『壹』 水质检测仪器都有哪些推荐一下吧
我们实验室有:电导率仪、ph测定仪、氯离子测定仪、浊度仪、COD测定仪、色度测定仪等,这些都是便捷式的;还有氨氮、总氮、总磷、各种离子的测定,主要是光度仪。
『贰』 建化学实验室应准备什么仪器 平时测PH 硬度 氯离子 铁锰含量等
你建的化学实验室主要是用来检测水质,你可以选择使用多参数水质分析仪,一台可以检测65个水质参数。http://www..com/?word=%E5%A4%9A%E5%8F%82%E6%95%B0%E6%B0%B4+%E5%88%86%E6%9E%90%E4%BB%AA+%E8%AE%B8%E6%B5%B7%E6%B6%9B&se=360se_8_dg&ie=utf-8
『叁』 如何化验二水硫酸钙和氯离子 用什么仪器化验 有知道的可直接与我私聊
我们湿法磷酸开车及实验石膏会进行常规检测,分析标准都是自建,属抄中间控制,检测数据稳定能指导生产袭,主要测定石膏的游离水、结晶水、氧化钙、三氧化硫等,基本上使用重量法、滴定法等常规方法。氯离子测定一般采用滴定法。
『肆』 实验室需要做一些实验,需要购买一些实验相关的仪器和设备,但是我是新手,不晓得各个实验需要什么仪器
电炉、加热套、水浴锅、真空泵、圆底反应瓶、温度计、冷凝管、三角瓶、量筒、分析天平、台秤、干燥器、恒温干燥箱、马弗炉、722分光光度计、气相色谱仪、高压液相色谱仪、红外光谱仪、核磁共振仪
『伍』 氯离子含量准确测定方法
不同物质有不同测定方法,太多了。主要的应该是被测物在HNO3条件下加AgNo3,
中国药典(1990年版)检查氯化物系用俯视比浊法(简称垂视法)。此法有观察面积小、比浊的清晰度低、当检品的Cl-浓度与对照品接近时检出率下降、受环境光线影响等缺点。而用澄明度检测仪比浊法(简称平视法),对克服上述缺点可有帮助。笔者参照、模拟中国药典对氯化物的检查方法,设计了灵敏度、检出率对照实验对上述两法进行了比较。<br>
1 仪器与试剂<br>
CYJ-A型澄明度检测仪:50WA型比色管(天津玻璃仪器厂),标准氯化钠溶液、硝酸银试液均按中国药典(1990年版)附录配制。<br>
2 实验与结果<br>
2.1 灵敏度对照实验 中国药典(1990年版)规定有些药品Cl-的限度是用反应的灵敏度来控制的(如蒸馏水等)。实验参照中国药典对蒸馏水中Cl-的检查方法,考察两法在灵敏度检查时是否存在差异。取一组比色管,加水适量,按顺序分别加入标准氯化钠溶液(10μg/ml,Cl-)0.0、0.3、0.4、0.5、0.6、0.7ml,摇10s,每管加硝酸1.0ml,摇10s,分别加硝酸银试液1.0ml,加水至50ml,摇匀,在暗处放置5min,立即将空白对照管分别与各供试管用垂视法与平视法(检测仪的照度调整在1000~2000lx,置比色管于伞棚边缘外,对着黑背景比浊)进行观察比较。10次的实验结果表明:两法均能在≥0.5ml样管处比较出差异,说明两法做灵敏度检查时比浊的效果一致,而实际观看时的清晰度平视法为优。<br>
2.2 检出率对照实验 中国药典(1990年版)规定的限量查Cl-的药品,其对照液中Cl-的浓度范围是5~100μg/50ml。实验考察两法在该范围的上、下限检出率有无不同。下限选4个样点,Cl-的梯度为4、5、6、7μg/50ml;上限选5个样点,Cl-的梯度为90、100、110、120、130μg/50ml。按上、下限分组,模拟中国药典(1990年版)对Cl-的限量检查方法进行,操作程序与灵敏度实验相同;不同的是比浊时应按梯度的顺序,用相邻的两管互为对照,依次进行两两比较;能分辨出高低差异的记“+”,不能分辨出的记“-”。
http://www.instrument.com.cn/bbs/shtml/20031010/219184/
『陆』 热水锅炉水质化验所需仪器,试剂有哪些
一般化验硬度 碱度 氯根 PH值 就可以了。 不知道你说的物品是试剂还是玻璃仪器,都告诉你好了。给的分有点少啊,呵呵。
化验用的仪器有100ml锥形瓶2个,5ml量杯一个,100ml量筒一个,5ml微量滴定管一个,25ml酸式滴定管若干。其他就是装试剂和指示剂的容器了。
化验用的试剂有 硬度:1.0.02mmol/L的EDTA标准溶液 2。氨-氯化铵缓冲溶液 3. 0.5%铬黑T指示剂
碱度:1。1%酚酞指示剂 2,1%甲基橙指示剂 3。0.01mmol/L硫酸标准溶液
氯根:1。 10%铬酸钾指示剂 2。 1%酚酞指示剂 3。 0.1mmol/L氢氧化钠溶液 4。0.1mmol/L硫酸溶液 5。硝酸银标准溶液(1ml含1mg氯离子)
『柒』 氯离子的测定方法
1、进口化肥检验方法 氯离子的测定方法
ZB G 20008—87
本标准规定测定进口化肥中氯离子含量的方法。
1 硝酸银滴定法
适用范围:适用于复合肥等。
