⑴ 矿上开绞车是干什么的
绞车是一种简单的交通工具,用电机带动缆绳,车的起点和终点都有专职人员看守和发射信号,在确定双方信号后绞车房工作人员开动电机缆绳带动绞车,绞车的角度都是在45度以内的斜坡拉人或材料,多为矿井使用,也有专门拉人的,各地有矿山的朋友应该可以看到。
而绞车房就是装这些东西的。
⑵ 卷扬机三位按钮开关如何接线请各位大神指导,有图片为佳,谢谢。
一般的卷扬机是点动控制的,用二位按钮开关就行;除非用在牵引升降才需
三位按钮开关和行程开关限位。

⑶ 绞车传感器四根线怎么接
红兰是电源正负 黄白是传感器正负输出
⑷ 煤矿 开绞车 岗位好不好
不知道是在井上还是在井下开啊,要是大型绞车还可以的都是两人轮班休息开的挣的少一点,
⑸ 石油钻机中绞车的气路原理图怎么看
石油钻井绞车是起升系统的重要设备,也是一部钻机的核心设备,是钻机的三大工作机之一。
石油钻机的电工线路图就是应该看作与积木一样,都是由一件件相关联的电气设备元件组成的。
1、常用的有自锁、互锁、正/反转、星/三角、串自耦变压器、串电阻等,在条件允许下,尽可能用实物进行安装、调试。加强对线路的了解,有时间最好对线路进行分析、改进。
2、一般设备中用到的元件种类不是很多,在了解了元件的功能后,可以根据元件的特点进行对线路的完善。
从主回路可以分析出该线路是做什么用的:
1、自锁一般就一个接触器;
2、互锁就采用二个及二个以上的接触器;
3、正/反转采用二个,同时,在接触器上有调线的,也就是其中二相有对换的;
4、星/三角一般都采用三个接触器,其中有一个接触器一侧短接的是星形接法的接触器,另外一个有头尾相接的是三角形接触器;
5、串自耦变压器是用三个接触器的,在线路上有一个自耦变压器的;
6、串电阻器是有多个接触器的,一般有二个以上,线路中有电阻器串接于转中的比较多,常见于起动设备。
石油钻机的电气原理图的一般规律
电气原理图是用来表明设备电气的工作原理及各电器元件的作用,相互之间的关系的一种表示方式。运用电气原理图的方法和技巧,对于分析电气线路,排除机床电路故障是十分有益的。
电气原理图一般由主电路、控制电路、保护、配电电路等几部分组成。画电气原理图的一般规律如下:
1、画主电路绘制主电路时,应依规定的电气图形符号用粗实线画出主要控制、保护等用电设备,如断路器、熔断器、变频器、热继电器、电动机等,并依次标明相关的文字符号;
2、画控制电路控制电路一般是由开关、按钮、信号指示、接触器、继电器的线圈和各种辅助触点构成,无论简单或复杂的控制电路,一般均是由各种典型电路(如延时电路、联锁电路、顺控电路等)组合而成,用以控制主电路中受控设备的“起动”、“运行”、“停止”使主电路中的设备按设计工艺的要求正常工作。对于简单的控制电路:只要依据主电路要实现的功能,结合生产工艺要求及设备动作的先、后顺序依次分析,仔细绘制。对于复杂的控制电路,要按各部分所完成的功能,分割成若干个局部控制电路,然后与典型电路相对照,找出相同之处,本着先简后繁、先易后难的原则逐个画出每个局部环节,再找到各环节的相互关系。
电气控制线路图的画法及特点
画出用导线连接的各种电器及电机实物的图形,看起来直观、易懂,但画起来非常困难、麻烦,容 易造成混乱,故此,常常用国家规定的图形符号和文字代号代表各种电器、电机及元件,根据生产机械 对控制的要求和各种电器的动作原理,用线条代表导线连接起来,这样的线路图称为电气控制线路 图,由于绘制容易、简单,层次清楚、分明,适用于研究、分析控制电路原理,所以无论在设计部门,还是 生产现场,都得到了广泛应用。初学者绘制及阅读电气控制线路图时应明确以下几个特点:
1.电气控制线路图中一般分为主电路和辅助电路两大部分画出,主电路是电源到电动机这部分,通大电流。辅 助电路包括控制电路、照明电路、信号指示电路及保护电路部分,一般流过较小电流。控制电路的主要 作用是控制主电路的接通与断开;照明电路作用是实现设备或生产机械的局部照明;信号电路作用是 显示电路的工作状态;保护电路作用是保证整个线路不受短路、过载或突然断路等事故的损害。
