导航:首页 > 仪器仪表 > 在仪器分析中db5是什么

在仪器分析中db5是什么

发布时间:2022-06-21 07:49:24

① 在仪器分析中什么是信噪比

一定浓度的被分析组分产生信号,与没有组分进样时仪器产生的电信号的比,就是信噪比

② 仪器分析包括什么

仪器分析包括扫描电镜、电子探针波谱及能谱分析、X衍射分析、阴极发光及荧光显微镜、包裹体冷热台测定等。
1)扫描电镜和电子探针波谱及能谱分析电子束轰击在样品上能产生各种信息,包括二次电子、背散射电子、X射线、阴极发光、透射电子等(图2—1)。
接收二次电子,背散射电子成像的仪器为扫描电子显微镜—简称扫描电镜;接收X射线并检测X射线能量强度的仪器为能谱仪;接收X射线并检测X射线波长的仪器为波谱仪;接收阴极发光进行检测的仪器为阴极发光显微镜。
扫描电镜、电子探针波谱及能谱仪对储层及成岩作用研究。
(1)碎屑岩储层。各种自生胶结物分布方式。(图2—2)各种自生胶结物有孔隙衬垫式、孔隙充填式、嵌晶式及加大式四种胶结方式。
(2)碎屑岩储层。自生矿物类型、特点及成分:
①粘土矿物有伊利石、高岭石、埃洛石、蒙皂石、绿泥石、伊/蒙混层、绿/蒙混层等(见表2—5);②碳酸盐类自生矿物包括方解石、白云石、铁白云石、菱铁矿、片钠铝石等;③硅质胶结物,包括自生石英、无定型的蛋白石与玉髓;④硫化物—黄铁矿;⑤沸石胶结物—包括斜发沸石、片沸石、方沸石、钠沸石、浊沸石等。

图2—1 电子与物质的相互作用

图2—2 碎屑岩中胶结物分布方式

表2—5 粘土矿物形态特征、晶体结构及元素成分

表2—5 粘土矿物形态特征、晶体结构及元素成分(3)碎屑岩储层,石英和长石次生加大。自生石英及自生长石加大可以分为三个阶段:Ⅰ、Ⅱ、Ⅲ。
(4)碎屑岩孔隙类型及储集性能识别标志:
碎屑岩孔隙可以分为粒间孔隙、特大孔隙、铸模孔隙、组分内孔隙及裂缝孔隙五种,可建立原生及次生粒间孔隙的识别标志。
2)X射线衍射仪X射线衍射方法被广泛地应用于结晶学及矿物学研究。在储层测试中使用多晶物质的X射线衍射,要求样品是微细的粉末状态或是微细晶粒的聚合物。
(1)制样方法及分析流程。
①粘土分离。X射线的分析方法主要侧重于粘土分离。一般来讲粘土分离包括采样、选样、称样、碎样、洗油、蒸馏水浸泡、湿磨、制备和提取悬浮液、离心沉淀烘干、研磨、称重和包装等步骤。
②制样方法。针对不同矿物、不同的分析目的以及样品量的多少采取不同方法。
a.压片法:适用于全岩分析。
b.定向片法:样品板用玻璃戴片,面积为25×27mm,样品量为40mg。
N片 把40mg粘土悬浮液均匀地铺在水平旋转的戴玻片上。
EG片 对上机分析的N片进行乙二醇饱和处理,目的区分膨胀性矿物是否存在。
550℃片 对EG片在550℃进行2.5小时加热处理,以鉴定绿泥石。
HCl片 重新称样后用HCl处理,然后制成定向片,目的去掉绿泥石而鉴定高岭石。
c.薄片法:直接用薄片做衍射分析,一般用于自生矿物鉴定。
(2)X衍射分析在沉积储层研究中应用。
①粘土矿物定性与定量分析。
对伊利石/蒙皂石混层(I/S)系列。绿泥石/蒙皂石混层(C/S)系列、高岭石、多水高岭石、坡缕石、蛭石等X衍射鉴定见表2—6。
②混层比计算:
指蒙皂石在I/S及C/S中所含比例,用以划分成岩阶段、估算地温、预测生储油层、判断生油门限等。
③全岩X射线定性及定量分析。
主要鉴定非粘土矿物:a.沸石类矿物,可用来确定沉积环境及古地温;b.盐类矿物,常见的有石盐、石膏、硬石膏、钙芒硝、无水芒硝、重晶石等;c.碳酸盐类矿物鉴定;d.其它非粘土矿物还有黄铁矿、赤铁矿、石英、长石等。
3)阴极发光显微镜(1)原理。
电子束轰击到样品上,激发样品中发光物质产生荧光,又称阴极发光。矿物产生阴极发光原因有几种:a.矿物含有能发光的杂质元素或微量元素(叫激活剂);b.矿物内有结构缺陷。
矿物内的激活剂包括金属元素(Eu2+、Sm2+、Dy2+、Tb3+、Ea3+)以及过渡金属元素(Mn2+、Fe3+、Ca2+、V3+、Ti4+)。
与激光剂相对应能抑制矿物发光的物质叫猝灭剂,如:(Co2+、Ni2+、Fe2+、Ti2+等)。
(2)在储层研究中应用。
①石英的发光特征(表2—7)。
Zinkernagel的研究表明,各种石英颗粒的发光特征是在母岩形成过程中获得的,代表其岩石形成时的温度条件,三种不同发光类型正好反映了三种不同成因的石英(表2—7)。
②碳酸盐矿物发光特征(表2—8),还可以通过残余碳酸盐胶结物分布来判断次生孔隙。

