导航:首页 > 仪器仪表 > 加入显色剂用什么仪器测量

加入显色剂用什么仪器测量

发布时间:2022-08-24 04:06:42

『壹』 仪器测量条件的选择

仪器测量条件的选择包括测量波长的选择,适宜吸光度范围的选择及仪器狭缝宽度的选择。

4.3.2.1 测量波长的选择

通常都是选择最强吸收带的最大吸收波长λmax作为测量波长,亦称为最大吸收原则,以获得最高的分析灵敏度,而且在λmax附近,吸光度随波长的变化一般较小,因波长的稍许偏移而引起吸光度的测量偏差较小,可得到较好的测定精密度。但在测量高浓度组分时,宁可选用灵敏度低一些的吸收峰波长(ε较小)作为测量波长,以保证校正曲线有足够的线性范围。如果λmax所处吸收峰太尖锐,则在满足分析灵敏度的前提下,可选用灵敏度低一些的波长进行测量,以减少比耳定律的偏差。

4.3.2.2 适宜吸光度范围的选择

任何光度计都有一定的测量误差,这是由于测量过程中光源的不稳定、读数的不准确或实验条件的偶然变动等因素造成的。由于吸收定律中透光率T与浓度c为负对数关系,从负对数的关系曲线可以看出,相同的透光率读数误差在不同的浓度范围中引起的浓度相对误差不同,当浓度较大或浓度较小时,相对误差都比较大。因此,要选择适宜的吸光度范围进行测量,以降低测定结果的相对误差。

当吸光度A=0.434时,仪器的测量误差最小;当A增大或减小时,误差都会变大。在分析中,一般选择A的测量范围为0.2~0.8(T为65%~15%),此时如果仪器的透光率读数误差(ΔT)为1%时,由此引起的测定结果相对误差(Δc/c)约为3%。

在实际工作中,可通过调节待测溶液的浓度或选用适当厚度的吸收池的方法,使测得的吸光度符合要求。

4.3.2.3 仪器狭缝宽度的选择

狭缝的宽度会直接影响测定的灵敏度和校准曲线的线性范围。狭缝宽度过大,入射光的单色性降低,校准曲线偏离比耳定律,灵敏度降低;狭缝宽度过窄,光强变弱,势必要提高仪器的增益,随之造成仪器噪声增大,于测量不利。选择狭缝宽度的方法是测量吸光度随狭缝宽度的变化,狭缝的宽度在一定范围内,吸光度是不变的,当狭缝宽度增大到某一程度时,吸光度开始减小,因此在不减小吸光度时的最大狭缝宽度,即是所要选取的合适的狭缝宽度。

4.3.2.4 显色反应条件的选择

显色反应条件的选择包括显色剂及其用量、反应的酸度和温度、显色的时间等条件的选择。

(1)显色剂及其用量

显色反应中,显色剂与待测离子发生显色反应时,产物组成恒定、稳定性好、显色条件易于控制;产物对紫外、可见光有较强的吸收能力,即ε大;显色剂与产物的颜色对照性好,即吸收波长有明显的差别,一般要求Δλmax﹥60nm。表4.2列出了几种常见的显色剂。

而使颜色变浅,ε降低;而用CNS-测定Fe(Ⅲ)时,随CNS-浓度增大,配位数逐渐增加,颜色也逐渐加深。因此,必须严格控制CNS-的用量,才能获得准确的分析结果。显色剂用量可通过实验选择,在固定金属离子浓度的情况下,作吸光度随显色剂浓度的变化曲线,选取吸光度恒定时的显色剂用量。

(2)反应的酸度

介质的酸度往往是显色反应的一个重要条件,酸度的影响因素很多,主要从显色剂及金属离子两方面进行考虑。

多数显色剂是有机弱酸(或弱碱),介质的酸度直接影响着显色剂的离解程度,从而影响显色反应的完全程度。当酸度高时,显色剂离解度降低,显色剂可配位的阴离子浓度降低,显色反应的完全程度也跟着降低。对于多级配合物的显色反应来说,酸度变化可形成具有不同配位比的配合物,产生颜色的变化。在高酸度时多生成低配位数的配合物,可能没有达到金属离子的最大配位数;而在低酸度(pH高)时,游离的配体阴离子浓度相应变大,则可能生成高配位数的配合物。

不少金属离子在酸度较低的介质中,会发生水解而形成各种羟基、多核羟基配合物,有的甚至可能析出氢氧化物沉淀,或者由于生成金属离子的氢氧化物而破坏有色配合物,使溶液的颜色完全褪去。