方法提要:试样在微酸性溶液中,加入定量的硝酸银标准溶液,使氯离子成为氯化银沉淀,以高铁铵钒为指示剂,用硫氰酸铵标准溶液滴定过量的硝酸银。
试剂:1.3.1 硝酸(1+1)。
1.3.2 硝酸银溶液〔c(AgNO3)=0.1mol/L〕:称取17g硝酸银溶解于水中,稀释至1L。
1.3.3 氯标准溶液(1mg/mol):准确称取1.6487g经270~300℃烘干的基准氯化钠于烧杯中,用水溶解后,移入1L容量瓶中,稀释至标线,混匀,贮存在塑料瓶中。此溶液1mL含1mg氯离子(Cl-)。
1.3.4 硫氰酸铵标准溶液〔c(NH4CNS)=0.1mol/L〕:称取7.6g硫氰酸铵溶于水中,稀释至1L。
按下法标定其浓度:准确吸取5mL氯标准溶液于150mL烧杯中,加入5mL硝酸,用微量滴定管加入8mL硝酸银标准溶液(1.3.2),加热,微沸至沉淀凝聚,稍冷,加2mL高铁铵钒指示剂,用硫氰酸铵标准溶液滴定过量的硝酸银,至出现粉红色为止。同时进行空白试验。
按式(1)计算硫氰酸铵标准溶液的实际浓度c(mol/L):
c=m/0.03545×(V0-V)………………………………………………(1)
式中: m── 所取氯标准溶液中氯离子的质量,g;
V0── 空白试验(即8mL硝酸银标准溶液)所用硫氰酸铵标准溶液的体积,mL;
V── 滴定过量硝酸银标准溶液所用硫氰酸铵标准溶液的体积,mL;
0.03545── 相当于1.00mL硝酸银溶液〔c(AgNO3)=1.000mol/L〕的氯离子质量,g。
1.3.5硫酸高铁铵〔Fe(NH4)(SO4)2·12H2O〕指示剂:溶解40g硫酸高铁铵于100mL水中,加入约2mL硝酸,使棕色消失。
操作程序:1.4.1 试液制备
称取试样5g(准确至0.001g)于100mL容量瓶中,加50mL水,振摇10min,使氯完全浸出,用水稀释至标线,混匀,干滤。
1.4.2 沉淀
准确吸取上述滤液(1.4.1)50mL于150mL烧杯中,加5mL硝酸(1.3.1),用微量滴定管加入8mL硝酸银标准溶液(1.3.2),加热微沸,以驱除氮的氧化物,冷却。
1.4.3 滴定
加2mL硫酸高铁铵指示剂(1.3.5),用硫氰酸铵标准溶液(1.3.4)滴定过量的硝酸银,直至出现粉红色为止。
结果计算:氯离子的百分含量按式(2)计算:
氯(Cl%)=〔(V0-V).c×0.03545/m〕×100………………………………(2)
式中:V0── 空白试验(即8mL硝酸银标准溶液)所用硫氰酸铵标准溶液体积,mL;
V── 滴定试样所用硫氰酸铵标准溶液的体积,mL;
c── 硫氰酸铵标准溶液的浓度,mol/L;
0.03545── 相当于1.00mL硫氰酸铵溶液〔c(NH4CNS)=1.000mol/L〕的氯离子质量,g;
m── 滴定时所用的试样质量,g。
2 氯离子选择性电极法
适用范围:适用于复合肥、硫酸钾等。
方法提要试样在柠檬酸和过氯酸的混合液中,搅拌后,在pH2.5时,用氯离子选择性电极和甘汞参比电极测量溶液的电位,从标准曲线上求得氯的含量。
仪器:2.3.1数字显示离子活度计。
2.3.2 氯离子选择性电极。
2.3.3 甘汞参比电极。
2.3.4 玻璃pH电极。
试剂:2.4.1 混合酸:称取420g柠檬酸,溶于166mL过氯酸及700mL去离子水中,稀释至1L。
2.4.2 缓冲溶液(柠檬酸钠1mol/L):称取294g柠檬酸二钠溶于水中,稀释至1L。
2.4.3 氯标准溶液1mg/mL:
溶液A:准确称取1.6847g经270~300℃烘干的基准氯化钠于烧杯中,用去离子水溶解后,移入1L容量瓶中,稀释至标线,混匀,贮存在塑料瓶中。此溶液1mL含1mg氯离子(Cl-)。
溶液B:准确吸取50mL溶液A于500mL容量瓶中,用去离子水稀释至标线,混匀,并贮存在塑料瓶中。此溶液1mL含0.1mg氯离子(Cl-)。
操作程序:2.5.1 试液制备
准确称取试样0.1~0.2g(准确至0.001g)于50mL塑料小烧杯中,准确加入5.0mL混合酸(2.4.1),搅拌15min,用微量滴定管加入5.0mL去离子水,再吸取5.0mL缓冲溶液(2.4.2),在pH 计上调节pH2.0~2.8之间(一般可不调节,按操作程序加试剂,溶液的pH约在2.5左右),用氯离子选择性电极和甘汞参比电极测量溶液的电位(此时搅拌溶液的情况应与测量标准溶液电位时一致,以免影响电位读数),从标准曲线上查得氯的含量。
2.5.2 标准曲线的绘制
准确吸取0.5,1.0,2.0,5.0mL氯标准溶液A及1.0,2.0,5.0mL氯标准溶液B,分别置于7个塑料小烧杯中,并用装有去离子水的微量滴定管补足各溶液为5.0mL,分别准确加入5.0mL缓冲溶液(2.4.2),混匀,与试样同样操作。分别测量各溶液的电位在半对数坐标纸上,以电位毫伏数为横坐标,氯标准溶液的浓度为纵坐标,绘制标准曲线。当含氯量高低不一时,应分段绘制,如每毫升含氯0.05μg以下、0.05μg~1μg、1μg~50μg分别绘制。
