A. 什么是发色基团什么是助色基团它们具有什么样结构或特征
发色基团:是指分子中含有的,能对光辐射产生吸收、具有跃迁的不饱和基团及其相关的化学键。
某些有机化合物分子中存在含有不饱和键的基团,能够在紫外及可见光区域内(200~800nm)产生吸收,且吸收系数较大,这种吸收具有波长选择性,吸收某种波长(颜色)的光,而不吸收另外波长(颜色)的光,从而使物质显现颜色,所以称为生色团,又称发色团
助色基团:有些原子或原子团单独在分子中存在时,吸收波长小于200nm,而与一定的发色团相连时,可以使发色团所产生的吸收峰位置红移,吸收强度增加。
发色团特征:这类基团与不含非键电子的饱和基团成键后,使该分子的最大吸收位于200nm或200nm以上,摩尔吸光系数较大(一般不小于5000)。
简单的生色团由双键或叁键体系组成,例如,>C=C<,>C=O,-N=N-,-C C-,-C N-等。分子结构的某些基团吸收某种波长的光,而不吸收另外波长的光,从而使人觉得好像这一物质"发出颜色"似的,因此把这些基团又称为"发色基团/发色团"。
例如,无机颜料结构中有发色团,如铬酸盐颜料是 (重铬酸根),呈黄色;氧化铁颜料的发色团是 呈红色;铁蓝颜料的发色团是 呈蓝色。这些不同的分子结构对光波有选择性的吸收,反射出不同波长的光。
助色团特征:助色团的基本特点是在基团中最少还有一对孤对电子,使其可以通过共振来增大分子的共轭体系。如果助色团位于发色团的间位位置,则基本不影响分子的颜色。

(1)仪器分析中什么是助色团扩展阅读
发色基团与助色基团理论:
根据维特(O.N.Witt)发色团与助色团理论(1876),有机化合物结构中至少需要有某些不饱和基团存在时才能发色,这些基团称之为发色基团,主要的发色基团有-N=N-、=C=C=、-N=O、=C=O等。
维特的发色团与助色团理论在历史上对染料化学的发展起过重要的作用,也正是这个原因,维特的发色团与助色团这两个名称还在被广泛地使用着,不过它们的涵义已经有了根本的变化。
B. 紫外光谱是带状光谱的原因
这是因为分子振动能级的能级差为0.05~1 eV,转动能级的能差小于0.05 eV,都远远低于电子能级的能差,因此当电子能级改变时,振动能级和转动能级也不可避免地会有变化,分辨率不高的仪器测出的谱图,由于各种谱线密集在一起,往往只看到一个较宽的吸收带。
若紫外光谱在惰性溶剂的稀溶液或气态中测定,则图谱的吸收峰上因振动吸收而会表现出锯齿状精细结构。降低温度可以减少振动和转动对吸收带的贡献,
因此有时降温可以使吸收带呈现某种单峰式的电子跃迁。
溶剂的极性对吸收带的形状也有影响,通常的规律是溶剂从非极性变到极性时,精细结构逐渐消失,图谱趋向平滑。
(2)仪器分析中什么是助色团扩展阅读
紫外吸收光谱,带状光谱,分子中存在一些吸收带已被确认,其中有K带、R带、B带、E1和 E2带等。
K带是二个或二个以上π键共轭时,π电子向π * 反键轨道跃迁的结果,可简单表示为π→π * 。
R带是与双键相连接的杂原子(例如C=O、C=N、S=O等)上未成键电子的孤对电子向π * 反键轨道跃迁的结果,可简单表示为 n→π * 。
E1 带和E2 带是苯环上三个双键共轭体系中的π电子向π*反键轨道跃迁的结果,可简单表示为 π→π * 。
B带也是苯环上三个双键共轭体系中的π→π * 跃迁和苯环的振动相重叠引起的,但相对来说,该吸收带强度较弱。
以上各吸收带相对的波长位置由大到小的次序为:R、B、K、E2、 E1 ,但一般K和E带常合并成一个吸收带。
C. 食品中的天然色素有哪几类从其化学结构特征说明各具有哪些生色团和助色团
天然色素按来源不同分为植物色素、动物色素、微生物色素和矿物色素。其中研究和应用最多的的是植物色素。植物色素按颜色分为……;按溶解性分为……;按化学结构分为类胡萝卜类色素、花青色素、……。生色团为结构中共轭的部分,助色团为连在共轭体系含故对电子的基团。
