(图版Ⅰ—1)用于采集不受扰动的海底沉积物样品,其取样面积为0.25m2(50cm×50cm)。箱式取样器用钢缆连结,由万米绞车释放和回收。在投放海底采集样品时,根据声脉冲发生器发出的信号确认取样器是否已抵达海底。
(3)拖网拖网(图版Ⅰ—2)用于海底拖曳采集多金属结核和岩石样品,其网口为1.2m×0.6m,钢质。网身为尼龙绳编织,网眼一般为1.5cm×1.5cm,长度2m左右。网尾固定一重锤,以维持网身伸展状态。收放及拖曳作业则用钢缆及万米绞车进行,必要时船舶配合以低速移动。
(4)重力取样器重力取样器用于采集柱状沉积物样品,取心直径为7.3cm,长度为3.2m。用钢缆连接,由万米绞车控制释放和回收。重力取样器和其它有缆采样器一样,需要在钢缆上安装一声脉冲发生器,作为取样器到达海底的应答手段,便于操作人员控制释放和回收。目前我国在大洋多金属结核矿产资源调查中常用的重力取样器为美国Benthos公司所产的2175型重力取样器。
(5)重力活塞取样器在采集长柱状沉积物岩心时往往需要采用大型重力活塞取样器(图版Ⅰ—3)。这种取样器的优点是被采集的沉积物样品不被扰动,而且能获得有足够长度的沉积物岩心。Benthos公司生产的2450型重力活塞取心器能获得15.2m长的岩心,经过一定的改装还可获得更长的岩心。岩心的长度取决于研究工作的需要以及调查船工作面的大小。在安装有声脉冲发生器的重力活塞取心器到达海底时,取样器巨大的自重和活塞底局部真空所造成的压差将柱状沉积物压入样管,即可获得这种长柱状沉积物样品。声脉冲发生器和回声测深仪的应答,将保证操作人员能正确了解重力活塞取心管到达海底的时间,以便控制它的收放。
这种取心器只是在对某些地点进行详细勘探时才系统地使用。它既能从沉积物表层,也能从较深的地层采集样品。这些样品不仅能用于土质特性的研究,还可以对这些含结核地区的地质史进行科学研究(例如:沉积学、地球化学、生物学、年代测量等)。
2.无缆地质采样
无缆地质采样包括自返式抓斗和自返式重力取心器等多种采样手段,现分别叙述如下:
(1)自返式抓斗自返式抓斗是取多金属结核的最主要手段。我国采用的是美制4201型自返式抓斗(图版Ⅰ—4),取样面积为0.2m2。自返式抓斗的工作原理为:用载有压载物(铁砂)的抓斗沉入海底后,自动触发装置把装有沉积物样品的抓斗取样网合拢,同时释放压载物。由于浮球的作用,网中的样品被带出水面。依靠导航定位、信号旗、闪光灯、无线电信标等装置的帮助回收自返式抓斗。这种抓斗在5000m左右水深的海域作业时每个站位的作业时间约为3~4h。采用自返式抓斗作业的最大优点是调查船可以在连续航行中采集样品。因此,这是获取多金属结核的主要设备。
装在取样器上的照相机,拍摄的每张照片涉及的海底面积约为1m2,拍摄方向稍微偏离垂直线。样品是在近于拍摄的同一时间取得的,取样的理论面积为0.18m2。
取样系统的采获量随结核的大小而变化,不能将所采结核的重量直接折算为丰度(kg/m2);这一必要数据是通过对样品和海底照片进行严谨的分析比较而得出的。
这种采样装置在矿床勘查初期用得很多,实践证明,其损失率约为1%,颇为有效。每个采样点算作一个站位。一组站位(通常5~7个)构成一个测站。
(2)自返式重力取心器
自返式重力取心器用于采集海底柱状沉积物样品。其取心直径为7.3cm,最大取心长度为1.22m,其工作原理与自返式抓斗相同。采用自返式重力取心器的优点是获得未被扰动的柱状沉积物样品,以便研究这一深度内沉积物的沉积特征等各类地质信息。采集的沉积物样品回收则依靠导航定位以及取心器上所带的闪光灯的帮助,因此在夜间作业效果较好。
自返式取心器虽然容易操作,但是效果不稳定,在作业的可靠性(它不能用于固结沉积物)和测量有效性方面亦是如此。
图3—2温盐深(CTD)测量系统
3.温度-盐度-深度测量
目前,在大洋多金属结核勘查工作中,对调查站位海水的温度、盐度和水深(简称温盐深)的综合测量,常采用美国EG&G公司生产的MARK-Ⅲ型温盐深测量系统(图3—2)。其主要功能既满足了部分地质调查项目的要求,亦符合水文调查的需要。测量项目有海水的温度、盐度、深度、电导率、pH值、溶解氧、声速和密度的纵向分布值等,并可以选择12个不同深度水层采集水样。每个水样的体积为500ml,用于不同的研究目的。