在实际分析工作中,要通过实验来选择显色反应的适宜酸度,即固定溶液中待测组分和显色剂的浓度,通过改变溶液(通常用缓冲溶液控制)的酸度,分别测定在不同酸度下溶液的吸光度A,绘制A-pH曲线,以此选定最适宜的pH范围。

(3)显色的时间

由于各种显色反应的速度不同,控制一定的显色时间是必要的,尤其是对一些反应速度较慢的反应体系,更需要有足够的反应时间。值得注意的是,介质酸度、显色剂的浓度都将会影响显色的时间。

(4)反应的温度

吸光度的测量是在室温下进行的,温度变化较小时对测量影响不大,但有些显色反应受温度影响较大,需要进行反应温度的选择和控制,特别是进行热力学参数的测定、动力学方面的研究等特殊工作时,反应温度的控制尤为重要。

此外,由于配合物的稳定时间不同,显色后放置时间及测量时间的影响也不容忽视,需经实验选择合适的放置及测量的时间。

4.3.2.5 参比溶液的选择

测量试样溶液的吸光度时,首先要用参比溶液调节透光率为100%,以消除溶液中其他成分以及吸收池和溶剂对光的反射和吸收所带来的误差。根据试样溶液的性质,选择合适组分的参比溶液是很重要的。

(1)溶剂参比

如试样溶液的组成较为简单,共存的其他组分很少,且对测定波长的光几乎没有吸收,对显色剂也没有吸收时,可采用溶剂作为参比溶液,这样可消除溶剂、吸收池等因素的影响。

(2)试剂参比

如果显色剂或其他试剂在测定波长有吸收,按显色反应相同的条件,只是不加入试样溶液,同样加入试剂和溶剂作为参比溶液。这种参比溶液可消除试剂中的组分产生吸收的影响。

(3)试样参比

如果试样基体(除被测组分外的其他共存组分)在测定波长处有吸收,而与显色剂不起显色反应时,可按与显色反应相同的条件处理试样,只是不加显色剂,作为参比溶液。这种参比溶液适用于试样中有较多的共存组分,加入的显色剂较少,且显色剂在测定波长无吸收的情况。

(4)平行操作溶液参比

用不含被测组分的试样,在相同条件下与被测试样进行同样处理,由此得到平行操作参比溶液。

4.3.2.6 干扰及消除方法

在光度分析中,体系内存在的干扰物质的影响有以下几种情况:干扰物质本身有颜色或与显色剂形成有色化合物,在测定条件下也有吸收;在显色条件下,干扰物质水解,析出沉淀使溶液混浊,致使吸光度的测定无法进行;与待测离子或显色剂形成更稳定的配合物,使显色反应不能进行完全。一般可以采用以下几种方法来消除这些干扰。

(1)控制酸度

根据配合物的稳定性不同,可以利用控制酸度的方法提高反应的选择性,以保证主反应进行完全。例如,双硫腙能与Hg2+、Pb2+、Cu2+、Ni2+、Cd2+等十多种金属离子形成有色配合物,其中与Hg2+生成的配合物最稳定,在0.5mol·L-1H2SO4介质中仍能定量进行,而上述其他离子在此条件下不发生反应。

(2)选择适当的掩蔽剂

使用掩蔽剂消除干扰是常用的有效方法。选取的条件是掩蔽剂不与待测离子发生作用,掩蔽剂以及其与干扰物质形成配合物的颜色应不干扰待测离子的测定。

(3)利用生成的惰性配合物

例如钢铁中微量钴的测定,常用钴试剂为显色剂,但钴试剂不仅与Co2+有灵敏的反应,而且与Ni2+、Zn2+、Mn2+、Fe2+等都有反应。当钴试剂与Co2+在弱酸性介质中一旦完成反应后,即使再用强酸酸化溶液,该配合物也不会分解,而 Ni2+、Zn2+、Mn2+、Fe2+等与钴试剂形成的配合物在强酸介质中会很快分解,从而消除了上述离子的干扰,提高了反应的选择性。