结果计算:氯百分含量按式(3)计算:
式中:m1── 在标准曲线上查得试样溶液中所含氯的质量,mg;
m── 试样质量,g。
注:① 氯电极在使用前应在每毫升含有2μg左右的氯溶液中浸1h,使其活化,使用时用去离子水洗涤数次,用滤纸片吸干水分并向下振动电极(与使用体温表前的振动相似),以保证内参比溶液与电极膜相接触。
② 当测量了高浓度氯试液后再测低浓度时,必须用不含氯的水洗2~3次,每次搅拌2~3min,测第一个低浓度试样时,响应时间应不少于10min,并应反复测量至电位值一致时为止。
3 氯化银比浊法
适用范围:适用于复合肥、硫酸钾等。
方法提要:试样在微酸性溶液中与硝酸银形成凝乳状氯化银悬浮液,进行比浊。
3.3 试剂
3.3.1 硝酸(比重1.42)。
3.3.2 硝酸〔c(HNO3)=1mol/L:量取62.5mL硝酸于1L水中。
3.3.3 硝酸银溶液(0.1%):溶解0.1g硝酸银于100mL水中。
3.3.4 氯标准溶液(0.1mg/mL):准确称取0.1649g经270~300℃烘干的基准氯化钠于烧杯中,用水溶解后,移入1L容量瓶中,稀释至标线,混匀,贮存在塑料瓶中。此溶液1mL含0.1mg氯离子(Cl- )。
操作程序:3.4.1 试液制备
称取试样1g(准确至0.001g)于250mL烧杯中,加入50mL硝酸(3 .3.2),加热至近沸,在水浴上保温30min,冷却,用预先洗至无氯离子的慢速滤纸过滤,滤入100mL容量瓶中,用水洗涤烧杯子残渣,并用水稀释至标线,混匀。
3.4.2 比浊
准确吸取5mL上述试液(3.4.1)于50mL比色管中,加入7.5mL硝酸(3.3.2),用水稀释至约25mL,加入10mL硝酸银溶液(3.3.3),充分混匀,与标准级差同时进行比浊。
3.4.3 标准系列的配制
根据试样中氯的含量,准确吸取0,1.0,2.0,3.0,4.0mL氯标准溶液,分别置于一组50mL比色管中,加7.5mL硝酸(3.3.2),用水稀释至约25mL,加入10mL硝酸银溶液(3.3.3),混匀,与试样溶液进行比浊,并选取与试样溶液浊度最接近的标准溶液。
注:硝酸银溶液必须同时加入标准溶液和试样中。
结果计算:氯的百分含量按式(4)计算:
…………………………………………(4)
式中:c── 氯标准溶液的浓度,mg/mL;
V── 相当于氯标准系列浊度的体积,mL;
m── 比浊时的试样质量,g。

『捌』 分光光度计法怎么测氯离子浓度,据说还要输入方程什么的还有什么方法可以测,可以告诉我步骤嘛谢谢
仪器模式选择吸光度检测:
1、分别配制5种氯离子标准溶液(与样品氯离子浓度接近)
2、测量上述溶液的吸光度,并记录
3、将上述吸光度与浓度做一条标准曲线;
4、测量样品的吸光度,将测得的吸光度带入上述标准曲线就可以计算出氯离子的浓度。
希望可以帮你。
『玖』 除了硝酸银,还有什么试剂能检测氯离子
其实主要是ag+检测
以下引用论文
摩尔法测定氯离子
摩尔法测定氯离子的范围为=5~100 mg/L。周少玲等[2]从理论上指出以铬酸钾为指示剂,在中性或弱碱性条件下,用硝酸银标准溶液进行滴定实验,由于AgCl的沉淀溶解损失,溶液中仍然余留0.44 mg/L的氯离子不能被滴定。所以对于氯离子含量低的水质用摩尔法测定会造成较大的分析误差,而且测定精密度也较差。在用AgNO 3滴定氯离子的过程中,Ag+易与溶液中的氨形成银氨络离子Ag(NH 3)+,从而增加了AgNO 3的消耗量,造成分析结果偏高。所以,摩尔法测定中水中氯离子含量时,应控制溶液的pH值为中性。周强等[3]以耐盐性较强的大麦品种“鉴4”幼苗为材料,用硝酸银滴定法测定植物体内氯离子含量。结果得出在0~0.5 mol/L范围内的线性关系较好,相关系数r为0.9986,但标准曲线未通过坐标原点。回收率为87.73% ~117.78%,RSD为10.80%。准确度仅为88.43%,变
异系数为10.33%。
摩尔法是一种传统的测量方
法,但仅对氯离子含量高的物质
测定较准确,此方法采用的铬酸
钾和硝酸银试剂是有毒物质,且
排放到环境中会造成环境污染;
硝酸银试剂价格高,增加了测定
成本,影响了方法的实用性。
2.2
分光光度法
分光光度法是通过测定被测
物质在特定波长处或一定波长
范围内光的吸收度,对该物质进
行定性和定量分析的方法。
杨学芬[4]
研究了以过氧化氢
为氧化剂,硝酸-
甘油为介质,
分光光度法测定工业亚磷酸中
氯离子含量。此系统的稳定性
高,测定波长为380 nm,氯离子
含量在1~6 g/mL
范围内呈线性
关系,相关系数为0.9999,回收
率为96%~105%。
关瑞等[5]
通过研究氯化银沉
淀在明胶-