D. 紫外光谱是什么
紫外光谱是是带状光谱。
在紫外光谱中,波长单位用nm(纳米)表示。紫外光的波长范围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外。

(4)仪器分析中什么是助色团扩展阅读:
有机化合物分子中主要有三种电子:形成单键的σ电子、形成双键的π电子、未成键的孤对电子,也称n电子。
基态时σ电子和π电子分别处在σ成键轨道和π成键轨道上,n电子处于非键轨道上。仅从能量的角度看,处于低能态的电子吸收合适的能量后,都可以跃迁到任一个较高能级的反键轨道上。
所有这些可能的跃迁中,只有n→π*的跃迁的能量足够小,相应的吸收光波长在200~800 nm范围内,即落在近紫外-可见光区。其它的跃迁能量都太大,它们的吸收光波长均在200 nm以下,无法观察到紫外光谱。
E. 紫外吸收光谱分析法的定性和定量分析的依据是什么
物质吸收波长范围在200~760nm区间的电磁辐射能而产生的分子吸收光谱称为该物质的紫外可见吸收光谱,利用紫外可见吸收光谱进行物质的定性、定量分析的方法称为紫外可见分光光度法。其光谱是由于分子之中价电子的跃进而产生的,因此这种吸收光谱决定于分子中价电子的分布和结合情况。
其在饲料加工分析领域应用相当广泛,特别是在测定饲料中的铅、铁、铅、铜、锌等离子的含量中的应用。荧光分析也是近年来发展迅速的痕量分析方法,该方法操作简单、快速、灵敏度高、精密度和准确度好,并且线形范围宽,检出限低。

(5)仪器分析中什么是助色团扩展阅读
紫外光谱
准确测定有机化合物的分子结构,对从分子水平去认识物质世界,推动近代有机化学的发展是十分重要的。采用现代仪器分析方法,可以快速、准确地测定有机化合物的分子结构。在有机化学中应用最广泛的测定分子结构的方法是四大光谱法:紫外光谱、红外光谱、核磁共振和质谱。紫外和可见光谱,简写为UV。
F. 化学中的显色反应有哪些
1.蛋白质遇硝酸变黄(如做实验时,被某液体溅到皮肤上,皮肤变黄)
2.酚类遇Fe3+显紫色
3.Fe3+遇SCN-呈现血红色
4.Fe2+(浅绿色或灰绿色)遇比较强的氧化剂变成Fe3+(黄色)
5.Fe(OH)2(白色),在空气或溶液中会迅速变为灰绿色沉淀,最后变为Fe(OH)3红褐色沉淀.
6.白色无水硫酸铜溶于水会变蓝
7.淀粉遇碘变蓝
8.氧化漂白:次氯酸HClO(氯气通到湿润的有色布条,使有色布条褪色,其实是氯气与水生成
次氯酸HClO,而次氯酸HClO具有强氧化性使布条褪色),臭氧O3,双氧水H2O2等都可使高锰酸钾溶液褪色
9.二氧化硫通入品红溶液,品红溶液褪色,但非氧化漂白,再加热品红溶液,颜色恢复.
10.不饱和烃(如烯烃,炔烃等)会使溴水或高锰酸钾溶液褪色(与溴发生加成反应,还原高锰酸钾)
11.苯酚(固体)在空气中露置被氧气氧化变为粉红色
12.2NO(无色)+O2=2NO2(红棕色)
13.NO2(红棕色)=N2O4(无色) (由于技术有限,这里的等号应为可逆号)(正反应条件好像是加压,逆反应条件反之)
14.黑色氧化铜CuO会与还原性物质(如氢气H2,一氧化碳CO,碳C等)反应生成红色的铜Cu.
15.醛基与银氨溶液反应生成光亮的银镜 (反应要在水浴中进行)
16.醛基与新制氢氧化铜悬浊液反应,反应现象是蓝色絮状沉淀(Cu(OH)2)到砖红色沉淀(Cu2O)
17.无机反应(沉淀或有色离子)
CH3COO-与 Pb2+
Ba2+与SO42-
Ba2+与SO32-
Sn2+与SO42-
Ag+与Cl-
Hg+(Hg2Cl2) 与Cl-
等等都是生成白色沉淀
18.Cu2+与碱生成Cu(OH)2蓝色沉淀.
19.Fe2+与碱生成Fe(OH)2,但它易被氧化,所以实验现象中没有我们期望的白色沉淀,而是灰绿色沉淀,过一段时间最终形成Fe(OH)3红褐色沉淀.
20.Fe3+与碱生成Fe(OH)3红褐色絮状沉淀.