(4)选择适当的测量波长

如有K2Cr2O7存在时测定KMnO4,不选择λmax=525nm,而是选择λ=545nm处测定。溶液的吸光度,K2Cr2O7的干扰即可消除。

(5)分离

若上述方法不易采用时,也可以采用预先分离的方法,如沉淀、萃取、离子交换、蒸发和蒸馏以及色谱分离法(包括柱色谱、纸色谱、薄层色谱等)。

此外,还可以利用化学计量学方法实现多组分同时测定,以及利用导数光谱法、双波长法等新技术来消除干扰。

『贰』 检测重金属离子的技术,仪器有哪些

常规的方法有原子吸收光谱、原子发射光谱等,但是只能测ppm级别的,而飞秒检测方法则可以精确测定ppb及更低浓度的金属离子。
从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。
通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。除上述方法外,更引入光谱法来进行检测,精密度更高,更为准确!
日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法。最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。
(一)原子吸收光谱法(AAS)
原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。
原子吸收分析过程如下:1、将样品制成溶液(同时做空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。
现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领域。
(二)紫外可见分光光度法(UV)
其检测原理是:重金属与显色剂—通常为有机化合物,可于重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比。在特定波长下,比色检测。
分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定。虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段。显色剂分为无机显色剂和有机显色剂,而以有机显色剂使用较多。大多当数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物。显色反应的选择性和灵敏度都较高。有些有色螯合物易溶于有机溶剂,可进行萃取浸提后比色检测。近年来形成多元配合物的显色体系受到关注。多元配合物的指三个或三个以上组分形成的配合物。利用多元配合物的形成可提高分光光度测定的灵敏度,改善分析特性。显色剂在前处理萃取和检测比色方面的选择和使用是近年来分光光度法的重要研究课题。
(三)原子荧光法(AFS)
原子荧光光谱法是通过测量待测元素的原子蒸气在特定频率辐射能激以下所产生的荧光发射强度,以此来测定待测元素含量的方法。
原子荧光光谱法虽是一种发射光谱法,但它和原子吸收光谱法密切相关,兼有原子发射和原子吸收两种分析方法的优点,又克服了两种方法的不足。原子荧光光谱具有发射谱线简单,灵敏度高于原子吸收光谱法,线性范围较宽干扰少的特点,能够进行多元素同时测定。原子荧光光谱仪可用于分析汞、砷、锑、铋、硒、碲、铅、锡、锗、镉锌等11种元素。现已广泛用环境监测、医药、地质、农业、饮用水等领域。在国标中,食品中砷、汞等元素的测定标准中已将原子荧光光谱法定为第一法。
气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能态会跃迁到高能态,同时发射出与原激发波长相同或不同的能量辐射,即原子荧光。原子荧光的发射强度If与原子化器中单位体积中该元素的基态原子数N成正比。当原子化效率和荧光量子效率固定时,原子荧光强度与试样浓度成正比。
现已研制出可对多元素同时测定的原子荧光光谱仪,它以多个高强度空心阴极灯为光源,以具有很高温度的电感耦合等离子体(ICP)作为原子化器,可使多种元素同时实现原子化。多元素分析系统以ICP原子化器为中心,在周围安装多个检测单元,与空心阴极灯一一成直角对应,产生的荧光用光电倍增管检测。光电转换后的电信号经放大后,由计算机处理就获得各元素分析结果。
(四)电化学法—阳极溶出伏安法
电化学法是近年来发展较快的一种方法,它以经典极谱法为依托,在此基础上又衍生出示波极谱、阳极溶出伏安法等方法。电化学法的检测限较低,测试灵敏度较高,值得推广应用。如国标中铅的测定方法中的第五法和铬的测定方法的第二法均为示波极谱法。
阳极溶出伏安法是将恒电位电解富集与伏安法测定相结合的一种电化学分析方法。这种方法一次可连续测定多种金属离子,而且灵敏度很高,能测定10-7-10-9mol/L的金属离子。此法所用仪器比较简单,操作方便,是一种很好的痕量分析手段。我国已经颁布了适用于化学试剂中金属杂质测定的阳极溶出伏安法国家标准。
阳极溶出伏安法测定分两个步骤。第一步为“电析”,即在一个恒电位下,将被测离子电解沉积,富集在工作电极上与电极上汞生成汞齐。对给定的金属离子来说,如果搅拌速度恒定,预电解时间固定,则m=Kc,即电积的金属量与被测金属离了的浓度成正比。第二步为“溶出”,即在富集结束后,一般静止30s或60s后,在工作电极上施加一个反向电压,由负向正扫描,将汞齐中金属重新氧化为离子回归溶液中,产生氧化电流,记录电压-电流曲线,即伏安曲线。曲线呈峰形,峰值电流与溶液中被测离了的浓度成正比,可作为定量分析的依据,峰值电位可作为定性分析的依据。
示波极谱法又称“单扫描极谱分析法”。一种极谱分析新力一法。它是一种快速加入电解电压的极谱法。常在滴汞电极每一汞滴成长后期,在电解池的两极上,迅速加入一锯齿形脉冲电压,在几秒钟内得出一次极谱图,为了快速记录极谱图,通常用示波管的荧光屏作显示工具,因此称为示波极谱法。其优点:快速、灵敏。
(五)X射线荧光光谱法(XRF)
X射线荧光光谱法是利用样品对x射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的一种方法。它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单,光谱干扰少,试样形态多样性及测定时的非破坏性等特点。它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6。与分离、富集等手段相结合,可达10-8。测量的元素范围包括周期表中从F-U的所有元素。多道分析仪,在几分钟之内可同时测定20多种元素的含量。
x射线荧光法不仅可以分析块状样品,还可对多层镀膜的各层镀膜分别进行成分和膜厚的分析。
当试样受到x射线,高能粒子束,紫外光等照射时,由于高能粒子或光子与试样原子碰撞,将原子内层电子逐出形成空穴,使原子处于激发态,这种激发态离子寿命很短,当外层电子向内层空穴跃迁时,多余的能量即以x射线的形式放出,并在教外层产生新的空穴和产生新的x射线发射,这样便产生一系列的特征x射线。特征x射线是各种元素固有的,它与元素的原子系数有关。所以只要测出了特征x射线的波长λ,就可以求出产生该波长的元素。即可做定性分析。在样品组成均匀,表面光滑平整,元素间无相互激发的条件下,当用x射线(一次x射线)做激发原照射试样,使试样中元素产生特征x射线(荧光x射线)时,若元素和实验条件一样,荧光x射线强度与分析元素含量之间存在线性关系。根据谱线的强度可以进行定量分析
(六)电感耦合等离子体质谱法(ICP-MS)
ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,实际的检出限不可能优于你实验室的清洁条件。必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、
Ca、Fe 、K、 Se)在ICP-MS中有严重的干扰,也将恶化其检出限。
ICP-MS由作为离子源ICP焰炬,接口装置和作为检测器的质谱仪三部分组成。
ICP-MS所用电离源是感应耦合等离子体(ICP),其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。被分析样品通常以水溶液的气溶胶形式引入氩气流中,然后进入由射频能量激发的处于大气压下的氩等离子体中心区,等离子体的高温使样品去溶剂化,汽化解离和电离。部分等离子体经过不同的压力区进入真空系统,在真空系统内,正离子被拉出并按照其质荷比分离。在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV的元素完全电离,电离能低于10.5ev的元素电离度大于20%。由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。
(七)飞秒检测方法
飞秒检测主要利用飞秒激光研究各种化学过程和物质组成,包括化学键断裂,新键形成,质子传递和电子转移,化合物异构化,分子解离,反应中间产物及最终产物的速度、角度和态分布,溶液中的化学反应以及溶剂的作用,分子中的振动和转动对化学反应的影响等。飞秒检测为当今先进的检测技术,通过观测分子、原子、电子、原子核、官能团等粒子飞秒级(一千万亿分之一秒,即10-15s)的振动、能级跃迁,可以很方便的判断物质组成和含量。飞秒检测技术可以用于未知物分析、配方分析还原、工业诊断、卫星遥感、超级计算、痕量检测分析等方面。

