导航:首页 > 仪器仪表 > 三等分角仪器怎么用

三等分角仪器怎么用

发布时间:2022-06-25 18:36:56

⑴ 怎么用有刻度的直尺三等分一个角

三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一,即:用圆规与直尺把一任意角三等分。问题的难处在于作图使用工具的限制。古希腊人要求几何作图只许使用直尺(没有刻度,只能作直线的尺)和圆规。这问题曾吸引着许多人去研究,但都无一成功。1837年凡齐尔(1814-1848)运用代数方法证明了,这是一个标尺作图的不可能问题。

三等分任意角问题 - 阿基米德直尺三分角法
作图:
1.设任意锐角AOB;
2.以O为圆心,作圆O,∠AOB与圆相交于A,B点;
3.延长AO,到相当远处;
4.将一直尺与圆O相交,一点为A,另一点为C;
5.同时,直尺和BO的延长线交于D点;
6.适当的调整直尺的位置,使DC=CO=AO;
7.连DC,则∠CDA=(1/3)∠AOB。

⑵ 古希腊三等分角仪原理

咨询记录 · 回答于2021-12-13

⑶ 怎么用geogebra三等分角

1. 先使用“角度”工具,将需要三等分的角给标志出来,如角为α。

2. 使用“定值角度”工具,以一条边上的一点与顶点为依据,指定角度值为α/3,并注意旋转方向为向内,可以做出一个角。

3. 同2,以另一边与顶边为依据,做出另一个角。

⑷ 怎么三等分角

这是世界数学难题谢谢。
曾经难道多少大数学家,后被证明尺规作图不可能做到,不过据说前两年有人做出来了,你可以去网络看看。

⑸ 如何用有刻度的尺子三等分角(不许用圆规)

把角两边末尾连线然后将这条线平均分成三份之后的等分点与顶点连接 望采纳

⑹ 如何三等分角

以它的顶点为园心做成等腰三角形,在它的底边上分成三等分,就能等分这个角了。

⑺ 三等分角

用相似三角形原理来作:

先以这个角为顶角作一个等腰三角形。

以这个三角形的腰长为一个单位长度,在两个角边上,以角顶点为一端,取3个单位长度的线段

连接两个角边上的这两个取到的点,所得线段是原来那个等腰三角形底边的3倍

把所得线段3等分(以原来的等腰三角形的底边为基准),中间的两个等分点和角顶点连接,所得3个角就是相等的

古希腊三个著名问题之一的三等分角,现在美国就连许多没学过数学的人也都知道.美国的数学杂志社和以教书为职业的数学会员,每年总要收到许多“角的三等分者”的来信;并且,在报纸上常见到:某人已经最终地“解决了”这个不可捉摸的问题.这个问题确实是三个著名的问题中最容易理解的一个,因为二等分角是那么容易,这就自然会使人们想到三等分角为什么不同样的容易呢?

用欧几里得工具,将一线段任意等分是件简单的事;也许古希腊人在求解类似的任意等分角的问题时,提出了三等分角问题;也许(更有可能)这问题是在作正九边形时产生的,在那里,要三等分一个60°角.

在研究三等分角问题时,看来希腊人首先把它们归结成所谓斜向(verging problem)问题.任何锐角ABC(参看图31)可被取作矩形BCAD的对角线BA和边BC的夹角.考虑过B点的一条线,它交CA于E,交DA之延长线于F,且使得EF=2(BA).令G为EF之中点,则

EG=GF=GA=BA,

从中得到:

∠ABG=∠AGB=∠GAF+∠GFA=2∠GFA=2∠GBC,

并且BEF三等分∠ABC.因此,这个问题被归结为在DA的延长线和AC之间,作一给定长度2(BA)的线段EF,使得EF斜向B点.

如果与欧几里得的假定相反,允许在我们的直尺上标出一线段E’F’=2(BA),然后调整直尺的位置,使得它过B点,并且,E’在AC上,F’在DA的延长线上;则∠ABC被三等分.对直尺的这种不按规定的使用,也可以看作是:插入原则(the insertion principle)的一种应用.这一原则的其它应用,参看问题研究4.6.