表2—6 粘土矿物的X射线鉴定表

续表

表2—7 石英发光类型与岩石类型及温度之间的关系(据Zinkemagel,U.,1978)
③其它应用:a.碎屑石英原始状态及成岩变化观察,石英颗粒的压碎及愈合作用研究、推断成岩顺序;b.研究晶体生长环带及胶结物世代;c.恢复原岩结构;d.对储层中微裂缝进行研究。
4)荧光显微镜(1)原理。
荧光显微镜是以紫外光为光源、紫外光激发储油岩石中能够发光的烃类物质产生荧光。观察分析这些发光物质本身的变化及其与岩石结构、构造的相互关系,从而判断有机质类型、变质程度、有效储集空间、油气运移等一系列有关石油地质问题。
(2)荧光显微镜鉴定内容。
①沥青发光颜色、波长定量与成分关系。
为解决这问题选用了标准油样测定其发光颜色与波长关系,并确定属何种沥青(表2—9)。

表2—8 各类碳酸盐矿物的元素组成及其它特征(2)发光强度定量。
发光强度主要反映岩石中油的含量,岩石中油的含量越高,则油的荧光发光强度也越大,在荧光图像处理中,用亮度这个数值来定量表示沥青发光强度。
③含油范围定量。
a.各种沥青含量(油质、胶质、沥青质)。
b.含油面积比,此含油面积比在一定程度上反映了含油岩石中含油的范围。可近似代替孔隙含量,但该数值比孔隙含量高,因为还包括油浸染的范围。

表2—9 沥青的发光颜色、波长与成分5)包裹体测定包裹体是矿物形成过程中被捕获的成矿介质,被称为成矿流体的样品。它相当完整地记录了矿物形成的条件和历史,是矿物最重要的标型特征。
(1)包裹体的测定流程。
矿物流体包体的测试技术方面,目前主要开展了偏光和荧光显微镜鉴定、显微冷热台测试、爆裂—色谱仪测试、多项联合装置测试等几个项目的研究,取得了包体流体的均一温度(Th)、盐度(S)、酸碱度(pH)、氧化—还原势能(Eh)和包体(群体)有机组分、包体(单体)有机组分以及包体(群体)气体无机成分等多种参数。
(2)包裹体的测定意义。
包裹体研究除用均一法及冷冻法测定包裹体流体的形成温度、压力及盐度、密度、pH、EH值,还开展了包体成分测定、同位素组成,尤其是烃类(包括液体烃类)包体成分。除用包体集合体进行成分测定以外,还用激光拉曼光谱仪连接色谱、质谱仪对单个包体成分进行测定。流体包裹体记录了烃类流体和孔隙水的性质、组分、物化条件和地球动力等条件。对储集岩成岩矿物中流体包裹体进行类型、特征、丰度、组分等对比研究,了解盆地流体(烃类和水)的动力状态和相对时间,确定烃类运移的时间、深度和运移相态、方向和通道,可为储层的孔隙演化史、油气运移史、构造运动史的研究提供最直接、最可靠的地质信息资料。对储集岩中固体烃(固体沥青)的分析可以提供油气藏被改造、破坏的信息。
各类仪器分析见表2—10。