乙醇水溶液中的稳
定性,建立了测定微量氯离子的
分光光度分析方法,并应用到有
机工艺水中微量氯离子的测定。
在实验最佳条件下,氯离子浓度
在0~6 mg/L
范围内呈良好线性,
相关系数为0.9993,方法的标准
偏差为0.108,变异系数为
0.026,回收率为101%~105%。该
方法的检测限为1.35 ×10
- 2
mg/L。
顾立公[6]
利用在酸性条件下,
氯离子与硫氰酸汞反应生成微
电离的氯化汞络合物,释放出等
量的硫氰酸根与铁(III)反应生
成红色的络合物,建立了硫氰酸
汞-
硝酸铁间接分光光度法测
定水中的微量氯离子的方法,得
出氯离子含量在0.2~10 mg/L
范
围内呈良好线性关系,相关系数为
0.9992,回收率在95.8%~102.1%。
本方法灵敏度高,重现性好,方
法简便、
快速,可用于水中微量
氯离子的测定。
氯化物共沉淀富集分光光度
法是一种国标方法[7]
。该方法用
磷酸铅沉淀做载体,共沉淀富集
痕量氯化物,经离心机分离后,
用硝酸铁/
高氯酸溶液完全溶解
沉淀物,加硫氰酸汞/
甲醇溶液
显色,用分光光度计间接测定痕
量氯离子,测定范围为0.01~0.1
mg/L。
分光光度法可以精确测定微
量氯离子,灵敏度高,重现性好,
方法简便、
快速。但是共沉淀富
集分光光度法采用的磷酸铅、
硫
氰酸汞和甲醇试剂是有毒物质,
影响操作人员的健康,且这些试
剂使用量很大,如果不加处理直
接排放则会造成严重的环境污
染。
2.3
浊度法
此浊度法是在比色法的基础
上发展起来的,是根据测量光线
通过悬浮液后透射光的强度进
行分析的一种分析方法,在临床
分析、
食品分析、
环境分析、
工业
分析、
药物分析等研究工作中应
用广泛。
陈振华等[8]
研究了在表面活
性剂下用硝酸银浊度法测定Cl
-
。
结果表明,在0.3 mol/L
酸性条件
下,吐温- 60
作为AgCl
浊度的
稳定剂,该方法的线性范围为
0~8 g/mL,相关系数r =0.991,回
收率为87.75%~103.33%,可用
于发电厂炉水中Cl
-
的测定。
王爱荣等[9]
研究了以乙二醇
为增溶剂,硝酸银作沉淀剂,采
用氯化银比浊法,在不分离硫酸
铜的条件下,直接测定酸性镀铜
液中微量氯离子。测定波长为
440 nm,线性范围为0~2 g/mL,其
俞凌云,等:氯离子测定方法及其应用研究行业论坛
33
西部皮革第31
卷
表观摩尔吸光系数ε=113 ×
105,方法检出限为0.035 g/mL,
该法用于测定酸性镀铜液中微
量氯离子在不同水平的加标回
收率为95.4%~104.5%。杜斌等[10]
研究了以非离子型微乳液乳化
剂OP/
正丁醇/
正庚烷/
水为介
质,
AgCl
浊度法测定氯离子的试
验条件。该方法的线性范围为
0.2~3.4 mg/L,
r =0.9997,
RSD <
2.8%,回收率为94%~104%,可
用于水泥原料、
生料及熟料中微
量氯离子的测定。
申海燕[11]
利用氯化银沉淀在
明胶-
乙醇水溶液中的稳定性,
建立了一种测定有机工艺水中
微量氯离子的浊度法。该法的线
性范围为0~6 mg/L,
r =0.9993,回
收率为95.2%~101.3%。王兆喜
等[12]
设置流动注射分析仪器参数
工作波长为450 nm,进样频率为
60
次/h,建立了反相流动注射比
浊法测定水中的氯离子含量的
方法。 氯离子的浓度在1.0 ×
10
- 5
~10.0×10
- 4
mol/L
范围内与
吸光度呈良好线性关系,相关系
数为0.995,回收率为95%
~101%,
RSD<2.49%。
此浊度法操作简便、分析时
间短、
所用试剂少、
运行成本低,
检测手段简单,可与流动注射等
其他先进技术联用,易实现自动
化,程序化,前景十分广阔。由于
此浊度法具有上述特点,故在分
析科学中有广泛的应用。
2.4
离子色谱法
离子色谱法是比较新的离子
分离技术。这一方法现已广泛应
用于环境监测、盐水、土壤、
血
液、
锅炉水、
乳制品等试样的分
析之中。张新申等[13]
利用自制的
离子色谱仪对制革生产中的浸
酸废液、
铬鞣废液、
总污水中的
氯离子含量进行了测定。表明氯
离子浓度在10
- 5
~10
- 3
mol/L
范围
内有很好的线性关系,测量上限
为10
- 2
mol/L,回收率为98.6%
~102.5%。朱子平[14]
采用萃取分
离法消除乳化液中有机组分对
测定组分的影响及对色谱柱所
造成的污染,应用离子色谱法检
测了乳化液中氯离子。其加标平
均回收率为95%~105%,相对标
准偏差优于4.0%(n=20)。
陆克平
等[15]
采用在碱性条件下加热回流
分解双氧水,用离子色谱法测定
其中微量氯离子。得出双氧水中
氯离子检测限为0.06 g/mL,线性
方程为C=1.155 ×10
- 5
A- 0.