『叁』 请问如何用分光光度计测定溶液的成分

722型分光光度计的使用方法

一、 测量原理

分光光度法测量的理论依据是伯郎—比耳定律:当容液中的物质在光的照射和激发下,产生了对光吸收的效应。但物质对光的吸收是有选择性的,各种不同的物质都有其各自的吸收光谱。所以根据定律当一束单色光通过一定浓度范围的稀有色溶液时,溶液对光的吸收程度A与溶液的浓度c(g/l)或液层厚度b(cm)成正比。其定律表达式A=abc

(a是比例系数)。当c的单位为mol/l时,比例系数用ε表示,则A=εbc称为摩尔吸光系数。其单位为L·mol-1·cm-1它是有色物质在一定波长下的特征常数。

T(透光率)=I/I0 A(吸光度)= -lgT 或 A=K·C·L(比色皿的厚度)
测定时,入射光I,
吸光系数和溶液的光径长度不变时,透过光是根据溶液的浓度而变化的,即“K”为常数。比色皿厚度一定,“L”、“I0”也一定。只要测出A即可算出“C”。
《分光光度计的表头上,一行是透光率,一行是吸光度。》
二、 722型分光光度计的使用
1、将灵敏度旋钮调至“1”档(信号放大倍率最小)。
2、开启电源,指示灯亮 ,选择开关置于“T”,波长调至到测试用波长。仪器预热20分钟。
3、打开试样室(光门自动关闭),调节透光率零点旋钮,使数字显示为000.0。(调节100%T旋钮),盖上试样室盖,将比色皿
架处于蒸馏水校正位置,使光电管受光,调节透光率100%旋钮使数字显示100.0。如显示不到100.0,则可适当增加微电流放大的倍数。(增加灵敏度
的档数同时应重复(3)调节仪器透光率的“0”位)但尽量使倍率置于低档使用。这样仪器会有更高的稳定性。
4、预热后,按(3)连续几次调整透光率的“0”位和“100%”的位置,待稳定后仪器可进行测定工作。
三、 吸光度“A”的测量
将选择开关置于A 。调节吸光度调零旋钮,使得数字显示为零,然后将被测样品移入光路,显示值即为被测样品的吸光度值。
四、 浓度c的测量
将选择开关由“A”旋至“C”将已标定浓度的样品放入光路,调节浓度旋钮,使得数字显示为标定值,将被测样品放入光路即可读出被测样品的浓度值。
注意事项:
1、测量完毕,速将暗盒盖打开,关闭电源开关,将灵敏度旋钮调至最低档,取出比色皿,将装有硅胶的干燥剂袋放入暗盒内,关上盖子,将比色皿中的溶液倒入烧杯中,用蒸馏水洗净后放回比色皿盒内。
2、每台仪器所配套的比色皿不可与其它仪器上的表面皿单个调换。
http://www.ccep.cn/Article/measure/200604/1240.html