表2—10 各类仪器原理及在储层研究中的意义

③ 小波分析在层序地层划分中的应用

1.小波分析简介

20世纪80年代后期至今,一种著名的、在各行各业有重要应用价值的数学理论和方法技术在科学技术界得到了广泛的重视和采用,它就是被誉为“数学显微镜”的小波分析(李世雄,1994)。小波分析的主要功能和特点是,它具有多分辨分析或多尺度分析功能,可以把信号分解成各种不同的尺度成分;它具有很强的局部分析功能,同时具有时间(或空间)域和频率域的局部分析性质,它可自动地通过伸缩、平移聚焦到信号的任一细节对其加以分析(侯遵泽,1998)

(1)小波分析基本原理。小波(wavelet),即小区域的波,是一种特殊的长度有限、平均值为0的波形。它有两个特点:一是“小”,即在时域都具有紧支集或近似紧支集;二是正负交替的波动性。如果用小波和构成傅里叶分析基础的正弦波做比较的话,傅里叶分析所用的正弦波在时间上没有限制,从负无穷到正无穷,但小波则倾向于不规则与不对称。

傅里叶分析是把信号分解到一组相互正交的正弦波上的,也就是基函数,我们可以把基函数看成是度量信号某些特征的一把“尺子”,傅里叶分析度量的就是信号的频谱特征,但是如果这把“尺子”过于规则,有时候就不能十分精确地表达信号蕴含的信息,而在小波分析中,“尺子”换成了规则程度更低的小波函数,从而可以更加有效地表达信号中信息的成分。

小波变换对不同频率在时域上的取样步长是调节性的,即在低频时小波变换的时间分辨率较差,而频率分辨率较高;在高频时小波变换的时间分辨率较高,而频率分辨率较低(图2-13),这正符合低频信号变化缓慢而高频信号变化迅速的特点(胡昌华,1999)。这就构成了利用小波变换进行信号分析的基础。

图2-13 数字信号的小波变换

(2)一维连续小波变换。小波变换实际上是求取信号在各小波函数上的投影值。每个小波函数均由一个母小波函数经过尺度伸缩与时间平移得来的。信号分析的一般思路就是分解与组合,寻找一组最能代表信号特征的函数形式,将信号用这些量来逼近,或者写成这些量的线性组合的形式。

小波分析的思想来源于伸缩和平移方法:对波形的尺度伸缩就是在时间轴上对信号进行压缩与伸展,而时间平移就是指小波函数在时间轴上的波形平行移动。

(3)离散小波变换。由于连续小波变换的伸缩和平移系数是相互独立的,所以通过伸缩和平移得到的各个小波函数之间有一定的相似性,但由于这两个系数之间的独立,就引入了信息的冗余。在分辨率一定的情况下,描述了多余的信息,使得反映信号特征的一些参数相互重叠,给我们的分析带来不便,但这些特点可以用在本身就有自相似性的信号上,可以让我们更清楚地看到信号自身的自相似性。

此外,由于冗余信息的存在,也使得小波逆变换的重构过程不唯一,也就是说,由同一母小波生成的不同的小波变换函数可能重构成同一个信号。为了减少冗余信息,就引入了离散小波变换的概念,其中的伸缩和平移系数是可数的,重构过程用求和的形式给出。如果伸缩和平移系数满足一定的对应关系,则称为二进小波变换(尺度以2的幂的形式给出)。离散小波变换主要是建立在二进制小波变换的基础上的。