02435。
线性范围为0.10~15.0
g/mL,浓度与面积的相关系数r
=0.9992。
王艳丽等[16]
用高纯Cu
粉与
浓HNO 3
进行氧化还原反应,
170
℃加热分解Cu(NO 3
)2
,去除绝大
部分NO 3
-
,研究了一种以离子色
谱电导检测法测定HNO 3
中微、
痕量级Cl
-
的方法。Cl
-
的加标回
收率为87.5% ~93.7%
,
RSD(n
=5)<10%。刘燕等[17]
采用离子色
谱双柱串联法分离硝酸样品,以
离子色谱电导检测法测定硝酸
滤液中的痕量氯离子。氯离子浓
度在0.01~0.30 mg/L
范围内与色
谱峰面积成线性关系,线性相关
系数r =0.997,对硝酸样品进行
测定,氯离子的加标回收率为
96.5%~99.0%,测定结果的相对
标准偏差为1.84% ~ 2.83%(n
=5)。
宋晓年等[18]
采用预浓缩离子
色谱法(采用浓缩柱预先浓缩样
品然后进来)测定高纯度水中痕
量氯离子,分析结果线性回归后
得出方程为H = 0.429C- 0.596,
式中H
为测得氯离子的峰高;
C
为氯离子含量,线性相关系数r =
0.9985,标准曲线有很好的线性
关系,可监测高纯去离子水中
10
- 9
mg/L
氯离子。
离子色谱法简单方便,灵敏
度高,测量快速而准确,且不需
要其他化学试剂,能快速、
简便、
高效、安全地应用于实际分析,
尤其适用于大批量试剂连续测
定。
2.5
原子吸收法
原子吸收是基于被测物质的
原子蒸气对特定谱线的吸收作
用来进行定量分析的一种方法。
顾永祚等[19]
以Cl
-
与定量Ag
+
生
成AgCl
沉淀反应为基础,提出了
一个测定水中Cl
-
的间接原子吸
收法。Cl
-
浓度在0~50 g/mL
范围
内呈线性。钱初洪等[20]
用原子吸
收法间接测定了己二酸铵中的
微量氯离子,此法通过加入乙醇
和雾化增效剂,使AgCl
的溶解度
降低并提高了原子化效率,从而
使测定的灵敏度提高,利用
AgNO 3
与己二酸铵中的微量氯离
子反应,测定剩余Ag
+
间接求出
氯离子的含量,测定的相对标准
偏差1.9%~4.8%,灵敏度(1%A)
为0.022 mg/L。
叶晓萍[21]
利用乙醇-
明胶可
以提高氯化银沉淀的稳定性,
行业论坛
34
第15
期
AEO- 7
表面活性剂对银原子化
效率也有明显提高的特性,研究
了在一定的介质条件及仪器分
析条件下,通过加入乙醇-
明胶
和AEO- 7,应用石墨炉原子吸收
法测定银离子含量,从而间接测
定高价稀土氧化物矿物中氯离
子的含量,其线性范围为20~100
g/L,相关系数r = 0.9997,
RSD
=0.27% ,加标回收率为92.5%
~102.0%。
杨延等[22]
研究了火焰原子吸
收光谱法间接测定电厂高纯水中
的痕量氯离子的方法。该法采用
AgCl
沉淀,测定剩余Ag
+
间接求
出氯离子含量。方法的相对标准
偏差2.3%~8.6%,加标回收率为
94% ~103% ,灵敏度(1% A)为
0.029 mg/L。袁志莉等[23]
研究了在
酸性环境中,氯离子与银离子生
成沉淀,经氨水溶解后,用火焰原
子吸收法测定银,从而间接测定
出氯离子的含量。本方法测定氯
的线性范围为1.0~30 g/mL,相关
系数r = 0.999,灵敏度为0.023
g/mL
(1%),检测下限为0.059
g/mL,回收率为95%~105%。
王传化[24]
利用原子吸收分光
光度法间接测定了湿法磷酸中
微量氯(0.001%~0.01%)。此法是
用适当过量的Ag
+
与Cl
-
反应,
将生成的沉淀AgCl
过滤后,用原
子吸收分光光度法测定滤液中
剩余的Ag
+
含量,从而得出湿法
磷酸中氯含量。氯离子的线性范
围为0.6~1.0 g/mL,加标回收率
为99.5%~101.1%。
原子吸收法具有较高的灵敏
度、
很好的重现性、
较高的准确
度和操作简单,容易掌握,干扰
少等特点,对微量氯离子的跟踪
监测是科学准确简单易行的。
2.6
流动注射法
流动注射分析(Flow Injection
Analysis,
FIA)是一种容易实现现
场与邻近实验室联线的自动分
析系统,广泛用于环境、
农业、
医
药、
临床、
食品、
冶金、
生物化学
等方面的金属、
非金属和有机物
等的分析。
廖霞等[25]
探讨了用流动注射
-
双波长分光光度法测定水样中
游离氯的最佳化学条件和最佳
仪器参数,选择参比波长为650
nm,测定波长为553 nm
之处进
行比色测定。
此方法的精度
(RSD)和检出限分别为1.2%
(10.88 g/mL,
n =11)和0.24
g/mL,用本系统测定水样中的游
离氯,回收率在100.0%~110.0%
之间,检测限低,线性范围宽,重
视性好,可对自来水及漂白粉游
离氯进行实际应用测试。吕淑清
等[26]
根据氯离子与硫氰酸汞和硝
酸铁在酸性介质中反应生成红
色络合物的吸光度与水中氯离
子的含量成正比这一反应原理,
建立了用流动注射-
分光光度
法测定微量氯离子的自动分析
方法。本方法的检测极限为20