G. 助色团是什么
有机化学中的一个概念,助色团是分子中本身不吸收辐射而能使分子中生色基团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。
H. 求几个仪器分析名词解释
基线:①在三角测量中推算三角锁和三角网起算边长所依据的已知或实测边长。起算边一般长几千米至
十几千米,难以用地面测距仪直接精密测定,通常以起算边为长对角线建立一个菱形基线网,短对角线为基线,使用因瓦基线尺或电磁波测距仪精密测定基线长度.并精密测定菱
形中的各内角,由三角学公式通过平差方法解算起算边长。②沿海国划定领海和其他管辖海域宽度的起算线。一般有两种:(1)正常基线,即沿岸低潮线;(2)直线基线,即在大陆
岸上和沿海岸外缘岛屿上,选定某些点作为基点,再将相邻各基点连接起来的直线。在海岸线极为曲折的地方或者如果紧邻海岸有一系列岛屿时可采用此法,直线基线的划定不应
明显偏离海岸的一般方向,基 线内的海域必须充分接近陆地领土。中国划定领海宽度采用"直线基线”法。
I. 食品中的天然色素有哪几类从其化学结构特征说明各具有哪些生色团和助色团
色素有很多种分类方式,与我们生活关系最密切的分类有两种: 一种是按色素得到途径分,分为合成色素、无机色素和天然色素三大类: 合成色素制自煤焦油产品,习惯上也称苯胺色素;无机色素主要是一些矿物性颜料,所以又称无机颜料;天然色素是从动植物提取而得到的,天然色素的价格相对较高。 一种按使用目的和安全性分,可分为食用色素、非食用色素和外用色素三大类: 食用色素(FD—C)的级别最高,能用于食品、药物和化妆品;非食用色素(D—C)稍微差点,能用于药物和化妆品,而不能用于食品;外用色素(Ext D—C)则仅能用于外用药品和化妆品,而不能接触唇部或任何黏膜。 食品中的色素 人们常用“色香味美”来形容一道好菜,色字当头,自然是人对食物的第一印象就是它的颜色了。色素用在食品中的目的,也就是为了提高食品的外观色泽、增加人们的食欲。在食品中常用的色素有两种:一种是天然色素,另一种是人工合成色素。 *食用天然色素 天然色素是指通过一定工艺从动植物原料中直接提取出的一类色素的总称,大部分来源于植物的花瓣、叶子和少量的昆虫。比如,把姜中含有姜黄色素、番茄中的番茄红素、辣椒中的辣椒素等,提取出来,就得到了天然色素。 炒胡罗卜时,我们会发现油会变成了橙色,而苋菜用热水一烫水就变成红色的了,这是因为天然色素也有水溶性、油溶性的区别。一般情况下,用在熟食中的色素大多数是油溶性的,而用在果冻、饮料中的色素就是水溶性。 天然色素不仅不会对人体产生危害,而且有些天然色素,对人体是一种有益补充。如番茄红素,能提高人体的免疫力,消除体内自由基、减少紫外线对皮肤的伤害。所以添加了食品用天然色素的食品,人们可以放心食用。 天然色素比较安全,但它们的着色力和耐光性比较差,来源也比较少,这就限制了它的使用的范围。在食品中用的也比较多的天然色素有胭脂虫红、红花苷、胡萝卜素、姜黄、凤仙花苷、柠檬黄等。 *食用合成色素 食品中也用到少数符合食品安全标准的合成色素。实际上,合成色素就是一种人工合成的染料,主要是从煤焦油中分离出来的苯胺染料,本身并没有任何营养价值,但它的颜色和着色力都比天然色素要好,价格也比天然色素便宜。 由于人工合成色素在合成过程中可能受到污染,安全问题很难保障,所以在食品中使用合成色素一直是个有争议的问题:一方面,颜色作为食物的重要的外观形式之一,对刺激食欲有着重要作用;另一方面,合成色素的摄入过多会对人的身体产生不良影响。 目前,我国批准在食品上使用的合成色素有苋菜红、胭脂红、柠檬黄和靛蓝四种。使用量的标准是:苋菜红、胭脂红的用量不超过万分之零点五,柠檬黄和靛蓝的用量不超过万分之一。 现在来说说液泡中的色素,花青素存在于表皮组织细胞的液泡中。化学色是由那些个生物体的化学物质所引起的颜色,一般我们将这种着色物质称之为色素。如菜叶的绿色来自其体内的叶绿素,胡萝卜的红色则来自其体内的胡萝卜素,植物方面重要的色素还有一些醌类色素和黄酮类色素。再如多种动物的肉冠和舌头的红色来自其体内的血红素,动物方面这类重要的色素还有大名鼎鼎的黑色素、螵呤色素、喋呤色素或由从植物那里转移过来的植物色素。 青蛙的卵分为动物极和植物极。动物极颜色深,细胞小,植物极颜色浅,细胞大。细胞核偏向动物极,卵黄偏向植物极,即:动物极卵黄少,植物极卵黄多。 蛙的肤色是由散布于表皮的色素颗粒相位于真皮的特殊色素细胞即裁色体所形成的。载色体的类型包括具有白色结晶的白色体,只有黑、棕色索的黑色体以及具有红、黄色素的黄色体。所有这些,黑色体对于调节颜色使之与背景相融洽是很重要的;某些蛙和蟾蜍具有非凡的伪装能力。黑色体中黑色素的暗棕色素颗粒之散布程度是受脑垂体中叶的黑色体激活素控制的引起色素散布而导致动物体色变暗的黑色体激活素之释放又受到光线对于眼睛视网膜的照明方式所控制。当动物在光亮背景中的时候,视网膜的背、腹两部分受到来自表面的反射光照明,以及从上面直接照明。这样就抑制了黑色体激活素的释放,色素集中于黑色体的中央,因而动物的体色变浅。但在暗的、吸收光线的背景中,仅仅视网膜的腹面被照明,黑色体激活素由脑垂体释放出来并引起黑色体的色素扩散,致使皮肤变黑。两种反应隐藏决它们的效应器中。其他因素.特别是温度、沉度以及活动比亦会影响皮队的色彩。
J. 什么是助色团
与生色团相连时使吸光的最大波长向长波方向移动并使吸光系数增大,这些基团为助色团