为了解三等分角归结成的斜向问题,有许多高次平面曲线已被发现.这些高次平面曲线中最古老的一个是尼科梅德斯(约公元前240年)发现的蚌线.设c为一条直线,而O为c外任何一点,P为c上任何一点,在PO的延长线上截PQ等于给定的固定长度k.于是,当P沿着c移动时,Q的轨迹是c对于极点O和常数k的蚌线(conchoid)(实际上,只是该蚌线的一支).设计个画蚌线的工具并不难①,用这样一个工具,就可以很容易地三等分角.这样,令∠AOB为任何给定的锐角,作直线MN垂直于OA,截OA于D,截OB于L(如图32所示).然后,对极点O和常数2(OL),作MN的蚌线.在L点作OA的平行线,交蚌线于C.则OC三等分∠AOB.

借助于二次曲线可以三等分一个一般的角,早期希腊人还不知道这一方法.对于这种方法的最早证明是帕普斯(Pappus,约公元300年).利用二次曲线三等分角的两种方法在问题研究4.8中可以找到.

有一些超越(非代数的)曲线,它们不仅能够对一个给定的角三等分,而且能任意等分.在这这样的曲线中有:伊利斯的希皮阿斯(Hippias,约公元前425年)发明的割圆曲线(quadratrix)和阿基米得螺线(spiral of Archimeds).这两种曲线也能解圆的求积问题.关于割圆曲线在三等分角和化圆为方问题上的应用,见问题研究4.10.

多年来,为了解三等分角问题,已经设计出许多机械装置、联动机械和复合圆规.①参看R.C.Yates.The Trisection Prolem.其中有一个有趣的工具叫做战斧,不知道是谁发明的,但是在1835年的一本书中讲述了这种工具.要制做一个战斧,先从被点S和T三等分的线段RU开始,以SU为直径作一半圆,再作SV垂直于RU,如图33所示.用战斧三等分∠ABC时,将这一工具放在该角上,使R落在BA上,SV通过B点,半圆与BC相切于D.于是证明:△RSB,△TSB,△TDB都全等,所以,BS和BT三等分给定的角.可以用直尺和圆规在描图纸上绘出战斧,然后调整到给定的角上.在这种条件下,我们可以说用直角和圆规三等分一个角(用两个战斧,则可以五等分一个角).

欧几里得工具虽然不能精确地三等分任意角,但是用这些工具的作图方法,能作出相当好的近似的三等分.一个卓越的例子是著名的蚀刻师、画家A.丢勒(Albrecht Durer)于1525年给出的作图方法.取给定的∠AOB为一个圆的圆心角(参看图34),设C为弦AB的靠近B点的三等分点.在C点作AB的垂线交圆于D.以B为圆心,以BD为半径,作弧交AB于E.设令F为EC的靠近E点的三等分点,再以B为圆心,以BF为半径,作弧交圆于G.那么,OG就是∠AOB的近似的三等分线.我们能够证明:三等分中的误差随着∠AOB的增大而增大;但是,对于60°的角大约只差1〃,对于90°角大约只差18〃.

⑻ 三等分角问题:三等分锐角的方法

在锐角两边上取相等长度,连接成一等腰三角形,将底边三等分(可以过底边任意一端点画一任意直线,用圆规量三断相等的线,连接另一端点,平行画另两条交于底边),各点与角的
在锐角两边上取相等长度,连接成一等腰三角形,将底边三等分(可以过底边任意一端点画一任意直线,用圆规量三断相等的线,连接另一端点,平行画另两条交于底边),各点与角的顶点相连

⑼ 如何做角的三等分

在直尺边缘上添加一点P,命尺端为O。 设所要三等分的角是∠ACB,以C为圆心,OP为半径作半圆交角边于A,B;使O点在CA延在线移 动,P点在圆周上移动,当尺通过B时,连OPB(见图)。由于OP=PC=CB,所以∠COB=∠AC B/3。这里使用的工具已不限于标尺,而且作图方法也与公设不合。

另有一机械作图的方法可以三等分角,简介如下:
如右图:ABCD为一正方形,设AB均匀向CD平行移动,AD以D为中心依顺时针方向转到DC,若AB抵达DC时DA也恰好抵达DC,则他们交点的轨迹AO即曲线称为三分线。
令A是AC弧上的任一点,我们要三等分 ADC,设DA与三分线AO交于R,过R作AB之并行线交AD、BC于A、B,令T、U是AD之三等分点,过T、U作AB之并行线交三分线AO于V、W,则DV、DW必将 ADC三等分