3.2.3水文气象观察
水文气象调查工作虽然是一项辅助工作,但其调查结果对于多金属结核的地质成因及分布的探讨,对于调查规划的制定和实施都有重要意义。水文气象观察的内容应包括温盐深的测量、海流的测量和气象观察等项目。在不同的阶段,调查的内容和要求也不同。
1.水文地质调查
水文地质调查包括温度、盐度、水色透明度、海流和海浪的调查。水文地质调查一般采用定点调查的方式,它又可分为断面观测、大面观测和连续观测等几种。
由于水文地质调查往往是定点观测,采用温盐深仪测量系统(CTD)在测量观测点的水深的同时就可以满足温度和盐度的测量要求,因此,选用的设备必须满足工作区适用的水深范围和所测水文要素的测量要求。
海流观测主要是测定海流的流速和流向,辅助测量风速和风向,在测量过程中,对海流流速的准确度不大于±3cm/s;流向准确度不大于±10°。大洋海流的观测多采用声学多普勒剖面仪或自容式海流计,借助于深海测流浮标系统进行测量。近年来,计算机系统的配置,使得海流观测数据可以进行实时处理,处理后的数据可记录在磁盘上或磁带上。
海浪观测需要测量海浪的波高、周期、波向、波形和海况。海浪的观测既可以用目测,也可以用仪器测量。仪器测量一般采用浮标式加速度型测波仪。配有数据处理系统的测波仪,可借助系统的微机对观测资料进行实时处理,求得波高、有效波周期、最大波高和最大波周期;处理后的资料可以在荧光屏上实时地显现出来,也可以记录在磁盘和磁带上,通过回放机和打印机直接打印出来。
2.气象调查
各个航次的大洋调查都需要进行海面气象调查,因为它是为天气预报和水文地质调查目的服务的。大洋勘查中不断积累的气象调查资料亦将为今后对这一海区的多金属结核矿区的开发评价提供气象方面的依据。
海洋气象调查的内容包括海冰、表层气温、天气现象、能见度、云、风、空气的温度和湿度、气压等气象要素。这些项目均属于常规的调查工作,使用常规的设备就可以完成。在当前大洋多金属结核勘查中亦经常可以借助气象卫星发布的资料指导大洋调查工作的实施,然而在大洋多金属结核勘查工作中坚持进行这项气象调查有助于对气象卫星发布数据的正确性进行判别。不断积累的气象资料将有助于对预定的开发区作气象方面的正确评价。
⑧ 可以预测地震的仪器有哪些
咨询记录 · 回答于2021-05-07
⑨ 地震反射波法的仪器设备
地震反射波法需用的仪器设备包括震源、接收装置和记录系统三个组成部分。
震源
过去在海洋地震反射波法中使用炸药激发地震波,称为炸药震源。但在海洋中使用炸药,安全性差,对鱼类杀伤严重,而且也不能满足高效率数据采集的技术要求。现在广泛使用非炸药震源,主要有:空气枪震源,在海水中突然释放高压空气,能够在水中造成强烈的振动,激发地震波;蒸汽枪震源,在海水中释放高温蒸汽以造成振动,而蒸汽在海水中迅速散热并恢复其体积,从而不产生重复冲击;电火花震源,这是利用一对或多对高压电极在水中的放电效应产生火花造成振动,其特性是频谱较宽,但峰值偏高。此外,利用电磁脉冲,甚至压电效应,也可以造成震源装置如电磁脉冲器和压电换能器,只不过它们的能量较小,仅适用于浅层调查。在测量中应注意根据不同目的和任务进行震源选择。为了获取深部层位的信息,除提高震源强度外,还必须考虑到频率特性以及对地震信号的识别。震源波的穿透深度与其频率成反比,而地震信号的分辨率与其频谱的宽度成正比。
水下接收装置
主要使用压电换能器组成的检波器,在水中接收地震波。压电换能器是一种加速度检波器,受到外部压力即加速度作用时产生电信号,而对于海浪等速度变化并不敏感。将压电换能器按一定间距串、并联组成阵,放置于塑料管内并充油液,使之在海水中具有中性浮力,即组成一个地震记录道接收段。多道剖面测量时,则使用由多个(如24、48、96等)地震记录道接收段组成。为防止观测船上的机械震动影响接收效果,在船与接收段之间设有前导段和弹性减震段;在接收段与尾标之间也通过减震段联接。接收装置必须在水面以下一定的深度上才能达到最佳的接收效果,为此,首先应使接收装置在最佳沉放深度上保持等浮;其次要通过自动深度控制器及时调整其深度变化。
记录系统