测井曲线数据也恰好是离散数据,符合离散变换的要求。在利用小波分析进行层序地层划分时,主要是对测井曲线进行多尺度分解,得到不同尺度下的小波变换图,利用其表现出来的特征来划分不同级次的层序。

2.利用小波分析进行层序地层划分

利用小波分析方法是层序地层划分方法上的一种新的尝试,其目的是尽量减少层序划分过程中的主观因素,依靠地层自身表现出来的客观特征来识别层序、准层序组以及准层序。在我们研究的沉积岩地层中,沉积物的特征可以反映沉积时水体的特征。随着沉积水深的变化,沉积物中多种特征都会相应的发生变化,如放射性物质含量、有机质含量或其他微量元素的含量等,这种变化就会在相应的测井曲线上反映出来。而沉积水深变化受到了多种因素的影响,有长期和短期的旋回,是多个不同周期旋回的叠加,因此测井曲线应该是沉积地层中某种随水深变化的特征的多种频率变化的响应的叠加。也就是说,测井曲线中包含着沉积水深不同周期变化的信息,是多个沉积水深变化周期相互叠加的响应。而小波分析能够将信号分解为不同频率不同周期的旋回,因此,小波分析的特点恰好可以和测井曲线的特点相对应,利用小波分析的方法可以比较准确地将测井曲线中相互叠加的反映水深变化的不同周期的信息分别识别出来,识别出的这些信息就可以用来进行沉积旋回的划分。

同时,小波分析方法还可以帮助解决传统研究方法所不能解决的一些难题,如大段单一岩性地层中的沉积旋回识别。大段单一岩性尤其是大段泥岩、页岩,并不是一个小的沉积旋回里沉积的产物,相反,应是一个相当长时期沉积下来的,但是通过传统的岩性划分方法却很难将其划分开,这就给准层序甚至准层序组的划分造成了困难。小波分析方法可以较好地解决这一问题,利用这种方法可以从测井曲线的细微变化中识别沉积间断和沉积旋回。

(1)测井曲线的选择。不同的曲线具有不同的地质含义,进行相同的变换可能会得到不同的结果。但在研究中通过对GR、AC、COND、电阻率等多条曲线进行小波变换后对比发现,不同测井曲线所得出的变换结果尽管形态上不完全一样,但在旋回的划分上却比较一致(图2-14)。图中曲线a是COND测井曲线经过db5小波变换后的结果,曲线b是同一井段AC曲线变换后的结果。出现这个结果是由于虽然不同的曲线代表着不同的地层响应,会呈现出不同的特征,但地层中各种参数的变化主要受沉积环境的影响,会随着沉积环境的旋回变化呈现出基本一致的旋回特征。这也从一个方面反映了小波变换在沉积旋回划分中的客观性。因此,可以选择目标井的测量精度较高、质量较好的曲线来进行小波变换,进而进行沉积旋回的划分。

图2-14 对COND和AC曲线进行小波变换结果对比

(2)小波的选择。同傅里叶分析不同,小波分析的基(小波函数)不是唯一存在的,所有满足小波条件的函数都可以作为小波函数,那么小波函数的选取就成了十分重要的问题,实际选取小波的标准主要有以下三种。

1)自相似性原则:对二进小波变换(因为在正交小波变换中,取样的方式就是按照小波函数取样的,所以不存在这个问题),如果选择的小波对信号有一定相似性,则变换后的能量就比较集中,可以有效减少计算量。

2)判别函数:针对某类问题,找出一些关键性的技术指标,得到一个判别函数,将各种小波函数代入其中,得到一个最优原则。

3)支集长度:大部分应用选支集长度在5~9之间的小波。因为支集太长会产生边界问题,支集太短不利于信号能量的集中。

但在实际应用中,因为大部分信号的信息量太大,很难找到相应的模式,因此主要是依靠经验来选取。根据前人研究经验及作者对不同函数所做结果的对比,本书采用的是Daubechies小波,阶数为5。