g/L,相对标准偏差为0.89%,回
收率为100%~105%,分析速度为
60~120
样/h,适用于火电厂炉水
中微量氯离子的测定。
王建伟等[27]
以可编程逻辑控
制器来控制系统以实现自动操
作,测定频率达80
次/h,建立了
一种应用流动注射连续快速监
测饮用水中余氯的方法。此方法
的检测下限为0.1 mg/L,线性范
围0.1~1.6 mg/L,相关系数为
0.9980。
FIA
技术具有装置小型简
单,操作可靠,自动化程度高,分
析速度快,分析结果重现性良
好,所需试剂量少,灵敏度高,检
测下限低等优点,可与比浊法、
速差动力学分析等多种分析方
法联用且效果更佳,具有良好的
应用前景。
2.7
容量法
容量法[28]
测定生活饮用水中
的氯离子,有硝酸银容量法(A)
和硝酸汞容量法(B)。A
法为沉
淀滴定法,终点变色不敏锐,易
受氯化银沉淀颜色的干扰,需以
对比法判定终点,带有很大的经
验性。B
法的终点变色很敏锐,易
于判断,但要严格控制试液的pH
值在3.0±0.2
的范围内。若水样
氯离子含量超过100 mg/L
时,须
稀释样品。
张艳[29]
确定了二苯卡巴腙
(DPCO)和二苯碳酰二肼(DPCI)
两种指示剂、
不同酸度对测定结
果的影响,并不经稀释直接测定
了高浓度的样品,测量结果得A
法的回收率为102.2%~101.0%,
RSD<0.016;
B
法的回收率为
100.2%~100.5%,
RSD<0.009。硝
酸汞容量法测定饮用水中的氯
离子,方法简便,终点变色敏锐,
其准确度和精密度均优于硝酸
银容量法,由于水样具有一定的
缓冲能力,对于含量高的样品,
只需将试液滴定前的pH
值控制
在3.2,样品不需稀释可以直接
俞凌云,等:氯离子测定方法及其应用研究行业论坛
35
西部皮革第31
卷
测定。B
法的适应浓度范围广,准
确度、
精密度均优于A
法。其原
因主要是A
法的终点颜色由黄
色变为砖红色,变色不明显,需
以对比法进行终点判定。而B
法
的终点颜色是由微黄色变为淡
紫色,变色敏锐,易于判定。
陆克平[30]
发现现行硝酸汞容
量法测定安庆分公司炼油污水
中氯离子含量大大偏高和终点
变色迟缓返色等现象。于是改进
了炼油装置污水的预处理方式,
将样品经过滤直接加热挥发、
酸
性条件下双氧水消解和碱性条
件下煮沸等过程后,能完全消解
和去除干扰离子,消除该现象,
而且氯离子几乎无损;汞氯配合
物的平均配位数与试液中氯离
子浓度有关,通过控制取样量,
使氯离子浓度在平均配位数近
似为2
的可准确测定范围。改进
后的硝酸汞容量法单次试验分
析周期为40 min,可准确测定至
0.35 mg/L
的氯离子,氯离子回收
率为98.0%~102.4%。
3
其他分析方法
陈建欣[31]
用电化学分析法测
定工业亚磷酸中氯离子含量,应
选择测定环境无氯气存在,参比
电极采用217
型双盐桥饱和甘
汞电极,若用新银电极要先用乙
醇擦洗,用蒸馏水泡24 h,然后
用0.001 mol/L
的AgNO 3
溶液浸
泡20~30 min
将电极活化,用
0.1000 mol/L
的AgNO 3
标准溶
液,试样质量10 g
左右为宜,本
方法适用于可溶性氯化物的测
定,测定最低值可低至0.0001%。
魏红兵等[32]
研究了用自动电
位滴定法测定化肥中氯离子含
量的方法。本方法是先将样品溶
解后加3
倍溶液体积量的乙醇,
然后用硝酸银标准溶液通过自
动电位滴定仪进行等当点滴定。
氯离子的检出下限为0.006,回
收率为98.6%~102.0%。
邵海青[34]
研究了以银电极作指示电极,
217
型甘汞电极作参比电极,在
经冷藏后的铜电解液中加入过
量的硝酸银标准溶液,以氯化钾
标准溶液电位返滴定测定氯离
子含量。
测得回收率在95%
~100%范围内,
RSD=2.8%。电位
滴定法简捷方便,测量准确,工
作效率高。
4
展望
在各种氯离子分析方法中,
以离子色谱法最为简便快速与
通用,而硝酸银容量法和硝酸汞
容量法因不需要特殊的仪器及
器皿简单,在废水的氯离子含量
测定中最为普及。虽然汞量法需
用到有毒试剂,但较银量法溶液
稳定性好、
可消除残硫酸根及低
pH
条件下滴定可减少干扰。但
两种容量法都存在灵敏度低、
重
现性差、
误差大等缺点。分光光
度法以其灵敏度高,选择性好,
操作简单等优点广泛用于各种
微量以及痕量组分的分析。浊度
法快捷简便且运行成本低,易实
现自动化,在分析科学中有广泛
的应用。离子色谱法虽然检测下
限很低,但操作复杂,仪器昂贵,
不适宜于实际生产的应用。原子
吸收法是一种十分成熟的痕量
分析技术,操作简便、
仪器普及、
重现性好、
有较高的灵敏度和选
择性,因此在稀土工业生产及分
析研究工作中得到广泛的应用。
流动注射有检测限低,线性范围
宽,重视性好,可与多种分析方
法联用,以此建立起来的痕量氯
离子浓度自动测定方法,更适合
于发电厂、
化工厂等生产运行中
各种水或中间反应过程中的氯
离子浓度的实时、在线自动监
测。
参考文献:
[1]但卫华.制革化学及工艺学[M].北京:
中国轻工业出版社,
2006.