2.一般习惯规定主电路画在左侧或上侧,辅助电路画在右侧或下侧。
3.图中各电器的触头都按没有通电或不受外力作用时的正常状态画出。
4.图中电机及各电器元件不画实际的外形图,而采用统一规定的国际图形符号和文字符号画 出。网站采用GB4728国标。
5.图中属于同一电器的不同部件可以不画在一起,而按其在电路中的作用画在不同的电路部位上,但是,为了识别这些同一个电路的各个部件,要标以相同的文字符号。
6.图中无论是主电路还是辅助电路,各电气元件一般应按动作顺序从上到下,从左到右地依次排列。
7.图中有直接电联系的交叉导线连接点,要用小圆圈或黑圆点表示,无直接电联系的交又导线连接点不画小圆圈或黑圆点。
⑹ 超深井钻探数据采集与传输技术的应用方案
3.1.1 超深井钻探过程中井下数据采集与传输技术的应用方案
3.1.1.1 科学选址对于超深井钻探及井下数据采集的成败将起关键作用
如前所述,如果按地温梯度3℃/100m计算,13000m井底地层温度为390℃;如果按式(1.1)计算,则井底循环钻井液温度为318.56℃。这么高的温度对于电子类检测仪表而言是“致命的”。如果说井底水柱压力不可能人为改变的话,井底的高温威胁是可以通过科学选址来回避或减弱的。
俄罗斯地质学家研究表明,在构造运动平静的区域(波罗的海板块属于这类)随地温梯度的总趋势是0.8~1℃/100m。俄罗斯地质学家David Huberman 1970年5月英明地把СГ-3井选在此区域(图3.1),从而为钻探工作的成功创造了很好的条件。当然由于深部岩层中放射性元素含量增高,使СГ-3井在10km处实测温度达到180℃左右,在深度12km左右温度达212℃。这也说明,虽然深部局部岩层中可能出现温度异常,但绝非地壳中处处温升梯度都为3℃/100m,所以科学选址是超深井钻探工程及其数据采集与传输工作成功的重要基础。
图3.1 David Huberman 1970年5月选定的 СГ-3 孔位和СГ-3井钻塔远眺
为了得到真正的温度值,俄罗斯专家曾用安装在钻杆柱上的自控温度计直接测量冲洗液循环条件下的温度。用ГCPT-4和ГH4型仪器测量的温度数据见表3.1和表3.2,根据上述资料作的曲线图见图3.2至图3.4。
表3.1 用ГCPT-4型仪器测量温度的数据
表3.2 用ГH4型仪器测量温度的数据
图3.2 井内温度分布图
图3.3 温度恢复与时间的关系
图3.4 冲洗钻井时井内温度的变化(井深6015m)
分析孔内实际温度测量的资料,可以得出如下结论:
1)钻进时或洗井时上、下两个测点冲洗液的温度差不超过40℃,温度随孔深的变化服从直线规律;孔内冲洗液静止与循环(流量:30~40L/s)条件下的温度梯度平衡带位于5km深处,温度为75℃左右(见图3.2)。
2)只要保证循环,就可能把孔内温度控制在150℃以下,停止循环后井内温度恢复也需要一定的时间,图3.4表明停止循环30min温度才上升3~5℃,在这段时间内可以完成井下数据的测量与采集作业;井内温度完全恢复所需的时间大约在40h左右,在这段时间内来得及让井下仪器自浮或打捞上来。分析热力场恢复的速度表明,钻井下部与5km以上地带相比,其热影响半径要小得多,而井底测到的温度比较接近按地热梯度的计算值。
分析温度实测结果(图3.2)可以看出,虽然与本报告“1.3.1 超深井井下温度预测”中的图1.5模拟结果趋势相同,但仍有较大差异:
1)实测温度随孔深的变化基本服从直线规律,而不是模拟结果的曲线规律。原因可能是计算机模拟时的条件参数选择并不合理所致。
2)实测孔内温度梯度平衡带位于5km深处,温度75℃,而不是模拟结果的10~10.5km,温度300℃以上。原因在于所选择的地温梯度不同,俄罗斯СГ-3井的总体地温梯度为0.8~1℃/100m,在10km之后为1.8℃/100m;而我们假设的地温梯度为3℃/100m。这也进一步说明科学选址是多么重要。