使用方法

(1)预热仪器 将选择开关置于“T”,打开电源开关,使仪器预热20分钟。为了防止光电管疲劳,不要连续光照,预热仪器时和不测定时应将试样室盖打开,使光路切断。

(2)选定波长 根据实验要求,转动波长手轮,调至所需要的单色波长。

(3)固定灵敏度档 在能使空白溶液很好地调到“100%”的情况下,尽可能采用灵敏度较低的挡,使用时,首先调到“1”挡,灵敏度不够时再逐渐升高。但换挡改变灵敏度后,须重新校正“0%”和“100%”。选好的灵敏度,实验过程中不要再变动。

(4)调节T=0% 轻轻旋动“0%”旋钮,使数字显示为“00.0”,(此时试样室是打开的)。

(5)调节T=100% 将盛蒸馏水(或空白溶液,或纯溶剂)的比色皿放入比色皿座架中的第一格内,并对准光路,把试样室盖子轻轻盖上,调节透过率“100%”旋钮,使数字显示正好为“100.0”。

(6)吸光度的测定 将选择开关置于“A”,盖上试样室盖子,将空白液置于光路中,调节吸光度调节旋钮,使数字显示为“.000”。将盛有待测溶液的比色皿放入比色皿座架中的其它格内,盖上试样室盖,轻轻拉动试样架拉手,使待测溶液进入光路,此时数字显示值即为该待测溶液的吸光度值。读数后,打开试样室盖,切断光路。

重复上述测定操作1-2次,读取相应的吸光度值,取平均值。

(7)浓度的测定 选择开关由“A”旋置“C”,将已标定浓度的样品放入光路,调节浓度旋钮,使得数字显示为标定值,将被测样品放入光路,此时数字显示值即为该待测溶液的浓度值。