⑽ 如何将一个角三等分

古希腊三个著名问题之一的三等分角,现在美国就连许多没学过数学的人也都知道.美国的数学杂志社和以教书为职业的数学会员,每年总要收到许多“角的三等分者”的来信;并且,在报纸上常见到:某人已经最终地“解决了”这个不可捉摸的问题.这个问题确实是三个著名的问题中最容易理解的一个,因为二等分角是那么容易,这就自然会使人们想到三等分角为什么不同样的容易呢?
用欧几里得工具,将一线段任意等分是件简单的事;也许古希腊人在求解类似的任意等分角的问题时,提出了三等分角问题;也许(更有可能)这问题是在作正九边形时产生的,在那里,要三等分一个60°角.
在研究三等分角问题时,看来希腊人首先把它们归结成所谓斜向(verging
problem)问题.任何锐角ABC(参看图31)可被取作矩形BCAD的对角线BA和边BC的夹角.考虑过B点的一条线,它交CA于E,交DA之延长线于F,且使得EF=2(BA).令G为EF之中点,则
EG=GF=GA=BA,
从中得到:
∠ABG=∠AGB=∠GAF+∠GFA=2∠GFA=2∠GBC,
并且BEF三等分∠ABC.因此,这个问题被归结为在DA的延长线和AC之间,作一给定长度2(BA)的线段EF,使得EF斜向B点.
如果与欧几里得的假定相反,允许在我们的直尺上标出一线段E’F’=2(BA),然后调整直尺的位置,使得它过B点,并且,E’在AC上,F’在DA的延长线上;则∠ABC被三等分.对直尺的这种不按规定的使用,也可以看作是:插入原则(the
insertion
principle)的一种应用.这一原则的其它应用,参看问题研究4.6.
为了解三等分角归结成的斜向问题,有许多高次平面曲线已被发现.这些高次平面曲线中最古老的一个是尼科梅德斯(约公元前240年)发现的蚌线.设c为一条直线,而O为c外任何一点,P为c上任何一点,在PO的延长线上截PQ等于给定的固定长度k.于是,当P沿着c移动时,Q的轨迹是c对于极点O和常数k的蚌线(conchoid)(实际上,只是该蚌线的一支).设计个画蚌线的工具并不难①,用这样一个工具,就可以很容易地三等分角.这样,令∠AOB为任何给定的锐角,作直线MN垂直于OA,截OA于D,截OB于L(如图32所示).然后,对极点O和常数2(OL),作MN的蚌线.在L点作OA的平行线,交蚌线于C.则OC三等分∠AOB.
借助于二次曲线可以三等分一个一般的角,早期希腊人还不知道这一方法.对于这种方法的最早证明是帕普斯(Pappus,约公元300年).利用二次曲线三等分角的两种方法在问题研究4.8中可以找到.
有一些超越(非代数的)曲线,它们不仅能够对一个给定的角三等分,而且能任意等分.在这这样的曲线中有:伊利斯的希皮阿斯(Hippias,约公元前425年)发明的割圆曲线(quadratrix)和阿基米得螺线(spiral
of
Archimeds).这两种曲线也能解圆的求积问题.关于割圆曲线在三等分角和化圆为方问题上的应用,见问题研究4.10.
多年来,为了解三等分角问题,已经设计出许多机械装置、联动机械和复合圆规.①参看R.C.Yates.The
Trisection
Prolem.其中有一个有趣的工具叫做战斧,不知道是谁发明的,但是在1835年的一本书中讲述了这种工具.要制做一个战斧,先从被点S和T三等分的线段RU开始,以SU为直径作一半圆,再作SV垂直于RU,如图33所示.用战斧三等分∠ABC时,将这一工具放在该角上,使R落在BA上,SV通过B点,半圆与BC相切于D.于是证明:△RSB,△TSB,△TDB都全等,所以,BS和BT三等分给定的角.可以用直尺和圆规在描图纸上绘出战斧,然后调整到给定的角上.在这种条件下,我们可以说用直角和圆规三等分一个角(用两个战斧,则可以五等分一个角).
欧几里得工具虽然不能精确地三等分任意角,但是用这些工具的作图方法,能作出相当好的近似的三等分.一个卓越的例子是著名的蚀刻师、画家A.丢勒(Albrecht
Durer)于1525年给出的作图方法.取给定的∠AOB为一个圆的圆心角(参看图34),设C为弦AB的靠近B点的三等分点.在C点作AB的垂线交圆于D.以B为圆心,以BD为半径,作弧交AB于E.设令F为EC的靠近E点的三等分点,再以B为圆心,以BF为半径,作弧交圆于G.那么,OG就是∠AOB的近似的三等分线.我们能够证明:三等分中的误差随着∠AOB的增大而增大;但是,对于60°的角大约只差1〃,对于90°角大约只差18〃.

阅读全文

与三等分角仪器怎么用相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59