另外,德国KTB讨论了40多个德国境内的钻井位置,考虑到地质情况和低地温梯度的期望,认为位于波希米亚山丘西翼,弗兰哥尼阶大断层东4km处的井位更好。由于KTB选定的孔位地温梯度<3℃/100m,使孔内钻井液循环温度7km为168℃、8km为197℃,明显低于理论值。
再举一个例子,我国四川普光气田P204-2h井于2007年9月钻至7010m深时(中原钻井院),井底静态温度153℃,而不是理论上的210℃。
因此,如果将来深钻项目实施,应该向地质学家提出科学选址,尽量回避高温的要求。这样可为钻探工作减少许多困难,也可以大大节约成本。
3.1.1.2 超深井钻探过程中井下数据采集与传输技术的应用方案
(1)井下数据采集与传输的指导思想
1)我们认为,科学钻探井并非定向井,没有必要在整个钻进过程中始终使用昂贵的随钻测量仪器 MWD。
2)进口的随钻测量仪器工作更可靠,孔内连续工作时间长(用井底发电机供电),但价格高(每套800~1200万元),配件服务周期长;国产仪器目前质量也非常稳定,价格便宜(每套300~600万元),但连续工作时间短(用电池筒供电),售后服务快。对于科学钻探而言,使用国产仪器既可降低成本,又可保证钻探质量。
3)石油钻井的实际工作程序值得借鉴。在钻垂直井阶段不使用昂贵的随钻测量MWD,而是在每次起钻时用国产的多点电子测斜仪进行井下数据采集,也可在加接立根时用打捞式单点测斜仪或自浮式测斜仪加以复测。确认钻孔已经产生明显孔斜,或需要定向、纠斜时再下入随钻测量MWD。使用上述方法既可大幅度降低成本,又方便仪器打捞快速离开井底的高温区。该方法的前提是钻柱下端要带无磁钻铤和仪器座。
(2)井下数据采集与传输技术的应用方案
钻进中须采集的井内数据包括:钻孔顶角、方位角、工具面向角、温度、环空压力。考虑到仪器的耐温、耐压条件及泥浆脉冲传递信号的深度限制,拟把整个超深孔分为三个区段,分别采用不同的数据采集与传输方案。
1)浅孔~7000m孔段
a.垂直井段用多点电子测斜仪(图3.5),起钻时投入钻杆内腔,设定好各点测量时间,起钻后读取与孔深对应的 数 据;仪器外径Φ45(50)mm,使用条件250℃/150MPa。
图3.5 国产多点测斜仪
b.垂直井段还可以用国产打捞式单点测斜仪(图3.6)、自浮式测斜仪(图3.7)进行复测。加接钻杆时用钢丝绳把单点测斜仪投入钻杆内腔,到达无磁钻铤仪器座时停留2min即可完成测量,打捞后读数。“自浮式定点”测量提供了振动工况下的自浮精确测量,仪器到达测点泵压上升1MPa即可停泵。在停泵到仪器开始上浮的短暂“静止”时间内完成准确测量,比传统测斜方式节约大量时间。仪器外径Φ45(50)mm,使用条件250℃/150MPa。
图3.6 国产打捞式单点测斜仪
图3.7 自浮式定点测斜仪
c.确认钻孔已孔斜或需要定向、纠斜时下入随钻测量MWD。可选的仪器有进口的斯伦贝谢、哈里波顿、贝克休斯等公司和国产的中天启明、海蓝等公司的MWD产品,它们所能承受的最高温度和液柱压力也略有差别。下面举几个有代表性的例子加以说明:
Schlumberger(斯伦贝谢)TeleScope随钻高速测量系统(图3.8)利用泥浆正脉冲遥测原理,采用双向通信,使非生产时间减少10%,数据传输率提高3倍,在下传数据时仍可正常测井和钻井作业。井斜(顶角)测量范围0°~180°(精度±0.1°),方位角范围0°~360°(±1.0°),重力工具面角精度±1.0°(Inc>10°),磁性工具面角±2.25°(Dip<70°)。其内部电路板能经受极端震动,井下部件的耐温可达150℃和175℃,耐压为138MPa。
中天启明公司的ZT-MWD随钻测斜仪(仿美国Hliborton,图3.9)靠井下涡轮发电机供电,利用泥浆正脉冲信号将采集的井眼轨迹和导向工具面数据传到地表。井斜角(顶角)精度±0.1°,方位角±1.5°,磁性工具面、高边工具面(Inc>10°,Dip<70°)±1.5°,可承受最大压力104MPa,最高工作温度150℃。2007年9月曾成功用于四川普光气田P204-2h井,施工井深7010m,井底静态温度153℃。