(8)关机 实验完毕,切断电源,将比色皿取出洗净,并将比色皿座架用软纸擦净。

http://web2.fimmu.com/hxsyzx/shiyanjiaoc/jmyq/04.htm

『肆』 怎么用酶标仪测ELASIA

作为微孔板比色计的酶标仪,其基本功能不外乎一个比色测定,所不同的是在测定波长范围、吸光度范围、光学系统、检测速度、震板功能、温度控制、定性和定量测定软件功能等方面的差异,当然全自动酶免疫分析系统还具有自动洗板、温育、加样等功能。在临床实验室实际工作中,实验人员在使用酶标仪进行测定操作时,有时难免会对酶标仪的一些性能指标产生迷惑,甚至对酶标仪的应用产生错误的理解。如诸如使用酶标仪较用肉眼观察测定的阳性率明显增加这样的问题。 一、测定波长 一般酶标仪的测定波长在400~750nm或800nm之间,完全可以满足ELISA的显色测定。目前国内常见的ELISA试剂盒所使用的标记用酶均为辣根过氧化物酶(HRP),底物通常为四甲基联苯胺(TMB)和邻苯二胺(OPD),其在过氧化氢溶液的存在下,经HRP作用,分别氧化为2,2,-二氨基偶氮苯(DAB)和联苯醌。当pH值为5.0左右时,DAB在450nm波长处有最大吸收,当pH值降为L 0时,最大吸收波长移至492 nm,同时摩尔消光系数变大,显色加深,因而常用强酸如硫酸或盐酸终止反应。TMB的氧化产物联苯醌在波长450nm处有最大消光系数,如果HRP量少,H:O:和TMB过量时,则形成蓝色的阳离子根。降低pH,即可使蓝色的阳离子根转变为黄色的联苯醌,使用硫酸作为终止剂可使产物稳定90min。因此,450nm和492 nm两个波长是目前ELISA测定最常用的。各种酶标仪都配有放置滤光片的可自动转换的部件,可以同时安装6~8片滤光片,所配备的滤光片均应包括上述两个波长,有的酶标仪以490nm滤光片替代492nm滤光片,影响不大。除了这两个基本滤光片外,考虑到双波长比色的需要,还应有620nm或630nm或650nm和405nm波长的滤光片,其他滤光片可根据自己的需要选择。有时,有的实验室希望用酶标仪作微量生化测定,故酶标仪生产厂家对其生产的酶标仪扩展了紫外检测功能,此时需要一个340 nm波长滤光片。此时,酶标仪的测定波长范围就成为340-750nm或800nm。 酶标仪有单波长和双波长检测功能有时使用者不知在什么情况下使用单或双波长检测。所谓的"单波长"就是使用一种对显色具最大吸收的波长即450 nm或492 nm进行比色测定;而"双波长"则除了用对显色具最大吸收的波长即450 nm或492 nm进行比色测定外,同时用对特异显色不敏感的波长如630 nm进行测定,酶标仪最后打印出来的吸光度则为二者之差。630 nm波长下得到的吸光度是非特异的,来自于板孑L上诸如指纹、灰尘、脏物等所致的吸收。因此,在ELISA比色测定中,最好使用双波长,且不必设空白孔。 二、测定的吸光度范围 通常,酶标仪的吸光度测定范围在。一2.5之间即可以满足ELISA的测定要求。早期的酶标仪可测定的吸光度一般在。一2.5之间,但现在基本上都做了拓宽,可达到3.5以上,并且能保持很好的精密度与线性。因此,对于酶标仪的吸光度范围不必去刻意追求大的吸光度范围,主要要看在一定的吸光度范围内的线性和精密度如何。 三、光学系统 酶标仪的光学系统采用的是垂直光路多通道(通常为8或12通道,亦有单通道)检测,一般为硅光管或光导纤维,除测定通道外,有的酶标仪还有一个参比通道,每次测定可进行自我校准。酶标仪的光学系统功能如何,均可通过酶标仪测定的吸光度范围、线性度、精密度和准确度等体现出来。光学系统好的话,则上述指标也应较佳。测定的精密度与测定通道之间的均一性有直接关系。单通道可避免因通道不同所致的差异。 四、检测速度 酶标仪的检测速度是指其完成比色测定所需要的时间。检测速度快,有利于提高检测的精密度,即避免由于测定过程中,因测定时间不同所致的各微孔间吸光度间的差异。目前市场上常见的酶标仪检测速度都非常快,通常在数秒钟内。

『伍』 三年级科学上册可测量液体的体积工具是多少是什么工具

对液体体积的测量可以用量筒、量杯等容器测量,使用的单位为毫升。
量筒是用来量取液体的一种玻璃仪器。量筒是量度液体体积的仪器。规格以所能量度的最大容量(mL)表示,常用的有10 mL、25mL、50 mL、100 mL、250 mL、500 mL、1000 mL等。外壁刻度都是以 mL为单位,10 mL量筒每小格表示0.2 mL,而50 mL量筒每小格表示1mL。可见量筒越大,管径越粗,其精确度越小,由视线的偏差所造成的读数误差也越大。所以,实验中应根据所取溶液的体积,尽量选用能一次量取的最小规格的量筒。分次量取也能引起误差。如量取70ml液体,应选用 100mL量筒。
常规用途
用来测液体体积的容器还有刻度吸管、移液管和滴管,前两者都比量筒的准确性高。但一只移液管一次只能量取固定量的溶液,刻度吸管可以量取需要的刻度量,而滴管使用上比较繁琐,也相对准确度差,一般用于粗略移取,如显色剂、缓冲液等。
特殊用途
1量取固体体积:先在量筒中取一定量的水,并记录初始读数,再向量筒中加入固体物质,再记录末了读数,其体积差即为固体的体积。  2. 量取气体体积:进入量筒中液体的体积即近似为生成的气体的体积。
注意事项
1.不能作反应容器
2.不能加热
我们洗完东西,都喜欢放烘箱烘干,但是量筒是玻璃器皿,加热会使之变形,从而影响其准确度。尤其是反复长期加热、高温加热。
3.不能稀释浓酸、浓碱
尤其是腐蚀性的液体。此外虽然玻璃是种惰性材料,但是也不是没有一点活性。某些强酸强碱,尤其是强碱仍然会腐蚀它。因此长期存储或者长期使用过的量筒也是不准确的。
4.不能储存药剂
量筒是个量器,不是容器,不适合存储液体。
5.不能量取热溶液
如果量过热或过冷的液体,都不准确。
6.不能用去污粉清洗以免刮花刻度
量筒都是不允许刷洗的,因为刷洗会磨损量筒内壁,造成量筒的内容体积变化,从而影响量筒的准确度。但是多几个实验室的量筒没有被刷过。
7 不用润洗
有时候我们倒完之后,发现量筒内有很多挂壁,觉得倒的量不够,在用溶剂或者其他手段去反复润洗。其实这也是不对的,因为量筒的设计之初就考虑到了量筒的挂壁,这部分体积是被考虑进去的,倒出去的体积就是我们需要的体积。