地震反射记录系统使接收到的反射波经过放大、滤波和增益控制来实现地震资料的采集。单道观测可以用电敏纸或热敏纸的机械记录器,或用检流计的照相装置,将地震波的模拟信号记录下来。多道观测先后经历了光点照相记录、模拟磁带记录和数字磁带记录等阶段。目前广泛使用瞬时浮点增益数字地震仪,由信号采样所得的瞬时值控制其放大增益,具有宽达84分贝以上的动态范围和高达4200分贝/秒的跟踪速度,使地震信号能在无畸变的情况下迅速恢复其真振幅,如实地将反射波记录于磁带上。这就为充分利用地震信息提供条件。但磁带记录必须使用电子计算机进行处理。地震记录系统的设计和使用,与震源和接收装置一样,都必须努力提高地震信号而压制干扰,以保证资料采集的质量和有效性。

⑩ 地震勘探仪器
(1)工程地震仪
地震勘探仪器一般由地震检波器﹑放大系统﹑记录系统三部分组成。地震检波器主要有感应检波器﹑压电检波器﹑激光检波器等几类。它可直接拾取地震振动,并将振动转换成能为仪器记录的能量形式。放大系统的作用是对检波器输出的微弱电信号进行滤除干扰和增益放大控制。记录系统以不同方式将信号记录下来。检波器﹑放大系统﹑记录系统三个基本环节组成一个地震道,地震仪一般是多道的。
工程地震仪是勘探深度近数百米范围内的地震勘探仪器。按其工作原理分计数型﹑波形表示型和信息增强型三大类。常见的有瑞典TERRALOCMK6新型24通道工程地震仪(附图13)、美国Seistronix公司RAS-2424通道数字地震仪、WZG-24A、48A、96A工程地震仪、瑞典MK6工程地震仪、美国GSR-3D数字地震仪、德国SUMMITⅡPlus地震仪、SE2404系列工程地震仪、SRS-24工程地震仪、GPS授时地震仪、法国sercel(塞舍尔)公司的428XL地震仪等。
⊙主要技术指标:
环境与工程地球物理
(2)瑞利波仪瑞利波仪(附图14)是利用在一个波长深度范围内传播的瑞利波来进行测试,它分为稳态瑞利波法和瞬态瑞利波法。稳态法由稳态信号激振器激发出不同频率表面波,形成频散曲线(速度频率或波长),可以得出剪切波速度和
各种弹性模量。在土壤中测深100m,在岩层能达到200m。瑞利波仪有以下特点:抗干扰性强,在城市内进行物探最重要的是要具有较强的抗干扰能力;信号采集高效性,通过提高接收仪通道数量,加长测线长度,加密测线测点数量,使用多种规格检波器,信号数据文件多样点保存;信号采集时间短,达到信号高效采集的目的;探测有效深度加大,提高激发瑞利波信号强度,降低激发瑞利波信号频率;探测精度加大,通过加密激发瑞利波
信号频率和加密检波器间距,达到提高探测精度的要求。瑞利波仪可用于多道瞬态面波勘探、地震折射波勘探、地震反射波勘探、贴壁式纵横波波速测井、可用于悬挂式剪切波波速测井、可用于桩基检测。
⊙主要技术指标:
环境与工程地球物理
环境与工程地球物理
(3)超声波仪
超声波仪(附图15)是通过发射探头和接收探头来测试超声波在介质中的传播时间并从而计算出传播速度。超声波是超声频率的机械振动在弹性介质中的传播过程,频率超过20000Hz的便称为超声波。非金属超声仪主要用于混凝土等非金属结构质量无破损检测,可用于超声透射法基桩完整性检测,综合法检测混凝土抗压强度,结构混凝土缺陷探查,非金属产品(如石材、陶瓷、耐火砖等)内在质量检测,岩体动力学参数测定。
⊙主要技术指标
屏幕:10.4寸超大TFT高亮度、彩色触摸屏。
当前波形放大显示,自动快速判读声参数,测区或桩基全部波形显示,便于结果对比。
Window系列下全中文操作,开机即会,方便快捷。
USB接口数据传输,打印快速、可靠。
一发双收或一发单收任选。
声时测读精度:0.05μs。
测时测读范围:0.1~629000μs,可通过延时量程可无限大。
幅值测读范围:0~174dB。
采样周期:0.05~400μs可选。
采样长度:0.5~16k可选。
信号采集:自动和手动可选。
接收灵敏度:<10μv。
显示器:10.4″,640×860。
内存:128MB,数据(波形)储存:40GB。
支持三种供电方式:内置聚合物锂电池供电6h。
外供:DC12V,AC100~220V50/60Hz。
打印机:支持HP,EPSON系列打印机。
使用环境:温度-5~40℃,湿度:<85%。