[2]周少玲,张永.各种氯离子含量测定方
法的适用性探讨及新方法的提出[J].
热力发电,
2007,
37
(7):
75-76.
[3]周强,李萍,曹金花,等.测定植物体内
氯离子含量的滴定法和分光光度法
比较[J].
植物生理学通讯,
2007,
43
(6):
1163-1166.
[4]杨学芬.分光光度法测定工业亚磷酸
中的氯离子[J].
云南化工,
2000,
27
(4):
15-16.
[5]关瑞,李昌,宋维.分光光度法测定微
量氯离子的研究与应用[J].化工标准
化与质量监督,
2000,(3):
7-9.
[6]顾立公.硫氰酸汞-硝酸铁间接法测
定水中微量氯离子[J].江苏卫生保健,
2005,
7
(1):
18.
[7]GB/T 6905.4—1993,锅炉用水和冷却
水分析方法—— —氯化物的测定:共沉
淀富集分光光度法[S].
[8]陈振华,泉香芹.浊度法测定发电厂炉
水中微量氯离子的研究[J].华北电力
技术,
2003,(2):
7-8.
[9]
王爱荣,杨波,胡小保.比浊法测定酸
性镀铜液中微量氯离子[J].广东微量
元素科学,
2007,
14
(3):
45-47.
(下转第42
页)
西部皮革行业论坛
36
西部皮革第31
卷
(上接第36
页)
[10]杜斌,王淑仁,魏琴.非离子型微乳液
介质-氯化银浊度法测定氯离子[J].
分析化学,
1995,
23
(5):
612.
[11]申海燕.水中微量氯离子的微型测定
[J].长沙铁道学院学报,
2003,
21(4):
87-88.
[12]王兆喜,汪敬武.反相流动注射比浊
法测定水中氯离子[J].
南昌大学学
报,
2003,
27
(3):
248-251.
[13]张新申,郑筱梅,陈子阳.离子色谱法
测定氯离子含量[J].
皮革科技,
1993,
18
(9):
14-16.
[14]朱子平.离子色谱法测定乳化液中的
氯离子[J].分析仪器,
2003,(4):
32-
34.
[15]陆克平,刘心烈.离子色谱法测定双
氧水中微量氯离子[J].
化肥工业,
2002,
29
(6):
39-40.
[16]王艳丽,伯英,刘燕,等.离子色谱法
测量硝酸中痕量的氯离子(I)[J].化
学工程师,
2006,(2):
42-43.
[17]刘燕,侯倩慧,余季金,等.离子色谱
双柱法测定硝酸中痕量氯离子[J].化
学分析计量,
2006,
15
(2):
40-41.
[18]宋晓年,王瑾.离子色谱法测定高纯
度水中痕量氯离子[J].
宇航材料工
艺,
1996,(5):
55-56.
[19]顾永祚,杨洪高,潘杨,等.间接原子
吸收法测定水中氯化物研究[J].四川
环境,
1994,
13
(1):
23-25.
[20]钱初洪,梁巧荣,黄志明.用原子吸收
法间接测定已二酸铵中的微量氯离
子[J].应用化工,
2003,
32
(3):
39-41.
[21]叶晓萍.原子吸收法间接测定高价稀
土氧化物[J].稀土,
2006,
27(2):
53-
56.
[22]杨延,薛来,刘来昌.用原子吸收法间
接测定电厂水中的痕量氯离子[J].上
海电力学院学报,
2000,
16
(1):
8-12.
[23]袁志莉,孙建民,高峥,等.火焰原子
吸收法间接测定二氧化硅中的氯[J].
分析科学学报,
2006,
22
(1):
115-
116.
[23]王传化.原子吸收分光光度法间接测
定湿法磷酸中的微量氯[J].磷肥与复
肥,
2006,
21
(4):
73-74.
[25]廖霞,肖仁贵,赵中一.流动注射-双
波长分光光度法测定水样中的游
离氯[J].
贵州化工,
1998,(3):
32-
34.
[26]李永生,董宜玲,吕淑清.炉水中微量
氯离子的流动注射分光光度测定法
[J].华东电力,
2003
(7):
70-74.
[27]王建伟,洪陵成.饮用水中余氯的反
相流动注射分析[J].仪器仪表与分析
监测,
2006
(1):
33-34.
[28]GB 5749—2006,生活饮用水卫生标
准[S].
[29]张艳.硝酸汞容量法测定氯化物[J].
中国公共卫生,
2004,
20
(3):
349.
[30]陆克平.汞量法测定炼厂含硫污水中
氯离子的改进[J].
检验检测,
2008
(9):
24-27.