『陆』 现在国内检测蛋白质用什么方法涉及到哪些化学仪器

目前食品中蛋白质的测定方法有蛋白质自动分析仪,近红外自动测定仪,紫外分光光度法以及凯氏定氮法等。本文采用纳氏试剂作为显色剂测定食品中蛋白质含量,适用范围广,可用于各类食品及保健食品的检测。用本法对标准品、质控样品进行测定获得满意结果,对批量样品的快速测定更具有实用性。现将结果报告如下。

材料与方法

仪器与试剂 WFZ800-D3型紫外分光光度计(北京第二光学仪器厂)。分析纯硫酸、硫酸铜、硫酸钾。(1)纳氏试剂:称取碘化汞100g及碘化钾70g,溶于少量无氨蒸馏水中,将此溶液缓缓倾入己冷却的32%氢氧化钠溶液500ml中,并不停搅拌,再用蒸馏水稀释至1L,贮于棕色瓶中,用橡皮塞塞紧,避光保存。(2)硫酸铵标准储备溶液(1.0g/L):精确称取经硫酸干燥的硫酸铵0.4720g,加水溶解后移入100mL容量瓶中,并稀释至刻度,混均此液每毫升相当于1.0mgNH3-N(10℃下冰箱内储存稳定1年以上)。(3)硫酸铵标准使用溶液(0.01g/L):用移液管精密吸取1.0ml标准储备液(1.0g/L)于100ml容量瓶内,加水稀释至刻度,混匀,此溶液每毫升相当于10.0μg NH3-N。

方法

标准曲线绘制 取25ml比色管7支,分别准确吸取0.01g/L硫酸铵标准使用液0.00,0.5,1.0,3.0,5.0,7.0,10.0ml(相当于标准0.0,5.0,10.0,30.0,50.0,70.0,100.0μg),加水至10ml刻度,于标准系列管中各加2ml纳氏试剂,混匀后放置10min,移入1cm比色皿内,以零管为参比,于波长420mm处测量吸光度,以标准管含量为横坐标(μg),对应的吸光度(A)值为纵坐标绘制标准曲线。

样品测定 选择牛奶和奶粉为检测样品。精密称取样品0.1~2.0g置于250ml三角瓶中,加入0.2gCuSO4、1.0gK2SO4、硫酸10ml,先小火加热,待内容物全部炭化,泡沫停止后,加大火力至液体呈蓝色,使H2SO4剩余量约为3ml左右为止,室温放冷后,沿瓶壁慢慢加入10ml水,移入100ml容量瓶中,用少量蒸镏水洗三角瓶3次,洗液全部并入容量瓶中,冷却,加蒸馏水至刻度,混匀。测定时取0.5ml,加水至10ml刻度,以后操作同标准曲线。同时做空白试验。

计算公式

X=c×Fm×V2V1×1000×1000×1000

式中:X-试样中蛋白质含量(g/100g或g/100ml)

C-试样测定液中扣除空白后氮的含量(μg)

V1-试样消化液定容体积(ml)

V2-测定用消化液体积(ml)

m-样品质量(g)或体积(ml)

F-氮换算为蛋白质的系数。

蛋白质的氮含量一般为15%~17.6%,按16%计算乘以6.25即为蛋白质,乳制品为6.38,面粉为5.7,肉及肉制品为6.25,大豆为5.71。

结果

2.1 测定波长选择 含氮量为30μg的标准管在显色后,在波长400~440mm范围内每间隔5nm进行测定,最大吸收波长为420mm。

显色剂用量选择 含氮量为30μg的标准管分别加入不同量的纳氏试剂,在420mm的波长下分别测定其吸光度结果。纳氏试剂显色剂加入量为1.5~3.0ml时吸光度基本无变化,本法选择加入纳氏试剂2.0ml。

显色时间及稳定性 含氮量为30μg的标准管经显色后,分别在10,30min,1,2,4,8h进行测定。显色后10min~8h内吸光度稳定无变化。本法选显色10min后测定。

标准曲线 回归方程:y=0.016X-1.5×10-3,r=0.9998,最佳线性范围0.0~100μg。

精密度 牛乳和奶粉2种样品分别取6份按本法重复测定6次,牛乳和奶粉精密度测定结果:平均数分别为3.06,23.50;标准差分别为±0.029,±0.073;相对标准偏差分别为0.31%,0.94%。