Daubechies小波是由著名小波学者Ingrid Daubechies所创造,她发明的紧支集正交小波是小波领域的里程碑,使得小波的研究由理论转到可行。这一系列的小波简写成dbN,其中N表示阶数。

(3)工作流程。测井曲线能比较准确地反映井旁地层的电性、物性等特征,但往往会受到测井仪器、钻井泥浆等其他非地层因素的干扰,且不同频率的旋回相互叠加,对正确识别和划分沉积旋回造成一定的影响。小波分析能真正消除干扰信号,放大真实信息,按不同频率反映出测井曲线中包含的真正旋回特征,以此划分不同级别层序单元,同时还可以在划分高精度沉积旋回的基础上,与Fischer图解相结合划分出体系域。

MATLAB软件的小波分析工具箱是一种比较常用的工具。MATLAB是Math works公司于1982年推出的一套高性能的数值计算和可视化软件。MATLAB的推出得到了广大专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础。各个领域的专家学者相继推出了MATLAB工具箱,包括信号处理、神经网络、图像处理、小波分析等。其中小波分析工具箱可以满足对测井曲线进行小波变换的需要。

图2-15 小波分析流程图

在对测井曲线进行小波变换时,首先需要对所研究层段的顶底界面进行准确的标定,然后将需要变换的该深度段的测井曲线数值建立单独的文本文件作为原始文件。将原始文件导入后保存成.m格式的信号文件。选择MATLAB软件的wavelet(小波分析)工具箱进行离散一维小波变换,小波类型选择db,阶数为5,最大级数定为12,将上述参数选好后进行分析,即可得到一组12条不同级次的db5小波变换曲线(图2-15)。此外对其进行连续一维小波变换,可以得到小波的频谱分析图,选择合适的最大显示值,根据频谱图上图形的闭合方向可以区分出层序的界面和层序单元(图2-6,图2-7)。

(4)单井分析实例。牛100井位于牛庄洼陷西部,地层以砂泥岩互层为主,岩性变化较快(图2-16)。利用小波分析方法对AC、R25两条测井曲线进行了一维连续小波变换,分别得到其小波变换谱系图,对AC曲线进行了一维离散变换,得到不同阶数的小波,根据与地震、测井及录井岩性资料的对比,选用d11,d9,d7三个层的小波变换曲线分别进行层序、准层序组和准层序的划分。

将传统划分方法所得的结果与小波分析方法所得结果进行对比可以比较明显的看出,在层序和准层序组的划分上两种方法划分的层序单元基本一致,可以相互验证。在准层序级别上的划分,小波分析方法的优势就比较明显地体现了出来,划分的旋回数较多,精度也有提高。这也正是小波分析作为“数学显微镜”的特点所决定的。

从图2-16中小波分析得到的d11曲线可以看出,这一段地层可以划分为两个大的旋回,对应两个层序,谱系图上的特征也比较明显。其中每个大的旋回又可以分为三个次一级的旋回,在d9及谱系图上可以找到相关界面,相当于每个层序划分出三个准层序组,每个准层序组在测井曲线及录井资料上也有较明显的反旋回特征。在进行准层组的划分时,小波分析方法可以划分出肉眼不易识别的旋回,从而提高了划分精度。整段地层一共可以划分为21个准层序,代表不同的沉积旋回。其旋回特征在d7曲线上有较好体现,从谱系图上也可以找到各界面的标志。从测井曲线和岩性上看,基本上每一个准层序都是一个反旋回,代表着一期的水体变换,这也完全符合层序地层学的基本原理。

图2-16 牛100井小波分析资料的层序地层划分

王62井位于牛庄洼陷东部,与牛100井相比,划分出的各层序单元的厚度发生了明显的变化,但数目基本一致,这也证明了小波分析划分层序地层的结果是比较可靠的。通过对AC曲线的小波变换得到AC曲线的小波变换谱系图和小波变换曲线,如图2-17所示。从谱系图和d11曲线上可以将整段地层划分为两个大的旋回,分别对应层序Ⅲ和层序Ⅳ。其中每个层序又可以划分为3个准层序组,在d9曲线上可以看到相应的旋回出现,谱系图上可以找到界面的标志(图2-17)。王62井这一段地层一共可以划分成20个准层序,缺失第一个准层序。各准层序在岩石类型、颜色和测井曲线上基本上可以看出反旋回特征,符合层序地层划分方法。