图3.8 斯伦贝谢TeleScope随钻高速测量系统
图3.9 中天启明公司的ZT-MWD随钻测斜仪
d.上述各种井下数据采集方案采用的数据传输技术也有所不同,其中,国产多点电子测斜仪和单点测斜仪、自浮式测斜仪采用的是井下存储、地表回放式;而斯伦贝谢公司和中天启明公司的MWD随钻测斜仪采用的是泥浆脉冲信号实时传输、地表实时接收方式,可节约用于测量的辅助作业时间。
2)7000~10000m孔段
首先我们来估算一下7000~10000m孔段的温度情况,所用的依据:一是前面提到的Kutasov在美国密西西比地区大量随钻钻井液循环温度资料基础上得出的经验公式(式1.1);二是俄罗斯СГ-3井的实测曲线(图3.2)。估算的结果见表3.3。
表3.3 7000~10000m孔段的环境温度估算表
由表3.3可以看出:
a.如果孔内实际温度能接近俄罗斯СГ-3井的水平,则Schlumberger(斯伦贝谢)TeleScope随钻高速测量系统(见图3.8)仍可使用。因为其内部电路板能经受极端震动,井下部件的耐温可达175℃。
b.如果孔内实际温度达到按照经验公式(式1.1)计算的水平,由于井内温度影响,不可能使用目前国内外公司生产的电子随钻测量MWD。只能采用胜利钻井工艺研究院研制的机械式无线随钻测斜仪(图3.10),它与MWD的显著区别是,其井下仪器为纯机械机构,井斜的测量、信息的转换、脉冲发生器的控制等全部由机械装置完成,井下仪器没有复杂的电路及电子元器件,不需要电源。其井斜(顶角)测量范围:0~10.5°(测量精度0.5°)或1~17.0°(精度1°),最高工作温度260℃,最大适用井深9000m。其信号传输的通道仍是泥浆脉冲,井下实时传输、地表实时接收。
图3.10 胜利钻井工艺研究院研制的机械式无线随钻测斜仪
如果考虑成本问题,仍可采用国产的多点电子测斜仪、单点电子测斜仪或自浮式测斜仪。
c.因为多点电子测斜仪要求环境温升≯90℃/4h,所以在4h内能通过起钻把无磁钻铤(内装仪器)提至5km以上孔段的情况下,可用多点电子测斜仪。否则只能用单点电子测斜仪、自浮式测斜仪,其可在250 ℃条件下工作6h,然后必须回到≯150℃的环境,考虑到钢丝绳打捞速度快,测斜仪自浮速度100m/min,它们在50min内就可进入5km以上孔段。可保证数据的安全。
d.但如果在循环条件下孔内实际温度达到250℃以上,则因环境温度太高,仪器不能带温度、压力传感器,只能测量钻孔的倾斜角度与方位。
因此,在选择下孔仪器之前,首先必须设法实际测量孔内的环境温度。
3)10000~13000m孔段
a.因为孔内温度、压力过高,不可能使用目前国内外公司生产的电子随钻测量MWD,即使胜利钻井工艺研究院研制的机械式无线随钻测斜仪也无法采用。只能用可在6h内回到≯150℃环境的单点电子测斜仪、自浮式测斜仪。而且只能测角度数据(传感器在保温保压筒内)。
b.因为没有可耐300 ℃以上的温度传感器,只能用热电偶+耐高温压力传感器+保温保压筒+快速钢丝绳打捞绞车,来实现井底静态温度、压力测量。有公司表示可以研制。
综上所述,超深井钻探过程中井下数据采集与传输技术的应用方案如图3.11所示。
图3.11 超深井钻探过程中井下数据采集与传输技术的应用方案示意图
3.1.2 超深井钻探过程中地表数据采集与传输技术的应用方案
目前可用于地表钻探参数检测、预处理与显示的可选仪器很多。东海和汶川科学钻探的实践已经证明,进口的“马丁-戴克”和国产的“神开”等系统都能适应科学深钻的需求。我们可以从科学钻探的任务出发,参照表1.1列出的俄罗斯СГ-3超深井钻进过程中实时采集的参数类别、数量及功能,根据仪器费用预算来选择或定制合适的地表钻探参数检测仪表。
在广泛调研的基础上,建议选用国产的“神开”SK-2Z16钻参仪(图3.12)。它可直接测量20多项参数,并可派生出近百种参数,所有参数及相应的曲线能通过触摸屏进行自定义、任意选择显示,常见参数如下:
图3.12 国产的“神开”SK-2Z16钻参仪显示屏
1)大钩悬重:0~4000kN或0~2500kN;
2)钻压:0~500kN;
3)立管压力:0~40MPa;
4)转盘扭矩:0~100kN·m;
5)吊钳扭矩:0~100kN·m;
6)转盘转速:0~1920r/min;
7)泵冲:0~1920冲次/min(包含泵冲1、泵冲2、泵冲3);
8)总泵冲:0~106千冲次;
9)总烃:0~100%;
10)泥浆返出量:0~100%;
11)井深:0~9999.99m(可要求仪器能反映13000m);
12)钻时:0~600min/m;
13)井底上空:0~9999.99m(同上);
14)钻头用时:0~1000h;
15)钻头进尺:0~9999.99m(同上);
16)大钩位置:0~50m。
该钻参仪传感器系统采用国际上先进的CAN总线技术,简化了系统布线及结构,实现了全数字传输、零漂移、高精度、高可靠性,而且可以任意扩展。
该钻参仪前后台采用无线网络技术传输数据,支持远程数据访问技术,实现数据的网络共享,可以通过局域网配置多台计算机(图3.13)。
图3.13“神开”SK-2Z16钻参仪的CAN总线技术及无线网络传输技术示意图
该钻参仪可以提供与MWD结合的数据接口(图3.14),将井下仪器的井斜、方位等数据接入系统,可实时计算钻进过程中的井斜,水平位移、垂直位移,方位角,垂直井深。实时跟踪井眼的轨迹,指导司钻作业,提高钻井时效。
图3.14“神开”钻参仪与MWD结合将井下仪器的井斜、方位等数据接入系统示意图
该钻参仪可以通过卫星实现数据的远程传输,使后方基地也可借助网络分享现场钻探信息(图3.15)。
图3.15 钻参仪可通过卫星实现数据远程传输、网络分享现场钻探信息
⑺ 单绳缠绕式双滚筒提升机相关问题
您好!单绳缠绕式双滚筒提升机中有一个调绳机构,用来调节钢丝绳两端容器的位置的。
调绳机构分为液压调绳和机械调绳。
具体方法:
锁上卷筒的定车装置地锁,启动油泵,将操作台调绳转换开关打到脱开位置(操作手柄与制动手柄都必须处于零位),调绳电磁阀G1工作,其余电磁阀断电,提升机(绞车)处于安全制动状态。压力油只能进入离合器油缸,而不能进入活(左)卷筒侧和固(右)卷筒侧的制动器油缸。此时若向前推动制动手柄,即可将离合器向外推出。在离合器推出的过程中,只要稍微推出一点,离合器装置上行程开关闭合,离合脱开指示灯亮,表示离合器正处于脱开过程,再慢慢继续向外推出,当固筒调绳指示灯亮,表示离合器已处于脱开状态。
迅速拉回制动器手柄至零位,将调闸开关扳到调绳位置,电磁铁G2通电,其余电磁阀断电,压力油只能进入固定卷筒侧制动器和离合器油缸,而不能进入活卷筒侧制动器油缸,可以进行调绳操作。
打开地锁,开动主电机逐渐施闸,手动慢速开车,使固定滚筒上的提升容器到达所需位置,抱闸停车,调绳完毕。
将调绳调闸开关扳到闭合位置,只有电磁铁G1可通电,其余电磁铁全部断电,压力油只能进入固定卷筒侧制动器油缸,而不能进入活卷筒侧制动器和离合器油缸。此时离合器因油缸卸压而向内推复位,让离合器外齿与内齿完全合上,如果离合齿爪未对准不能复位,离合器不能闭合时,司机可借制动手柄和智能手柄配合稍稍前推,使固定滚筒轻轻松闸而缓动,离合器就能自动复位。当离合器逐渐退回,固筒调绳指示灯、离合脱开指示灯逐一熄灭后,表示离合齿爪已完全合好复位,至此调绳过程结束。
将调绳调闸开关转至正常位置,提升机(绞车)恢复正常状态。
对于以上的每一个调试方法及步骤应重复调试多次,直到完全达到调绳要求,以确保调绳的可靠性。
在每次转换调绳调闸开关时,其触头均要瞬时断开一下,如果此时制动手柄不在零位,安全回路就要断电将提升机(绞车)闸住。因此必须将制动手柄拉回零位才能重新打开安全闸,从而避免在松闸情况下转换调绳调闸开关造成事故。
注意:本项说明中G1 G2阀只是将相应液压站中电磁阀以顺序列出,除功能外,不一定与具体液压站中电磁阀标号对应。
有什么矿井提升机,矿用提升绞车的问题,尽管问我,【鹤壁绞车销售中心】矿井提升机-杨为您解答。