对2种样品利用标准加入法作回收试验(表1) 结果可见,回收率为95.50%~99.44%。

2种方法测定结果比较 分别用GB/T5009.5-2003凯氏定氮法与本法测定。结果显示,2种分析方法的测定结果差异无统计学意义(t=0.026,P>0.05)。

测定标准物质 用本法测定4种不同的蛋白质标准物质,测定结果与标准物质含量一致。

以纳氏试剂作为显色剂快速测定食品中蛋白质的方法特点简单、快速,适用于批量样品测定。在碱性条件下NH3-N与纳氏试剂反应生成的黄色化合物稳定。本法与国标凯氏定氮法进行比较t=0.026,P<0.05,n=32,2种方法测定结果无明显差异。测定范围广,线性范围宽0.0~100.0μg;精密度高;相对标准偏差为0.31%~0.94%;回收率好,加标回标率为95.50%~99.44%。用本法测定标准物质结果一致,用于质量控制样本测定结果满意。本法仪器试剂简单,易于基层普及,有利于推广应用。

『柒』 用分光光度法测量水溶液中钼酸根离子含量时要加入什么显色剂用量又是多少

答:
【】钼酸根离子没有颜色,必须加入“显色剂”,使其产物有颜色,同时符合定量依据才可以再去测定器含量;
【】显色剂用量,可以通过做器条件实验,就可以有效确定。

『捌』 颜色使用仪器测量好还是目视判断

指标准目视检测
标准:水质氟化物测定茜素磺酸锆目视比色HJ 487-2009 、浊度测量目视比浊、水质—颜色测定—目视等等
:用目视比色标准系列种使用套由同种材料制形状相同平底玻璃管 ( 称比色管 ) 于管别加入系列同量标准溶液待测液实验条件相同情况再加入等量显色剂其试剂至定刻度 ( 比色管容量 10 25 50 100 等几种 ) 管口垂直向观察比较待测液与标准溶液颜色深浅若待测液与某标准溶液颜色深度致则说明两者浓度相等若待测液颜色介于两标准溶液间则取其算术平均值作待测液浓度

『玖』 怎么用可见紫外分光光度计测定样品

第一步,知道你所需要测量物质的特征吸收波长是多少?这个可以在国家标准、行业标准或其他相关标准或方法。例如测量总氮的话,就需要220和275nm这2个波长,所以必须买紫外的光度计,并且最好带双波长测定功能,例如测总磷是697nm,只需买台可见光度计就可以了。
第二步,知道所测量的物质的实验方法,需要哪些仪器和设备,还有玻璃器皿等,同时还有比较完成测量所需要的所有化学试剂等。这个可以在标准或实验方法中找到,基本在互联网上都可以找到电子版的测量方法。
第三步,配置好所需测量物质的标准浓度溶液,一般是5-8个标准溶液,浓度建议从高到低,建议每个不同浓度贴上标签,以防顺序搞错。注意,部分实验需要往标准溶液中加显色剂之后才可以用光度计进行测量。
第四步,设置好光度计的测量波长,这就需要熟悉光度计的基本操作,一般测量物质的浓度都是用的标准曲线法,就是对应光度计中的定量测量功能。具体操作时第一步,把仪器的波长调整到我们所需要的波长,例如测量总磷直接把波长走到697nm,之后放入装好蒸馏水的比色皿到样品室做空白,就是熟称的调零。第三部把标准溶液放入样品室,依次测量他们的吸光度,仪器一般会自动记录之后就会给出标准曲线方程,实验完毕。如果仪器不能直接记录吸光度,可以先记在笔记本上,之后用excel软件进行计算标准曲线。判断做出的标准曲线是否能用,看哪个R值即那个相关系数,一般最少做出0.999就可以用了,差一点的仪器也可以做出0.99.
第五步,把未知样品放入样品室就可以直接测量出样品浓度。

『拾』 western blot实验都需要哪些仪器

试剂:tris、Hcl、Nacl、脱脂牛奶、甲醇、甘氨酸、tween 20、抗、二抗、显色剂及SDS PAGE需要试剂(tris、Hcl、TEMED、SDS、硫酸铵、丙烯酰胺、N N 甲叉双丙烯酰胺、甘氨酸、非预染蛋白Marker、甲醇、乙酸、考马斯亮蓝R250)、预染蛋白Marker
耗材:滤纸、膜、乳胶手套等
仪器:电泳仪、电转槽、摇床、冰浴等

阅读全文

与加入显色剂用什么仪器测量相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59