通过牛100井、王62井的划分可以看出,小波分析方法在砂泥岩互层的地层中有较好的应用效果,可以提高层序划分的精度和准确性。在层序划分中有比较好的可重复性,使得全区的划分结果比较客观和统一,减少了人为因素造成的干扰。

④ 仪器分析中各仪器名称及英文字母缩写

分为首字母
次字母
尾字母。
给高分完整回答。
首字母:p压力
l液位
w物位
f流量
t温度
a分析仪
v
容器
r
反应器
d密度。。
等等。。。

⑤ 什么是仪器分析,举例说明

答:建立在物质的物理性质、物理化学性质基础上,采用特殊仪器,对物质进行定性分析、定量分析、结构分析的分析方法。
例如,依据物质的光学性质(光强)建立的吸光光度法,可以进行定量分析。

⑥ 仪器分析名词解释

仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。 仪器分析方法所包括的分析方法很多,有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。
仪器分析是根据被测组分的某些物理的或物理化学的特性,如光学的、电学的性质,进行分析检测的方法,因此,它实际上已经超出了化学分析的范围和局限,成为生产和科学各个领域的工具。
分析化学中的分析是分离和测定的结合,分离和测定是构成分析方法的两个既相独立又相联系的基本环节。分离是使物质纯化的一种手段,而纯化的背后是物质的不纯,是物质具有混合性。我们知道,化学家所说的物质,指的是物质本身,是某种单质或化合物。这里所说的物质本身,意思是以纯粹的形式存在的物质,没有其他物质混合于其中的物质,也就是人们通常所说的纯物质。可是,无论是天然存在的还是人工制造的物质,都不是绝对纯的,绝对纯是达不到的,绝对纯只能在理论中或思想上存在。因此,在化学分析中,首先遇到的矛盾就是纯与不纯的矛盾。

⑦ 什么是仪器分析

仪器分析是指依据物质的物理性质或物理化学性质,采样特殊仪器,进行定性分析、定量分析或结构分析的的分析法。
仪器分析可以分为:光学分析法(其中有发射光谱法、分子吸收光谱法、原子吸收光谱法)、电化学分析法(其中有电位分析法、电导分析法、库伦分析法、极谱分析法)、色谱分析法(气相色谱法、高压液相分析法)、质谱法等。
常用的仪器有:紫外可见分光光度计、红外分光光度计,电位计、电导仪、库仑计、极谱仪,气相色谱仪、高压液相色谱仪,质谱仪等。

⑧ 仪器分析的分类

仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。仪器分析方法所包括的分析方法很多,有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。仪器分析与化学分析(chemical analysis)是分析化学(analyticalchemistry)的两个分析方法。

仪器分析的分析对象一般是半微量(0.01~0.1g)、微量(0.1~10mg)、超微量(<0.1mg)组分的分析,灵敏度高;而化学分析一般是半微量(0.01~0.1g)、常量(>0.1g)组分的分析,准确度高。

仪器分析大致可以分为:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外-可见光谱法、质谱分析法、红外光谱法、其它仪器分析法等。