[31]陈建欣.电化学分析法测定工业亚磷
酸中氯离子的含量[J].井冈山医专学
报,
2007.14
(4):
43-44.
[32]魏红兵,李权斌,王向东.自动电位滴
定法测定化肥中氯离子含量[J].磷肥
与复肥,
2005,
20
(2):
67-68.
[33]邵海青.电位滴定法测定铜电解液中
氯离子[J]. 治金分析,
2001,
21(4):
65.
部分:需从纤维中萃取的偶氮染料测
定[S].
[8]鹏搏.禁用偶氮染料检测技术进展[J].
上海化工,
1997,
6
(22):
36-39.
[9]崔燕娟,赖劲虎,王志畅.浅析生态纺
织品中禁用偶氮染料的检测技术[J].
化工时刊,
2008,
22
(4):
76-77.
[10]GB 20400-2006.皮革和毛皮有害物
质限量[S].
[11]GB 19601-2004.
染料产品中23
种
有害芳香胺的限量及测定[S].
[12]GB/T 19442-2005.
皮革和毛皮化学
试验禁用偶氮染料的测定[S].
[13]SN/T 1045.1.
染色纺织品和皮革制
品中禁用偶氮染料的检测方法液相
色谱法[S].
[14]SN/T 1045.2.染色纺织品和皮革制品
中禁用偶氮染料的检测方法气相色
谱/质谱法[S].
[15]SN/T 1045.3.染色纺织品和皮革制品
中禁用偶氮染料的检测方法气相色
谱法[S].
[16]DIN 53316:
1997.皮革检验皮革某些
偶氮染料的测定[S].
[17]§35 LMBG 82.02-2.日用品分析纺织
日用品上使用某些偶氮染料的检测
[S].
[18]§35 LMBG 82.02-3.日用品测试皮革
上禁用偶氮染料的检测[S].
[19]§35 LMBG 82.02-4.日用品分析聚酯
纤维上使用某些偶氮染料的检测[S].
[20]§64 LFBG 82.02-9.日用品研究可排
放4-氨基偶氮苯的偶氮染料之使用
验证[S].
[21]ISO/TS 17234:
2003.
皮革化学测试
皮革中某些偶氮染料的测定[S].
[22]姜逊,张玉莲,汪福坤.禁用偶氮染料
检测现状与发展建议[J].上海纺织科
技,
2008,
36
(1):
52-53.
[23]朱少萍,顾丽娟.禁用偶氮染料检测
中假阳性结果的鉴别方法[J].科技信
息,
2007,(11):
85,
87.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
西部皮革行业论坛
42
『拾』 市政工程中常用的常规检测仪器和设备有哪些
市政工程常规检测仪器和设备:
水泥恒应力压力试验机,水泥抗折抗压试验机 ,电子万能试验机 ,全自动电脑水泥恒应力压力试验机 ,抗折抗压试验机 压力试验机 万能试验机 。
路面平整度测定仪 动态应变仪 动弹仪 静态电阻应变仪 路面材料强度试验仪 室内承载比试验仪 野外承载板测定仪 新式路面水分渗透仪摆式摩擦系数测定仪 混凝土钻孔取芯机 混凝土切片机 混凝土磨平机 加速磨光机 锚杆拉力计 电动铺砂仪 电动液压成型脱模机 振动压实成型机 路面深度构造仪 EVD动态变形模量测试仪,EV2静态变形模量测试仪 。
水泥净浆搅拌机、水泥胶砂搅拌机、水泥胶砂振实台、40*40mm水泥抗压夹具、雷式沸煮箱、D水泥电动抗折机、水泥胶砂流动度测定仪、负压筛析仪、雷氏夹测定仪、鄂式破碎机、水泥试验磨、Ф175盘式研磨机、水泥净浆标准稠度及凝结时间测定仪(维卡仪)、水泥比长仪、水泥胶砂试体养护箱、水泥标准养护箱、恒温恒湿养护室控制仪、水泥留样桶、全自动勃氏透气比表面测定仪、水泥组分测定仪、水泥游离氧化钙测定仪、氯离子分析仪、水泥浆体Marsh时间自动测定仪、三氧化硫测定仪、水泥水化热测定仪、水泥安定性试验用压蒸釜。
土壤密度计、 铝土盒 、轻型触探仪、重型触探仪 、 灌砂法容重测定仪、 亚甲蓝试验搅拌装置、土壤相对密度仪、 取土环刀、多功能电动击实仪、 含水量快速测定仪、土壤含水率测定仪、 泥浆粘度计、 泥浆比重计、 泥浆含砂量测量器、 三轴仪、 沙浴电炉、 回弹模量测定仪、 光电液塑限联合测定仪、 弯沉仪、 手动马歇尔击实仪、 反力框架 、灌砂桶、 脱模器、 渗透仪、 液压推土器、 等应变直剪仪、 直剪仪、 单杠杆固结仪高压 、单杠杆固结仪中压、 杠杆固结仪低压、 单杠杆固结仪、 土壤贯入阻力仪、 土壤收缩仪、 土壤膨胀仪、 重型击实仪、轻型击实仪 、石灰土无侧限压力仪、碟式液限仪、 表面振动压实仪、 静力触探仪 、石粉含量测定仪
测量学实验系列:TDS-303数据采集仪、INV306D(F)采集系统、CANIN钢筋锈蚀测试仪、TICO超声波混凝土检测仪、桥梁结构分析与设计软件、PXI-1052结构动态数据采集系统、PIT-V低应变桩身完整性测试仪。