主要特点
1、灵敏度高:大多数仪器分析法适用于微量、痕量分析。例如,原子吸收分光光度法测定某些元素的绝对灵敏度可达10^-14g。

2、取样量少:化学分析法需用10-1~10-4g,仪器分析试样常在10-2~10-8g。

3、在低浓度下的分析准确度较高:含量在10-5%~10-9%范围内的杂质测定,相对误差低达1%~10%。

4、快速:例如,发射光谱分析法在1min内可同时测定水中48个元素。

5、可进行无损分析:有时可在不破坏试样的情况下进行测定,适于考古、文物等特殊领域的分析。有的方法还能进行表面或微区(直径为?级)分析,或试样可回收。

6、能进行多信息或特殊功能的分析:有时可同时作定性、定量分析,有时可同时测定材料的组分比和原子的价态。放射性分析法还可作痕量杂质分析。

7、专一性强:例如,用单晶X衍射仪可专测晶体结构;用离子选择性电极可测指定离子的浓度等。

8、便于遥测、遥控、自动化:可作即时、在线分析控制生产过程、环境自动监测与控制。

9、操作较简便:省去了繁多化学操作过程。随自动化、程序化程度的提高操作将更趋于简化。

10、仪器设备较复杂,价格较昂贵。[1]

重要意义
仪器分析自20世纪30年代后期问世以来,不断丰富分析化学的内涵并使分析化学发生了一系列根本性的变化。随着科技的发展和社会的进步,分析化学将面临更深刻、更广泛和更激烈的变革。现代分析仪器的更新换代和仪器分析新方法、新技术的不断创新与应用,是这些变革的重要内容。因此,仪器分析在高等院校分析化学课程中所处的地位日趋重要。许多地方高校为了使自己培养的人才能从容迎接和面对新世纪科学技术的挑战,已将仪器分析列为化学等专业学生必修的专业基础课。故编写适应地方高校有关专业使用的仪器分析教材是教材改革的重要内容之一。

仪器分析就是利用能直接或间接地表征物质的各种特性(如物理的、化学的、生理性质等)的实验现象,通过探头或传感器、放大器、分析转化器等转变成人可直接感受的已认识的关于物质成分、含量、分布或结构等信息的分析方法。也就是说,仪器分析是利用各种学科的基本原理,采用电学、光学、精密仪器制造、真空、计算机等先进技术探知物质化学特性的分析方法。因此仪器分析是体现学科交叉、科学与技术高度结合的一个综合性极强的科技分支。 仪器分析的发展极为迅速,应用前景极为广阔。

⑨ 仪器分析名词解释 最大吸收波长指什么

指在紫外或者可见光波长范围内,对化合物进行全波长扫描后得到一张吸收光谱图,这个谱图上显示的波峰处所对应的波长就是该化合物的最大吸收波长。。。

⑩ 什么是仪器分析法

(1)气相色谱法(GC)。气相色谱法是Martin等人在研究液—液分配色谱的基础上,于1952年创立的一种极有效的分离方法。它可分析和分离复杂得多组分混合物。气相色谱法又可分为气固色谱(GSC)和气液色谱(GLC)。前者是用多孔性固体为固定相,分离的对象主要是一些永久性的气体和低沸点的化合物;后者的固定相是用高沸点的有机物涂渍在惰性载体上。由于可供选择的固定液种类多,故选择性较好,应用亦广泛。

近年来,柱效高、分离能力强、灵敏度高的毛细管气相色谱有了很大发展,尤其是毛细管柱和进样系统的不断完善,使毛细管气相色谱的应用更加广泛。尽管样品前处理的净化效果越来越好,但样品中的干扰物是不可避免的,所以,现代气相色谱一般采用选择性检测器,理想的检测器当然是只对“目标”农药响应,而对其他物质无响应。农药几乎都含有杂原子,而且经常是一个分子含多个杂原子,常见的杂原子有O、P、S、N、Cl、Br和F等。因此,不同类型的农药应采用不同的检测器。电子捕获检测器(ECD)、氮磷检测器(NPD)、火焰光度检测器(FPD)仍然是常用的检测器。30多年来,ECD一直是农药残留分析常用的检测器,特别适用有机氯农药的分析。但由于其对其他吸电子化合物如含N和芳环分子的化合物也有响应,因此,其选择性并不是很好。当分析某些基质复杂且难净化的样品时,其效果并不好。但利用核心切换和反冲技术的二维色谱可以很好地解决上述问题。NPD因其对N和P具有良好的选择性,是测定有机磷和氨基甲酸酯等农药的常用检测器。原子发射检测器(AED)是用于测定F、Cl、Br、I、P、S、N等元素选择性检测器,自1989年开始应用于农药残留分析,利用AED测定氨基甲酸酯、拟除虫菊酯、有机磷和有机氯农药残留亦有报道。

(2)高效液相色谱法(HPLC)。高效液相色谱法(HPLC)是20世纪60年代末至70年代初发展起来的一种新型分离分析技术。随着不断改进与发展,目前已成为应用极为广泛的化学分离分析的重要手段。它是在经典液相色谱基础上,引入了气相色谱的理论,在技术上采用了高压泵、高效固定相和高灵敏度检测器,因而具有速度快、效率高、灵敏度高、操作自动化的特点。高效液相色谱法的应用范围:高沸点、热不稳定、分子质量大、不同极性的有机物;生物活性物质、天然产物;合成与天然高分子,涉及石油化工、食品、药品、生物化工、环境等领域。80%的化合物可用HPLC分析。HPLC常用于分析高沸点(如双吡啶除草剂)和热不稳定(如苄脲和N-甲基氨基甲酸酯)的农药残留。HPLC分析农药残留一般采用C18或C8填充柱,以甲醇、乙腈等水溶性有机溶剂做流动相的反相色谱,选择紫外吸收、二极管阵列检测器、荧光或质谱检测器用于农药残留的定性和定量。

(3)色谱—质谱联用技术。质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性、定量结果。

从Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,20世纪40年代以后开始用于有机物分析,60年代出现了气相色谱—质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。80年代以后又出现了一些新的质谱技术,如快原子轰击电离子源、基质辅助激光解吸电离源、电喷雾电离源、大气压化学电离源,以及随之而来的比较成熟的液相色谱—质谱联用仪、感应耦合等离子体质谱仪、傅立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。

①气相色谱—质谱联用法(GC-MS):用气相色谱—质谱(GC-MS)联用来检测邻苯基苯酚、二苯胺及炔螨特等。其残留用乙腈提取,再转移至丙酮中,邻苯基苯酚、二苯胺及炔螨特的检出限分别为10,8,15μg/kg,且回收率比较高。有报道,气相色谱—离子捕获质谱法(GC-ITMS)多残留检测,可用来检测有机氯类、有机磷类、氨基甲酸酯类及其他一些污染物。样品用乙腈—水提取,再溶到石油醚—乙醚中以在GC-ITMS上直接分析,质谱在EI模式下运行。当样品中农药的含量在20~1000μg/kg时,其回收率一般大于80%。对绝大多数农药来说其检出限为1~10μg/kg。该法可用来检测痕量农药,适合研究污染源在环境中的行为。气相色谱—化学电离质谱法(GC-CIMS)可用来分析多种农药的残留,如乙酰甲胺磷、保棉磷、敌菌丹、克菌丹、杀虫脒、百菌清、烯氟乐灵、异丙甲草胺等。

②液相色谱—质谱联用(HPLC-MS):大部分农药可用GC-MS检测,但对极性或热不稳定性太强的农药(及其代谢物)不适用(如灭菌丹、利谷隆等),可采用高效液相色谱—质谱法(HPLC-MS)检测。据统计,液相色谱可以分析的物质约占世界上已知化合物的80%以上。内喷射式和粒子流式接口技术可将液相色谱与质谱连接起来,已成功地用于分析一些热不稳定、分子质量较大、难以用气相色谱分析的化合物。HPLC-MS具有检测灵敏度高、选择性好、定性、定量同时进行、结果可靠等优点。对一种用于毛细管电泳的新型电喷射接口加以改进使其适用与液质联用,将可大大提高分析灵敏度。另外,研究开发毛细管液相色谱与离子捕获检测器的配合将会大大提高液相色谱灵敏度。虽然液质联用对分析技术和仪器的要求高,但它是一种很有利用价值的高效率、高可靠性分析技术。色质联用一般在0.5mg/kg添加水平上的回收率为70%~123%,平均变异系数小于13%。

阅读全文

与在仪器分析中db5是什么相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59